Systematic measurements were conducted on a cold CFB with annular furnace and six parallel cyclones to study gas-solids flow in the annular furnace and flow non-uniformity among six cyclones. The results show that axi...Systematic measurements were conducted on a cold CFB with annular furnace and six parallel cyclones to study gas-solids flow in the annular furnace and flow non-uniformity among six cyclones. The results show that axial solids holdup in the annular furnace decreases exponentially with height, similar to the conventional rectangular furnace. The uniform transverse distribution of solids holdup suggests a good gas-solids mixing in the annular furnace. The annular furnace presents the core/double-annulus flow structure, and it results in enhanced gas-solids back-mixing than the conventional core/annulus flow structure. The gas-solids flow of the inner wall-layer and the outer wall-layer is very close at most part of the furnace height, and the wall-layer thickness decreases with height. Flow non-uniformity exists among six parallel cyclones in the annular furnace CFB. But non-uniform distribution of solids circulating rates and cyclone pressure drops show no regularity, and the flow non-uniformity is no larger than the CFBs with conventional furnace. Under typical operating conditions, the relative deviation of six solids circulating rates is 8.0%.展开更多
Annular furnace CFBs with six cyclones represent new designs for large capacity CFB boilers over 660 MW. To investigate the gas-solid flow non-uniformity and its main influencing factors, an experimental study was car...Annular furnace CFBs with six cyclones represent new designs for large capacity CFB boilers over 660 MW. To investigate the gas-solid flow non-uniformity and its main influencing factors, an experimental study was carried out in the cold-test rig of an annular furnace CFB with six cyclones. The influence of furnace structure and cyclone arrangement on the non-uniformity of gas-solid flow was obtained. On the basis of these findings, the structure of the annular furnace CFB with six cyclones was optimized, and an optimal structure was obtained. The results show that for newly designed annular furnace CFBs, the non-uniformity of gas-solid flow among loops is no greater than that of traditional CFBs. In terms of uniformity, side cyclones rotating inward are superior to those rotating outward. The position of the side cyclones determines the basic solid circulating rate distribution trend and can dramatically improve flow non-uniformity. The middle cyclone positions and the symmetric modes of the cyclones do not determine the solid circulating rate distribution trend and have less effect on DEVGs. Forty-five degree chamfers of outer ring walls can reduce wall erosion and the non-uniformity of gas-solid flow in the circulating fluidized bed. Regarding the operating and structural conditions in this work, the optimal structure of annular furnace CFBs is Type 6: side cyclones rotating inward and b = a/2, d = 0.1c; the center of the middle cyclone inlet located at the centerline of the furnace cross-section; cyclones on the two sides of the furnace in an axisymmetric arrangement; and a furnace corner shape of 45° chamfers. Under the given operating conditions, the DEV_(Gs) for the optimal structure are approximately 4.0%~10.3%.展开更多
In order to expand the study on flow instability of supercritical circulating fluidized bed(CFB) boiler,a new numerical computational model considering the heat storage of the tube wall metal was presented in this pap...In order to expand the study on flow instability of supercritical circulating fluidized bed(CFB) boiler,a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper.The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability.Based on the time-domain method,a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established.To verify the code,calculation results were respectively compared with data of commercial software.According to the comparisons,the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability.Based on the new program,the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method.When 1.2 times heat load disturbance was applied on the loop,results showed that the inlet flow rate,outlet flow rate and wall temperature fluctuated with time eventually remained at constant values,suggesting that the hydrodynamic flow was stable.The results also showed that in the case of considering the heat storage,the flow in the water wall is easier to return to stable state than without considering heat storage.展开更多
在低质量流率条件下,对垂直上升内螺纹管在亚临界和近临界压力区的传热特性进行了实验研究。实验参数范围为压力p=12-22.5 MPa,质量流率G=170-420 kg/(m^2·s),内壁热负荷q=150-366 k W/m^2。实验结果表明:在亚临界压力区,垂直...在低质量流率条件下,对垂直上升内螺纹管在亚临界和近临界压力区的传热特性进行了实验研究。实验参数范围为压力p=12-22.5 MPa,质量流率G=170-420 kg/(m^2·s),内壁热负荷q=150-366 k W/m^2。实验结果表明:在亚临界压力区,垂直上升内螺纹管发生了第二类传热恶化,即干涸(dryout)。内壁热负荷和压力的增大,均会导致干涸点的提前以及干涸后内壁温度的峰值增大。质量流率对干涸点的影响呈现非单调性,存在一界限质量流率。当质量流率小于界限质量流率时,干涸点随质量流率的增加而提前;当质量流率大于界限质量流率时,干涸点随质量流率的增加而推迟。在近临界压力区的亚临界压力部分,内壁热负荷较高时容易发生第一类传热恶化,即膜态沸腾(DNB)。内壁热负荷的增大和质量流率的减小,均会导致传热恶化的提前以及膜态沸腾后的温度飞升值增加。在近临界压力区的超临界压力部分,内螺纹管传热良好,在拟临界区域出现一定程度的传热强化,其传热特性和亚临界压力区的传热特性相似。展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA07030100)
文摘Systematic measurements were conducted on a cold CFB with annular furnace and six parallel cyclones to study gas-solids flow in the annular furnace and flow non-uniformity among six cyclones. The results show that axial solids holdup in the annular furnace decreases exponentially with height, similar to the conventional rectangular furnace. The uniform transverse distribution of solids holdup suggests a good gas-solids mixing in the annular furnace. The annular furnace presents the core/double-annulus flow structure, and it results in enhanced gas-solids back-mixing than the conventional core/annulus flow structure. The gas-solids flow of the inner wall-layer and the outer wall-layer is very close at most part of the furnace height, and the wall-layer thickness decreases with height. Flow non-uniformity exists among six parallel cyclones in the annular furnace CFB. But non-uniform distribution of solids circulating rates and cyclone pressure drops show no regularity, and the flow non-uniformity is no larger than the CFBs with conventional furnace. Under typical operating conditions, the relative deviation of six solids circulating rates is 8.0%.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant No.XDA07030100
文摘Annular furnace CFBs with six cyclones represent new designs for large capacity CFB boilers over 660 MW. To investigate the gas-solid flow non-uniformity and its main influencing factors, an experimental study was carried out in the cold-test rig of an annular furnace CFB with six cyclones. The influence of furnace structure and cyclone arrangement on the non-uniformity of gas-solid flow was obtained. On the basis of these findings, the structure of the annular furnace CFB with six cyclones was optimized, and an optimal structure was obtained. The results show that for newly designed annular furnace CFBs, the non-uniformity of gas-solid flow among loops is no greater than that of traditional CFBs. In terms of uniformity, side cyclones rotating inward are superior to those rotating outward. The position of the side cyclones determines the basic solid circulating rate distribution trend and can dramatically improve flow non-uniformity. The middle cyclone positions and the symmetric modes of the cyclones do not determine the solid circulating rate distribution trend and have less effect on DEVGs. Forty-five degree chamfers of outer ring walls can reduce wall erosion and the non-uniformity of gas-solid flow in the circulating fluidized bed. Regarding the operating and structural conditions in this work, the optimal structure of annular furnace CFBs is Type 6: side cyclones rotating inward and b = a/2, d = 0.1c; the center of the middle cyclone inlet located at the centerline of the furnace cross-section; cyclones on the two sides of the furnace in an axisymmetric arrangement; and a furnace corner shape of 45° chamfers. Under the given operating conditions, the DEV_(Gs) for the optimal structure are approximately 4.0%~10.3%.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences,Grant No.XDA07030100the National Key Technology R&D Program of China during the 12th Five-Year Plan Period No.2015BAA03B01-01
文摘In order to expand the study on flow instability of supercritical circulating fluidized bed(CFB) boiler,a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper.The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability.Based on the time-domain method,a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established.To verify the code,calculation results were respectively compared with data of commercial software.According to the comparisons,the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability.Based on the new program,the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method.When 1.2 times heat load disturbance was applied on the loop,results showed that the inlet flow rate,outlet flow rate and wall temperature fluctuated with time eventually remained at constant values,suggesting that the hydrodynamic flow was stable.The results also showed that in the case of considering the heat storage,the flow in the water wall is easier to return to stable state than without considering heat storage.
文摘在低质量流率条件下,对垂直上升内螺纹管在亚临界和近临界压力区的传热特性进行了实验研究。实验参数范围为压力p=12-22.5 MPa,质量流率G=170-420 kg/(m^2·s),内壁热负荷q=150-366 k W/m^2。实验结果表明:在亚临界压力区,垂直上升内螺纹管发生了第二类传热恶化,即干涸(dryout)。内壁热负荷和压力的增大,均会导致干涸点的提前以及干涸后内壁温度的峰值增大。质量流率对干涸点的影响呈现非单调性,存在一界限质量流率。当质量流率小于界限质量流率时,干涸点随质量流率的增加而提前;当质量流率大于界限质量流率时,干涸点随质量流率的增加而推迟。在近临界压力区的亚临界压力部分,内壁热负荷较高时容易发生第一类传热恶化,即膜态沸腾(DNB)。内壁热负荷的增大和质量流率的减小,均会导致传热恶化的提前以及膜态沸腾后的温度飞升值增加。在近临界压力区的超临界压力部分,内螺纹管传热良好,在拟临界区域出现一定程度的传热强化,其传热特性和亚临界压力区的传热特性相似。