The performance of an annular jet pump( AJP) is determined by its area ratio A( ratio of cross sectional area of throat and annular nozzle) and flow rate ratio q( ratio of primary and secondary flow rate,Qs/Qj),while ...The performance of an annular jet pump( AJP) is determined by its area ratio A( ratio of cross sectional area of throat and annular nozzle) and flow rate ratio q( ratio of primary and secondary flow rate,Qs/Qj),while the nozzle lip thickness is neglected in the present studies. This paper presents a study on the effect of the thickness on the flow field and performance of an AJP with A = 1. 75. With the increasing flow rate ratio and nozzle lip thickness,a small vortex forms at the nozzle lip and keeps on growing. However,as the flow rate ratio or nozzle lip thickness is extremely low,the vortex at the lip vanishes thoroughly. Moreover,the recirculation width varies conversely with the nozzle lip thickness when the flow rate ratio q ≤ 0. 13. While the deviation of the recirculation width with different nozzle lip thickness is negligible with q ≥ 0. 13. Additionally the existence of nozzle lip hinders the momentum exchange between the primary and secondary flow and leads to a mutation of velocity gradient near the nozzle exit,which shift the recirculation downstream. Finally,based on the numerical results of the streamwise and spanwise vortex distributions in the suction chamber, the characteristics of the mixing process and the main factors accounting for the AJP performance are clarified.展开更多
Annular jet pumps that are used in hydraulic machinery have a very simple structure but very complex internal flow fields. Large eddy simulations were used to study the coherent structures in the turbulent flows in an...Annular jet pumps that are used in hydraulic machinery have a very simple structure but very complex internal flow fields. Large eddy simulations were used to study the coherent structures in the turbulent flows in annular jet pumps with various area ratios,m. The distribution, movement and evolution of the coherent structure in the annular jet pumps are described based on vorticity,pressure and Q criteria. All the criteria demonstrate that the vortexes are mainly distributed in the recirculation region and in the mixing and the boundary layers, which have large velocity gradients. The various characteristics of the coherent structures are shown by the different criteria with the vorticity criterion describing the distribution, movement and evolution of the vortexes,the pressure criterion describing the movement and the Q criterion describing the vortex movement and evolution. The vorticity variation in the spanwise direction is larger than the variation in the streamwise direction; however, the streamwise vortex is the main mechanism driving the entrainment of the secondary flow and the mixing. The annular jet pump with m=3.33 had a higher vortex shedding frequency(about 1000 Hz) than that with m=1.72(313–417 Hz). The azimuthal instability is the main reason for the generation of the streamwise vortex from the spanwise vortex. The vortex structures in the recirculation region are very strong,but small and disordered with no periodic vortex rings.展开更多
The large eddy simulation(LES) of the flow characteristics in an annular jet pump(AJP) is conducted, and the flow characteristics are systematically analyzed from both time-averaged and instantaneous aspects. The ...The large eddy simulation(LES) of the flow characteristics in an annular jet pump(AJP) is conducted, and the flow characteristics are systematically analyzed from both time-averaged and instantaneous aspects. The jet expansion, the velocity distribution and the energy are considered to analyze the time-averaged evolution of the flow field in the AJP. The transient flow characteristics can also be acquired from the analysis of the turbulence intensity and the Reynolds stress. The simulation demonstrates that in the time-averaged characteristics, the potential cores increase linearly with the increase of the flow ratio. With the flow development, the jet half-width gradually increases and the residual energy coefficient decreases. Compared with the distribution of the time-averaged axial velocity, that of the instantaneous velocity is more complex and disorderly. The high intensity of the axial turbulence mainly occurs in the mixing layer and the near-wall regions of the diffuser. The annular distribution of the Reynolds stress is mainly in the mixing layer and the recirculation region. There is a low-stress zone between the mixing layer and the high-stress region in the wall-boundary layer. The intensity of the spanwise vortexes is larger than that of the streamwise vortexes, and therefore, the former make greater contribution to the total vorticity. This research provides a better understanding of the flow characteristics in the AJP.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51179134)the National Key Basic Research Program of China(Grant No.2014CB239203)Program for New Century Excellent Talents in University(Grant No.NCET-12-0424)
文摘The performance of an annular jet pump( AJP) is determined by its area ratio A( ratio of cross sectional area of throat and annular nozzle) and flow rate ratio q( ratio of primary and secondary flow rate,Qs/Qj),while the nozzle lip thickness is neglected in the present studies. This paper presents a study on the effect of the thickness on the flow field and performance of an AJP with A = 1. 75. With the increasing flow rate ratio and nozzle lip thickness,a small vortex forms at the nozzle lip and keeps on growing. However,as the flow rate ratio or nozzle lip thickness is extremely low,the vortex at the lip vanishes thoroughly. Moreover,the recirculation width varies conversely with the nozzle lip thickness when the flow rate ratio q ≤ 0. 13. While the deviation of the recirculation width with different nozzle lip thickness is negligible with q ≥ 0. 13. Additionally the existence of nozzle lip hinders the momentum exchange between the primary and secondary flow and leads to a mutation of velocity gradient near the nozzle exit,which shift the recirculation downstream. Finally,based on the numerical results of the streamwise and spanwise vortex distributions in the suction chamber, the characteristics of the mixing process and the main factors accounting for the AJP performance are clarified.
基金supported by the National Natural Science Foundation of China(Grant Nos.51179134&11472197)
文摘Annular jet pumps that are used in hydraulic machinery have a very simple structure but very complex internal flow fields. Large eddy simulations were used to study the coherent structures in the turbulent flows in annular jet pumps with various area ratios,m. The distribution, movement and evolution of the coherent structure in the annular jet pumps are described based on vorticity,pressure and Q criteria. All the criteria demonstrate that the vortexes are mainly distributed in the recirculation region and in the mixing and the boundary layers, which have large velocity gradients. The various characteristics of the coherent structures are shown by the different criteria with the vorticity criterion describing the distribution, movement and evolution of the vortexes,the pressure criterion describing the movement and the Q criterion describing the vortex movement and evolution. The vorticity variation in the spanwise direction is larger than the variation in the streamwise direction; however, the streamwise vortex is the main mechanism driving the entrainment of the secondary flow and the mixing. The annular jet pump with m=3.33 had a higher vortex shedding frequency(about 1000 Hz) than that with m=1.72(313–417 Hz). The azimuthal instability is the main reason for the generation of the streamwise vortex from the spanwise vortex. The vortex structures in the recirculation region are very strong,but small and disordered with no periodic vortex rings.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51179134,11472197)
文摘The large eddy simulation(LES) of the flow characteristics in an annular jet pump(AJP) is conducted, and the flow characteristics are systematically analyzed from both time-averaged and instantaneous aspects. The jet expansion, the velocity distribution and the energy are considered to analyze the time-averaged evolution of the flow field in the AJP. The transient flow characteristics can also be acquired from the analysis of the turbulence intensity and the Reynolds stress. The simulation demonstrates that in the time-averaged characteristics, the potential cores increase linearly with the increase of the flow ratio. With the flow development, the jet half-width gradually increases and the residual energy coefficient decreases. Compared with the distribution of the time-averaged axial velocity, that of the instantaneous velocity is more complex and disorderly. The high intensity of the axial turbulence mainly occurs in the mixing layer and the near-wall regions of the diffuser. The annular distribution of the Reynolds stress is mainly in the mixing layer and the recirculation region. There is a low-stress zone between the mixing layer and the high-stress region in the wall-boundary layer. The intensity of the spanwise vortexes is larger than that of the streamwise vortexes, and therefore, the former make greater contribution to the total vorticity. This research provides a better understanding of the flow characteristics in the AJP.