期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental study of the influence of annular nozzle on acoustic characteristics of detonation sound wave generated by pulse detonation engine
1
作者 康杨 李宁 +1 位作者 黄孝龙 翁春生 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期436-443,共8页
Acoustic characteristics of the detonation sound wave generated by a pulse detonation engine with an annular nozzle,including peak sound pressure, directivity, and A duration, are experimentally investigated while uti... Acoustic characteristics of the detonation sound wave generated by a pulse detonation engine with an annular nozzle,including peak sound pressure, directivity, and A duration, are experimentally investigated while utilizing gasoline as fuel and oxygen-enriched air as oxidizer. Three annular nozzle geometries are evaluated by varying the ratio of inner cone diameter to detonation tube exit diameter from 0.36 to 0.68. The experimental results show that the annular nozzles have a significant effect on the acoustic characteristics of the detonation sound wave. The annular nozzles can amplify the peak sound pressure of the detonation sound wave at 90° while reducing it at 0° and 30°. The directivity angle of the detonation sound wave is changed by annular nozzles from 30° to 90°. The A duration of the detonation sound wave at 90° is also increased by the annular nozzles. These changes indicate that the annular nozzles have an important influence on the acoustic energy distribution of the detonation sound wave, which amplify the acoustic energy in a direction perpendicular to the tube axis and weaken it along the direction of the tube axis. 展开更多
关键词 pulse detonation engine annular nozzle detonation sound wave acoustic characteristics
下载PDF
Design and Atomization Characteristic of Laval-style Annular Slot Nozzle 被引量:3
2
作者 Chao-Run Si Xian-Jie Zhang +1 位作者 Jun-Biao Wang Yu-Jun Li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第3期40-47,共8页
Gas mass flux rate,metal mass flux rate and outlet gas velocity are three atomization scale parameters which greatly affect the atomization efficiency. A Laval-style annual slot supersonic nozzle is designed by optimi... Gas mass flux rate,metal mass flux rate and outlet gas velocity are three atomization scale parameters which greatly affect the atomization efficiency. A Laval-style annual slot supersonic nozzle is designed by optimizing the geometric parameters of delivery tube outlet and gas outlet to obtain applicable atomization scale parameters. A computational fluid flow model is adopted to investigate the effect of atomization gas pressure ( P0 ) on the gas flow field in gas atomization progress. The numerical results show that the outlet gas velocity of the nozzle is not affected by P0 and the maximum gas velocity reaches 452 m / s. The alternation of aspiration pressure ( ΔP) is caused by the variations of stagnation pressure and location of Mach shock disk, and hardly by the location of stagnation point. The aspiration pressure is found to decrease as P0 increases when P0 < 1. 3 MPa. However,at a higher atomization gas pressure increasing P0 causes an opposite: the aspiration pressure atomization increases with the gas pressure,and keeps a plateau when P0 > 2. 0 MPa. The minimum aspiration pressure ΔP = - 70 kPa is obtained at P0 = 1. 3 MPa. The results indicate that the designed Laval- style annual slot nozzle has well atomization characteristic at lower atomization pressure. 展开更多
关键词 spray forming gas atomization laval nozzle annular slot nozzle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部