In this paper, boiling heat transfer in a vertical annulus with inner side heated with and without air introduction is experimentally studied. Results show that boiling heat transfer is significantly enhanced by the i...In this paper, boiling heat transfer in a vertical annulus with inner side heated with and without air introduction is experimentally studied. Results show that boiling heat transfer is significantly enhanced by the introduction of air. When air is introduced into the liquid with a temperature below boiling point, the enhancement of heat transfer is also detected. It is concluded from the study that the heat transfer enhanced by introduction of inert gas is due to the liquid vaporization at the gas-liquid interface near the wall, which removes a large amount of latent heat and lowers the interfacial temperature considerably. Thus the gas-liquid interface acts as a 'heat sink'and the heat transfer is augmented significantly.展开更多
文摘In this paper, boiling heat transfer in a vertical annulus with inner side heated with and without air introduction is experimentally studied. Results show that boiling heat transfer is significantly enhanced by the introduction of air. When air is introduced into the liquid with a temperature below boiling point, the enhancement of heat transfer is also detected. It is concluded from the study that the heat transfer enhanced by introduction of inert gas is due to the liquid vaporization at the gas-liquid interface near the wall, which removes a large amount of latent heat and lowers the interfacial temperature considerably. Thus the gas-liquid interface acts as a 'heat sink'and the heat transfer is augmented significantly.