The properties of Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-WC-ZrO2 composite anode for zinc electrowinning were investigated. The electrochemical performance was studied by Tafel polarization curves(Tafel), e...The properties of Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-WC-ZrO2 composite anode for zinc electrowinning were investigated. The electrochemical performance was studied by Tafel polarization curves(Tafel), electrochemical impedance spectroscopy(EIS) and corrosion rate obtained in an acidic zinc sulfate electrolyte solution. Scanning electron microscopy(SEM), X-ray diffraction(XRD), and energy dispersive X-ray spectroscopy(EDXS) were used to observe the microstructural features of coating. Anodes of Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2, Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-WC, Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-ZrO2, and Pb-1%Ag anodes were also researched. The results indicated that the Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-WC-ZrO2 showed the best catalytic activity and corrosion resistant performance; the intensity of diffraction peak exhibited the highest value as well as a new PbWO4 phase; the content of WC and ZrO2 in coating showed the highest value as well as the finest grain size.展开更多
The objective of this work was to study the effect of different rolling technologies on the properties of Pb-0.06wt%Ca-1.2wt%Sn anodes during copper electrowinning and to determine the relationship between the propert...The objective of this work was to study the effect of different rolling technologies on the properties of Pb-0.06wt%Ca-1.2wt%Sn anodes during copper electrowinning and to determine the relationship between the properties of the anodes and rolling techniques during copper electrowinning. The anode process was investigated via anodic polarization curves, cyclic voltammetry curves, electrochemical impedance spectra, and corrosion tests. The microscopic morphology and phase composition of the anodic oxide layers were observed by scanning electron microscopy and X-ray diffraction, respectively. Observable variations in the electrocatalytic activity and reaction kinetics of anodes during electrowinning indicated that the electrochemical behavior of the anodes was strongly affected by the rolling technology. An increase in the rolling number tended to decrease the oxygen evolution overpotential and the corrosion rate of the anodes. These trends are contrary to that of the apparent exchange current density. Furthermore, the intensities of diffraction peaks associated with PbO, PbOx, and α-PbO2 tended to increase with increasing rolling number. In addition, the rolled anodes exhibited a more uniform microstructure. Compared with one-way rolled anodes, the eight-time cross rolled anodes exhibited better electrocatalytic activity and improved corrosion resistance.展开更多
To investigate the soil behaviors in a direct current field on both spatial and temporal scales, a 1: 5 scale model test was conducted in laboratory to simulate the two-dimensional (2D) electro-osmotic consolidation o...To investigate the soil behaviors in a direct current field on both spatial and temporal scales, a 1: 5 scale model test was conducted in laboratory to simulate the two-dimensional (2D) electro-osmotic consolidation of soft clay foundation. Volume of drainage, intensity, voltage, water content and pH value of water collected in the cathodes were monitored. The pH values of soil and the mass of anodes were measured before and after the test. The test results indicate that the unsaturated state, resultant from fissures induced by the differences in water contents, is favorable to dynamic compaction of soil during electro-osmotic drainage. The results also demonstrate that water content, degree of saturation and electric potential distributions can be used to deduce the electro-osmotic drainage process. Water content of soil decreases first near electrodes, while keeps nearly constant in the center of the model. The area with constant water content is larger than half of the sample surface. Moving anodes towards cathodes by about one third of the electrode spacing is effective to improve the treatment effect after electro-osmosis stops due to the large resistance. Moreover, it is observed that during electro-osmosis, the corrosion rate of anodes becomes smaller, while the variation in pH values of soil near anodes becomes larger.展开更多
The growing demand for electric vehicles highlights the need for energy storage solutions with higher densities,spotlighting Li metal anodes as potential successors to traditional Li-ion batteries(LIBs).Achieving long...The growing demand for electric vehicles highlights the need for energy storage solutions with higher densities,spotlighting Li metal anodes as potential successors to traditional Li-ion batteries(LIBs).Achieving longer calendar aging life for Li metal anodes is crucial for their practical use,given their propensity for corrosion due to a low redox potential,which leads to compromised cycling stability and significant capacity loss during storage.Recent research investigated that this susceptibility is mainly dependent on the surface area of Li metal anode and the properties of the solid electrolyte interphase(SEI),particularly its stability and growth rate.Our research adds to this understanding by demonstrating that the amount of Li plating is a key factor in its corrosion during open-circuit storage,as assessed across various electrolytes.We discovered that increasing the Li plating amount effectively reduces Coulombic efficiency(C.E.)loss during aging,due to a lower surface area-to-Li ratio.This implies that the choice of electrolyte for optimal storage life should consider the amount of Li plating,with higher capacities promoting better storage characteristics.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51564029,51504111,51504231,51364019)the Key Project of Yunnan Province Applied Basic Research Plan of China(No.2014FA024)
文摘The properties of Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-WC-ZrO2 composite anode for zinc electrowinning were investigated. The electrochemical performance was studied by Tafel polarization curves(Tafel), electrochemical impedance spectroscopy(EIS) and corrosion rate obtained in an acidic zinc sulfate electrolyte solution. Scanning electron microscopy(SEM), X-ray diffraction(XRD), and energy dispersive X-ray spectroscopy(EDXS) were used to observe the microstructural features of coating. Anodes of Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2, Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-WC, Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-ZrO2, and Pb-1%Ag anodes were also researched. The results indicated that the Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-WC-ZrO2 showed the best catalytic activity and corrosion resistant performance; the intensity of diffraction peak exhibited the highest value as well as a new PbWO4 phase; the content of WC and ZrO2 in coating showed the highest value as well as the finest grain size.
基金financial support of the National Natural Science Foundation of China (No.51004056)the Applied Basic Research Foundation of Yunnan Province (No. 2010ZC052)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20125314110011)
文摘The objective of this work was to study the effect of different rolling technologies on the properties of Pb-0.06wt%Ca-1.2wt%Sn anodes during copper electrowinning and to determine the relationship between the properties of the anodes and rolling techniques during copper electrowinning. The anode process was investigated via anodic polarization curves, cyclic voltammetry curves, electrochemical impedance spectra, and corrosion tests. The microscopic morphology and phase composition of the anodic oxide layers were observed by scanning electron microscopy and X-ray diffraction, respectively. Observable variations in the electrocatalytic activity and reaction kinetics of anodes during electrowinning indicated that the electrochemical behavior of the anodes was strongly affected by the rolling technology. An increase in the rolling number tended to decrease the oxygen evolution overpotential and the corrosion rate of the anodes. These trends are contrary to that of the apparent exchange current density. Furthermore, the intensities of diffraction peaks associated with PbO, PbOx, and α-PbO2 tended to increase with increasing rolling number. In addition, the rolled anodes exhibited a more uniform microstructure. Compared with one-way rolled anodes, the eight-time cross rolled anodes exhibited better electrocatalytic activity and improved corrosion resistance.
基金Supported by the National Natural Science Foundation of China (50879076)
文摘To investigate the soil behaviors in a direct current field on both spatial and temporal scales, a 1: 5 scale model test was conducted in laboratory to simulate the two-dimensional (2D) electro-osmotic consolidation of soft clay foundation. Volume of drainage, intensity, voltage, water content and pH value of water collected in the cathodes were monitored. The pH values of soil and the mass of anodes were measured before and after the test. The test results indicate that the unsaturated state, resultant from fissures induced by the differences in water contents, is favorable to dynamic compaction of soil during electro-osmotic drainage. The results also demonstrate that water content, degree of saturation and electric potential distributions can be used to deduce the electro-osmotic drainage process. Water content of soil decreases first near electrodes, while keeps nearly constant in the center of the model. The area with constant water content is larger than half of the sample surface. Moving anodes towards cathodes by about one third of the electrode spacing is effective to improve the treatment effect after electro-osmosis stops due to the large resistance. Moreover, it is observed that during electro-osmosis, the corrosion rate of anodes becomes smaller, while the variation in pH values of soil near anodes becomes larger.
基金supported by Intelligence Advanced Research Projects Activity under Robust Energy Sources for Intelligence Logistics In Extreme,Novel and Challenging Environments(RESILIENCE)program.
文摘The growing demand for electric vehicles highlights the need for energy storage solutions with higher densities,spotlighting Li metal anodes as potential successors to traditional Li-ion batteries(LIBs).Achieving longer calendar aging life for Li metal anodes is crucial for their practical use,given their propensity for corrosion due to a low redox potential,which leads to compromised cycling stability and significant capacity loss during storage.Recent research investigated that this susceptibility is mainly dependent on the surface area of Li metal anode and the properties of the solid electrolyte interphase(SEI),particularly its stability and growth rate.Our research adds to this understanding by demonstrating that the amount of Li plating is a key factor in its corrosion during open-circuit storage,as assessed across various electrolytes.We discovered that increasing the Li plating amount effectively reduces Coulombic efficiency(C.E.)loss during aging,due to a lower surface area-to-Li ratio.This implies that the choice of electrolyte for optimal storage life should consider the amount of Li plating,with higher capacities promoting better storage characteristics.