Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy de...Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy density,low cost,and recyclability.However,the study on Mg-air battery(MAB)is still at the laboratory level currently,mainly owing to the low anodic efficiency caused by the poor corrosion resistance.In order to reduce corrosion losses and achieve optimal utilization efficiency of Mg anode,the design strategies are reviewed from microstructure perspectives.Firstly,the corrosion behaviors have been discussed,especially the negative difference effect derived by hydrogen evolution.Special attention is given to the effect of anode micro-structures on the MAB,which includes grain size,grain orientation,second phases,crystal structure,twins,and dislocations.For further improvement,the discharge performance,long period stacking ordered phase and its enhancing effect are considered.Meanwhile,given the current debates over Mg dendrites,the potential risk,the impact on discharge,and the elimination strategies are discussed.Microstructure control and single crystal would be promising ways for MAB anode.展开更多
Magnesium is a promising metal used as anodes for chemical power sources. This metal could theoretically provide negative discharge potential and exhibit large capacity during the discharge process. However, when the ...Magnesium is a promising metal used as anodes for chemical power sources. This metal could theoretically provide negative discharge potential and exhibit large capacity during the discharge process. However, when the magnesium anode is adopted for practical applications, several issues, such as the discharge products adhered to the electrode surface, the self-discharge occurring on the anode material, and the detachment of metallic particles, adversely affect its inherently good discharge performance. In this work, the types of chemical power sources using magnesium as anodes were elaborated, and the approaches to enhance its anode performance were analyzed.展开更多
In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, ...In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarization potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the A1-6%Zn-l%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic A12Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.展开更多
The anode injection efficiency reduction of 3.3-kV-class non-punch-through insulated-gate bipolar transistors (NPT-IGBTs) due to backside processes is experimentally studied through comparing the forward blocking ca...The anode injection efficiency reduction of 3.3-kV-class non-punch-through insulated-gate bipolar transistors (NPT-IGBTs) due to backside processes is experimentally studied through comparing the forward blocking capabilities of the experiments and the theoretical breakdown model in this paper.Wafer lifetimes are measured by aμ-PCD method,and well designed NPT-IGBTs with a final wafer thickness of 500μm are fabricated.The test results show higher breakdown voltages than the theoretical breakdown model in which anode injection efficiency reduction is not considered.This indicates that anode injection efficiency reduction must be considered in the breakdown model.Furthermore,the parameters related to anode injection efficiency reduction are estimated according to the experimental data.展开更多
Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is appli...Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is applied with a 350 kV voltage pulse,electrons emitted from the cathode with high energy will strike the anode block wall.The emitted secondary electrons and backscattered electrons affect the interaction between electrons and RF fields induced by the operating modes,which decreases the output power in the radial output relativistic magnetron by about 15%(10%for the axial output relativistic magnetron),decreases the anode current by about 5%(5%for the axial output relativistic magnetron),and leads to a decrease of electronic efficiency by 8%(6%for the axial output relativistic magnetron).The peak value of the current formed by secondary and backscattered current equals nearly half of the amplitude of the anode current,which may help the growth of parasitic modes when the applied magnetic field is near the critical magnetic field separating neighboring modes.Thus,mode competition becomes more serious.展开更多
The neutrino detector of the Jiangmen Underground Neutrino Observatory(JUNO) is designed to use20 kilotons of liquid scintillator and approximately 16000 20 inch photomultipliers(PMTs).One of the options is to use...The neutrino detector of the Jiangmen Underground Neutrino Observatory(JUNO) is designed to use20 kilotons of liquid scintillator and approximately 16000 20 inch photomultipliers(PMTs).One of the options is to use the 20 inch R12860 PMT with high quantum efficiency which has recently been developed by Hamamatsu Photonics.The performance of the newly developed PMT preproduction samples is evaluated.The results show that its quantum efficiency is 30%at 400 nm.Its Peak/Valley(P/V) ratio for the single photoelectron is 4.75 and the dark count rate is 27 kHz at the threshold of 3 mV while the gain is at 1 × 10^7.The transit time spread of a single photoelectron is 2.86 ns.Generally the performances of this new 20 inch PMT are improved over the old one of R3600.展开更多
A widely used oxyanion corrosion inhibitor(Li2CrO4) was used as electrolyte additive(3.5 wt% Na Cl solution was used as electrolyte solution) for Mg–air battery. The potentiodynamic polarization tests showed that...A widely used oxyanion corrosion inhibitor(Li2CrO4) was used as electrolyte additive(3.5 wt% Na Cl solution was used as electrolyte solution) for Mg–air battery. The potentiodynamic polarization tests showed that the presence of 0.1 wt% Li2CrO4in the Na Cl electrolyte reduced enormously the corrosion current density of the tested AZ31 Mg alloys.According to the intermittent discharge tests, the use of 0.1 wt% Li2CrO4 as electrolyte additive increased the anode efficiency of the Mg–air battery by 28.4%. The addition of 0.1 wt% Li2CrO4reduced the anode self-corrosion rate of the battery in the intermittent stage effectively. The product film after discharge was observed by scanning electron microscope, and the Mg–air battery containing 0.1 wt% Li2CrO4has a loose product film, which is beneficial to its discharge performance. So using Li2CrO4 as electrolyte additive could improve the intermittent discharge performance of Mg–air battery. And the use of oxyanion corrosion inhibitor as electrolyte additive may be an excellent way to improve the intermittent discharge performance of Mg–air battery.展开更多
基金supported by National Natural Science Foundation of China(52371095)Innovation Research Group of Universities in Chongqing(CXQT21030)+2 种基金Chongqing Talents:Exceptional Young Talents Project(CQYC201905100)Chongqing Youth Expert Studio,Chongqing Overseas Chinese Entrepreneurship and Innovation Support Program(cx2023117)Chongqing Natural Science Foundation Innovation and Development Joint Fund(CSTB 2022NS CQLZX0054)。
文摘Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy density,low cost,and recyclability.However,the study on Mg-air battery(MAB)is still at the laboratory level currently,mainly owing to the low anodic efficiency caused by the poor corrosion resistance.In order to reduce corrosion losses and achieve optimal utilization efficiency of Mg anode,the design strategies are reviewed from microstructure perspectives.Firstly,the corrosion behaviors have been discussed,especially the negative difference effect derived by hydrogen evolution.Special attention is given to the effect of anode micro-structures on the MAB,which includes grain size,grain orientation,second phases,crystal structure,twins,and dislocations.For further improvement,the discharge performance,long period stacking ordered phase and its enhancing effect are considered.Meanwhile,given the current debates over Mg dendrites,the potential risk,the impact on discharge,and the elimination strategies are discussed.Microstructure control and single crystal would be promising ways for MAB anode.
基金Project supported by the Postdoctoral Science Foundation of Central South UniversityProject(2014M552151)supported by the China Postdoctoral Science FoundationProject(51101171)supported by the National Natural Science Foundation of China
文摘Magnesium is a promising metal used as anodes for chemical power sources. This metal could theoretically provide negative discharge potential and exhibit large capacity during the discharge process. However, when the magnesium anode is adopted for practical applications, several issues, such as the discharge products adhered to the electrode surface, the self-discharge occurring on the anode material, and the detachment of metallic particles, adversely affect its inherently good discharge performance. In this work, the types of chemical power sources using magnesium as anodes were elaborated, and the approaches to enhance its anode performance were analyzed.
文摘In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarization potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the A1-6%Zn-l%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic A12Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.
基金supported by the Major Specialized Program of National Science and Technology,China(No.2011ZX02706-003)
文摘The anode injection efficiency reduction of 3.3-kV-class non-punch-through insulated-gate bipolar transistors (NPT-IGBTs) due to backside processes is experimentally studied through comparing the forward blocking capabilities of the experiments and the theoretical breakdown model in this paper.Wafer lifetimes are measured by aμ-PCD method,and well designed NPT-IGBTs with a final wafer thickness of 500μm are fabricated.The test results show higher breakdown voltages than the theoretical breakdown model in which anode injection efficiency reduction is not considered.This indicates that anode injection efficiency reduction must be considered in the breakdown model.Furthermore,the parameters related to anode injection efficiency reduction are estimated according to the experimental data.
基金supported by National Natural Science Foundation of China(No.61302010)the Foundation of Science and Technology on High Power Microwave Laboratory,Central University Foundation(2013KW07)Work at the University of New Mexico in USA was supportedby ONR Grant N00014-13-1-0565
文摘Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is applied with a 350 kV voltage pulse,electrons emitted from the cathode with high energy will strike the anode block wall.The emitted secondary electrons and backscattered electrons affect the interaction between electrons and RF fields induced by the operating modes,which decreases the output power in the radial output relativistic magnetron by about 15%(10%for the axial output relativistic magnetron),decreases the anode current by about 5%(5%for the axial output relativistic magnetron),and leads to a decrease of electronic efficiency by 8%(6%for the axial output relativistic magnetron).The peak value of the current formed by secondary and backscattered current equals nearly half of the amplitude of the anode current,which may help the growth of parasitic modes when the applied magnetic field is near the critical magnetic field separating neighboring modes.Thus,mode competition becomes more serious.
基金Supported by Strategic Priority Research Program of Chinese Academy of Sciences(X-DA10010200)Key Deployment Project of Chinese Academy of Sciences and CAS Center for Excellence in Particle Physics(CCEPP)
文摘The neutrino detector of the Jiangmen Underground Neutrino Observatory(JUNO) is designed to use20 kilotons of liquid scintillator and approximately 16000 20 inch photomultipliers(PMTs).One of the options is to use the 20 inch R12860 PMT with high quantum efficiency which has recently been developed by Hamamatsu Photonics.The performance of the newly developed PMT preproduction samples is evaluated.The results show that its quantum efficiency is 30%at 400 nm.Its Peak/Valley(P/V) ratio for the single photoelectron is 4.75 and the dark count rate is 27 kHz at the threshold of 3 mV while the gain is at 1 × 10^7.The transit time spread of a single photoelectron is 2.86 ns.Generally the performances of this new 20 inch PMT are improved over the old one of R3600.
基金financially supported by the National Natural Science Foundation of China (No. 51531002)Demonstrative Project of Chongqing Science and Technology Commission (No. CSCT2014FAZKTJCSF50004)Fundamental Research Funds for the Central Universities (No. CDJZR14130009)
文摘A widely used oxyanion corrosion inhibitor(Li2CrO4) was used as electrolyte additive(3.5 wt% Na Cl solution was used as electrolyte solution) for Mg–air battery. The potentiodynamic polarization tests showed that the presence of 0.1 wt% Li2CrO4in the Na Cl electrolyte reduced enormously the corrosion current density of the tested AZ31 Mg alloys.According to the intermittent discharge tests, the use of 0.1 wt% Li2CrO4 as electrolyte additive increased the anode efficiency of the Mg–air battery by 28.4%. The addition of 0.1 wt% Li2CrO4reduced the anode self-corrosion rate of the battery in the intermittent stage effectively. The product film after discharge was observed by scanning electron microscope, and the Mg–air battery containing 0.1 wt% Li2CrO4has a loose product film, which is beneficial to its discharge performance. So using Li2CrO4 as electrolyte additive could improve the intermittent discharge performance of Mg–air battery. And the use of oxyanion corrosion inhibitor as electrolyte additive may be an excellent way to improve the intermittent discharge performance of Mg–air battery.