期刊文献+
共找到197篇文章
< 1 2 10 >
每页显示 20 50 100
Two-dimensional layered In_(2)P_(3)S_(9): A novel superior anode material for sodium-ion batteries
1
作者 Longsheng Zhong Hongneng Chen +4 位作者 Yanzhe Sheng Yiting Sun Yanhe Xiao Baochang Cheng Shuijin Lei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期294-304,I0008,共12页
Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-di... Developing reliable and efficient anode materials is essential for the successfully practical application of sodium-ion batteries.Herein,employing a straightforward and rapid chemical vapor deposition technique,two-dimensional layered ternary indium phosphorus sulfide(In_(2)P_(3)S_(9)) nanosheets are prepared.The layered structure and ternary composition of the In_(2)P_(3)S_(9) electrode result in impressive electrochemical performance,including a high reversible capacity of 704 mA h g^(-1) at 0.1 A g^(-1),an outstanding rate capability with 425 mA h g^(-1) at 5 A g^(-1),and an exceptional cycling stability with a capacity retention of88% after 350 cycles at 1 A g^(-1).Furthermore,sodium-ion full cell also affords a high capacity of 308 and114 mA h g^(-1) at 0.1 and 5 A g^(-1).Ex-situ X-ray diffraction and ex-situ high-resolution transmission electron microscopy tests are conducted to investigate the underlying Na-storage mechanism of In_(2)P_(3)S_(9).The results reveal that during the first cycle,the P-S bond is broken to form the elemental P and In_(2)S_(3),collectively contributing to a remarkably high reversible specific capacity.The excellent electrochemical energy storage results corroborate the practical application potential of In_(2)P_(3)S_(9) for sodium-ion batteries. 展开更多
关键词 Metal thiophosphate In_(2)P_(3)S_(9) anode material Sodium-ion battery Full cell
下载PDF
Review and prospects on the low-voltage Na_(2)Ti_(3)O_(7) anode materials for sodium-ion batteries
2
作者 Jun Dong Yalong Jiang +3 位作者 Ruxing Wang Qiulong Wei Qinyou An Xiaoxing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期446-460,I0011,共16页
Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in... Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs. 展开更多
关键词 Sodium-ion batteries Low-voltage anode materials Na_(2)Ti_(3)O_(7) Electrochemical performances Electrochemical mechanism
下载PDF
A review on anode materials for lithium/sodium-ion batteries 被引量:6
3
作者 Abhimanyu Kumar Prajapati Ashish Bhatnagar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期509-540,I0013,共33页
Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed... Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed and developing industries like stationary storage and electric cars, etc. Concerns about the cost and availability of lithium have prompted research into alternatives, such as sodium-ion batteries(SIBs), which use sodium instead of lithium as the charge carrier. This is especially relevant for stationary applications, where the size and weight of battery are less important. The working efficiency and capacity of these batteries are mainly dependent on the anode, cathode, and electrolyte. The anode,which is one of these components, is by far the most important part of the rechargeable battery.Because of its characteristics and its structure, the anode has a tremendous impact on the overall performance of the battery as a whole. Keeping the above in view, in this review we critically reviewed the different types of anodes and their performances studied to date in LIBs and SIBs. The review article is divided into three main sections, namely:(i) intercalation reaction-based anode materials;(ii) alloying reaction-based anode materials;and(iii) conversion reaction-based anode materials, which are further classified into a number of subsections based on the type of material used. In each main section, we have discussed the merits and challenges faced by their particular system. Afterward, a brief summary of the review has been discussed. Finally, the road ahead for better application of Li/Na-ion batteries is discussed, which seems to mainly depend on exploring the innovative materials as anode and on the inoperando characterization of the existing materials for making them more capable in terms of application in rechargeable batteries. 展开更多
关键词 Lithium/Sodium-ion batteries anode materials Nanomaterials Metal-organic framework Conversion materials Intercalated materials Alloying materials
下载PDF
Carbon-coated ZnO Nanocomposite Microspheres as Anode Materials for Lithium-ion Batteries
4
作者 范影强 陈秀娟 XU Dan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期490-495,共6页
The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was inv... The carbon-coated ZnO nanospheres materials have been synthesized via a simple hydrothermal method.The effect of carbon content on the microstructure,morphology and electrochemical performance of the materials was investigated by XRD,Raman spectroscopy,transmission electron microscopy,scanning electron microscopy and electrochemical techniques.Research results show that the spherical ZnO/C material with a carbon cladding content of 10%is very homogeneous and approximately 200 nm in size.The electrochemical performances of the ZnO/C nanospheres as an anode materials are examines.The ZnO/C exhibits better stability than pure ZnO,excellent lithium storage properties as well as improved circulation performance.The Coulomb efficiency of the ZnO/C with 10%carbon coated content reaches 98%.The improvement of electrochemical performance can be attributed to the carbon layer on the ZnO surface.The large volume change of ZnO during the charge-discharge process can be effectively relieved. 展开更多
关键词 ZNO carbon coating anode material lithium-ion batteries
下载PDF
Two-dimensional dumbbell silicene as a promising anode material for(Li/Na/K)-ion batteries
5
作者 刘曼 程子爽 +7 位作者 张小明 李叶枫 靳蕾 刘丛 代学芳 刘影 王啸天 刘国栋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期28-34,共7页
Rechargeable ion batteries require anode materials with excellent performance,presenting a key challenge for researchers.This paper explores the potential of using two-dimensional dumbbell silicene as an anode materia... Rechargeable ion batteries require anode materials with excellent performance,presenting a key challenge for researchers.This paper explores the potential of using two-dimensional dumbbell silicene as an anode material for alkali metal ion batteries through density functional theory(DFT)calculations.Our findings demonstrate that alkali metal ions have negative adsorption energies on dumbbell silicene,and the energy barriers for Li/Na/K ion diffusion are as low as0.032 e V/0.055 e V/0.21 e V,indicating that metal ions can easily diffuse across the entire surface of dumbbell silicene.Additionally,the average open circuit voltages of dumbbell silicene as anode for Li-ion,Na-ion,and K-ion batteries are 0.42 V,0.41 V,and 0.60 V,respectively,with corresponding storage capacities of 716 m Ah/g,622 m Ah/g,and 716 m Ah/g.These results suggest that dumbbell silicene is an ideal anode material for Li-ion,Na-ion,and K-ion batteries,with high capacity,low open circuit voltage,and high ion diffusion kinetics.Moreover,our calculations show that the theoretical capacities obtained using DFT-D2 are higher than those obtained using DFT-D3,providing a valuable reference for subsequent theoretical calculations. 展开更多
关键词 dumbbell silicene density functional theory anode materials ion batteries
下载PDF
Effects of anode material on the evolution of anode plasma and characteristics of intense electron beam diode
6
作者 华叶 吴平 +5 位作者 万红 白书欣 龚瑾瑜 朱梦 白现臣 张广帅 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第9期82-90,共9页
In this paper,three kinds of materials including graphite,titanium(Ti)and molybdenum(Mo)are used as anodes to figure out the influence factors of anode material on the characteristics of the intense electron beam diod... In this paper,three kinds of materials including graphite,titanium(Ti)and molybdenum(Mo)are used as anodes to figure out the influence factors of anode material on the characteristics of the intense electron beam diode.The results show that the characteristics of diode are mainly determined by the cathode plasma motion under a 15 mm diode gap,in which the typical electron beam parameters are 280 kV,3.5 kA.When the diode gap is reduced to 5 mm,the voltage of the electron beam reduces to about 200 kV,and its current increases to more than 8.2 kA.It is calculated that the surface temperatures of Ti and Mo anodes are higher than their melting points.The diode plasma luminescence images show that Ti and Mo anodes produce plasmas soon after the bombardment of electron beams.Ti and Mo lines are respectively found in the plasma composition of Ti and Mo anode diodes.Surface melting traces are also observed on Ti and Mo anodes by comparing the micromorphologies before and after bombardment of the electron beam.These results suggest that the time of anode plasma generation is closely related to the anode material.Compared with graphite,metal Ti and Mo anodes are more likely to produce large amounts of plasma due to their more significant temperature rise effect.According to the moment that anode plasma begins to generate,the average expansion velocities of cathode and anode plasma are estimated by fitting the improved space-charge limited flow model.This reveals that generation and motion of the anode plasma significantly affect the characteristics of intense electron beam diode. 展开更多
关键词 anode material anode plasma intense electron beam plasma expanding velocity
下载PDF
The Microparticles SiOx Loaded on PAN-C Nanofiber as Three-Dimensional Anode Material for High-Performance Lithium-Ion Batteries
7
作者 Jiahao Wang Jie Zhou +2 位作者 Zhengping Zhao Feng Chen Mingqiang Zhong 《Journal of Renewable Materials》 EI 2023年第8期3309-3332,共24页
Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing... Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing Si-based anode materials,the C/SiOx structure is made up of PAN-C,a 3D carbon substance,and SiOx load-ing steadily on PAN-C.The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure.When employed as lithium-ion batteries(LIBs)anode materials,C/SiOx-1%composites were discovered to have an extremely high lithium storage capacity and good cycle per-formance.At a current density of 100 mA/g,its reversible capacity remained at 761 mA/h after 50 charge-dis-charge cycles and at 670 mA/h after 200 cycles.The C/SiOx-1%composite aerogel is a particularly intriguing anode candidate for high-performance LIBs due to these appealing qualities. 展开更多
关键词 Batteries anode materials carbon nanofibers composites aerogel
下载PDF
Recent progress of advanced anode materials of lithium-ion batteries 被引量:10
8
作者 Hui Cheng Joseph G.Shapter +1 位作者 Yongying Li Guo Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期451-468,I0011,共19页
The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of ... The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of LIBs rely directly on the electrode materials.As far as the development of the advanced LIBs electrode is concerned,the improvement of anode materials is more urgent than the cathode materials.Industrial production of anode materials superior to commercial graphite still faces some challenges.This review sets out the most basic LIBs anode material design.The reaction principles and structural design of carbon materials,various transition metal oxides,silicon and germanium are summarized,and then the progress of other anode materials are analyzed.Due to the rapid development of metal organic frameworks(MOFs)in energy storage and conversion in recent years,the synthesis process and energy storage mechanism of nanostructures derived from MOF precursors are also discussed.From the perspective of novel structural design,the progress of various MOFs-derived materials for alleviating the volume expansion of anode materials is discussed.Finally,challenges for the future development of advanced anode materials for LIBs will be considered. 展开更多
关键词 anode materials LIBS NANOmaterialS Metal organic frameworks
下载PDF
Impact of Morphology of Conductive Agent and Anode Material on Lithium Storage Properties 被引量:6
9
作者 Xiaobing Zhang Ji Ma Kezheng Chen 《Nano-Micro Letters》 SCIE EI CAS 2015年第4期360-367,共8页
In this study,the impact of morphology of conductive agent and anode material(Fe3O4)on lithium storage properties was throughly investigated.Granular and belt-like Fe3O4active materials were separately blended with tw... In this study,the impact of morphology of conductive agent and anode material(Fe3O4)on lithium storage properties was throughly investigated.Granular and belt-like Fe3O4active materials were separately blended with two kinds of conductive agents(i.e.,granular acetylene black and multi-walled carbon nanotube)as anodes in lithium-ion batteries(LIBs),respectively.It was found that the morphology of conductive agent is of utmost importance in determining LIBs storage properties.In contrast,not as the way we anticipated,the morphology of anode material merely plays a subordinate role in their electrochemical performances.Further,the morphology-matching principle of electrode materials was discussed so as to render their utilization more rational and effective in LIBs. 展开更多
关键词 Lithium-ion batteries MORPHOLOGY Conductive agent anode material
下载PDF
CoFe_2O_4-Graphene Nanocomposites Synthesized through An Ultrasonic Method with Enhanced Performances as Anode Materials for Li-ion Batteries 被引量:5
10
作者 Yinglin Xiao Xiaomin Li +5 位作者 Jiantao Zai Kaixue Wang Yong Gong Bo Li Qianyan Han Xuefeng Qian 《Nano-Micro Letters》 SCIE EI CAS 2014年第4期307-315,共9页
Co Fe2O4-graphene nanosheets(Co Fe2O4-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The nanocomposites ob... Co Fe2O4-graphene nanosheets(Co Fe2O4-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The nanocomposites obtained at 350 °C maintained a high specific capacity of 1,257 m Ah g-1even after 200 cycles at 0.1 A g-1. Furthermore,the obtained materials also have better rate capability, and it can be maintained to 696, 495, 308, and 254 m Ah g-1at 1, 2,5, and 10 A g-1, respectively. The enhancements realized in the reversible capacity and cyclic stability can be attributed to the good improvement in the electrical conductivity achieved by annealing at appropriate temperature, and the electrochemical nature of Co Fe2O4 and GNSs during discharge–charge processes. 展开更多
关键词 Cobalt ferrite GRAPHENE anode materials Lithium ion battery
下载PDF
Effective regeneration of high-performance anode material recycled from the whole electrodes in spent lithium-ion batteries via a simplified approach 被引量:4
11
作者 Long Ye Chunhui Wang +4 位作者 Liang Cao Hougui Xiao Jiafeng Zhang Bao Zhang Xing Ou 《Green Energy & Environment》 SCIE CSCD 2021年第5期725-733,共9页
Along with the extensive application of energy storage devices,the spent lithium-ion batteries(LIBs)are unquestionably classified into the secondary resources due to its high content of several valuable metals.However... Along with the extensive application of energy storage devices,the spent lithium-ion batteries(LIBs)are unquestionably classified into the secondary resources due to its high content of several valuable metals.However,current recycling methods have the main drawback to their tedious process,especially the purification and separation process.Herein,we propose a simplified process to recycle both cathode(LiCoO_(2))and anode(graphite)in the spent LIBs and regenerate newly high-performance anode material,CoO/CoFe2O4/expanded graphite(EG).This process not only has the advantages of succinct procedure and easy control of reaction conditions,but also effectively separates and recycles lithium from transition metals.The 98.43%of lithium is recovered from leachate when the solid product CoO/CoFe2O4/EG is synthesized as anode material for LIBs.And the product exhibits improved cyclic stability(890 mAh g^(-1) at 1 A g^(-1) after 700 cycles)and superior rate capability(208 mAh g^(-1) at 5 A g^(-1)).The merit of this delicate recycling design can be summarized as three aspects:the utilization of Fe impurity in waste LiCoO_(2),the transformation of waste graphite to EG,and the regeneration of anode material.This approach properly recycles the valuable components of spent LIBs,which introduces an insight into the future recycling. 展开更多
关键词 Spent lithium ion battery Regenerating anode material Succinct procedure High-added value
下载PDF
Template-Free Synthesis of Sb_2S_3 Hollow Microspheres as Anode Materials for Lithium-Ion and Sodium-Ion Batteries 被引量:4
12
作者 Jianjun Xie Li Liu +5 位作者 Jing Xia Yue Zhang Min Li Yan Ouyang Su Nie Xianyou Wang 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期105-116,共12页
Hierarchical Sb_2S_3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated ... Hierarchical Sb_2S_3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated by X-ray diffraction, focused-ion beam-scanning electron microscopy dual-beam system, and transmission electron microscopy. When used as the anode material for lithium-ion batteries, Sb_2S_3 hollow microspheres manifest excellent rate property and enhanced lithium-storage capability and can deliver a discharge capacity of 674 m Ah g^(-1) at a current density of 200 m A g^(-1) after 50 cycles. Even at a high currentdensity of 5000 m A g^(-1), a discharge capacity of541 m Ah g^(-1) is achieved. Sb_2S_3 hollow microspheres also display a prominent sodium-storage capacity and maintain a reversible discharge capacity of 384 m Ah g^(-1) at a current density of 200 m A g^(-1) after 50 cycles. The remarkable lithium/sodium-storage property may be attributed to the synergetic effect of its nanometer size and three-dimensional hierarchical architecture, and the outstanding stability property is attributed to the sufficient interior void space,which can buffer the volume expansion. 展开更多
关键词 Sb2S3 Hollow microspheres anode material Lithium-ion batteries Sodium-storage property
下载PDF
3D hierarchical microspheres constructed by ultrathin MoS2-C nanosheets as high-performance anode material for sodium-ion batteries 被引量:3
13
作者 Wenlong Zhang Haihui Zhou +6 位作者 Zhongyuan Huang Songlin Li Chuqing Wang Huanxin Li Zhanheng Yan Teng Hou Yafei Kuang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期307-315,共9页
MoS2/C composites are considered to have great application potential in sodium-ion batteries(SIBs).It is a challenging and meaningful subject that developing high-performance anode materials via combining MoS2 and car... MoS2/C composites are considered to have great application potential in sodium-ion batteries(SIBs).It is a challenging and meaningful subject that developing high-performance anode materials via combining MoS2 and carbon effectively to give free rein to their advantages in sodium ion storage.In this work,a novel MoS2-C material was designed by using cellulose nanocrystals(CNCs)as low-cost and green carbon source.3 D hierarchical microspheres(200-250 nm)constructed by ultrathin MoS2-C nanosheets were synthesized by synchronizing the pre-carbonization of CNCs with the formation of MoS2 in hydrothermal reaction and subsequent pyrolysis process.It is found that the ultrathin MoS2-C nanosheets were composed of CNCs-derived short-range ordered carbon and few-layered MoS2.Benefiting from the unique structure and robust combination of MoS2 and CNCs-derived carbon,the ultrathin MoS2-C nanosheets composite was proved to have excellent cycling stability and superior rate performance in sodium-ion half-cell test and have high first reversible specific capacity of 397.9 m Ah/g in full-cell test.This work provides a significant and effective pathway to prepare MoS2-C materials with excellent electrochemical performance for the application in large-scale energy storage systems. 展开更多
关键词 Cellulose nanocrystals MoS2-C nanosheets Hierarchical microspheres anode material Sodium-ion batteries
下载PDF
Facile Fabrication of Fe3O4@TiO2@C Yolk–Shell Spheres as Anode Material for Lithium Ion Batteries 被引量:4
14
作者 Wenming Liao Zhongqiang Shan Jianhua Tian 《Transactions of Tianjin University》 EI CAS 2020年第1期3-12,共10页
Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)s... Transition metal oxides have been actively exploited for application in lithium ion batteries due to their facile synthesis,high specific capacity,and environmental-friendly.In this paper,Fe3O4@TiO2@C yolk-shell(Y-S)spheres,used as anode material for lithium ion batteries,were successfully fabricated by Stober method.XRD patterns reveal that Fe3O4@TiO2@C Y-S spheres possess a good crystallinity.But the diffraction peaks’intensity of Fe3O4 crystals in the composites is much weaker than that of bare Fe3O4 spheres,indicating that the outer anatase TiO2@C layer can cover up the diffraction peaks of inner Fe3O4 spheres.The yolk-shell structure of Fe3O4@TiO2@C spheres is further characterized by TEM,HAADFSTEM,and EDS mapping.The yolk-shell structure is good for improving the cycling stability of the inner Fe3O4 spheres during lithium ions insertion-extraction processes.When tested at 200 mA/g,the Fe3O4@TiO2@C Y-S spheres can provide a stable discharge capacity of 450 mAh/g over 100 cycles,which is much better than that of bare Fe3O4 spheres and TiO2@C spheres.Furthermore,cyclic voltammetry curves show that the composites have a good cycling stability compared to bare Fe3O4 spheres. 展开更多
关键词 Fe3O4@TiO2@C yolk-shell spheres Cycle performance Lithium ion batteries anode material
下载PDF
All boron-based 2D material as anode material in Li-ion batteries 被引量:3
15
作者 Ning Jiang Biao Li +1 位作者 Fanghua Ning Dingguo Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1651-1654,共4页
To design the high-energy-density Li-ion batteries, the anode materials with high specific capacity have attracted much attention. In this work, we adopt the first principles calculations to investigate the possibilit... To design the high-energy-density Li-ion batteries, the anode materials with high specific capacity have attracted much attention. In this work, we adopt the first principles calculations to investigate the possibility of a new two dimensional boron material, named BG, as anode material for Li-ion batteries. The calculated results show that the maximum theoretical specific capacity of B_G is 1653 m Ah g^(-1)(LiB1.5).Additionally, the energy barriers of Li ion and Li vacancy diffusion are 330 meV and 110 meV, respectively, which imply fast charge and discharge ability for BGas an anode material. The theoretical findings reported in this work suggest that BGis a potential candidate as anode material of high-energy-density Li-ion batteries. 展开更多
关键词 All boron-based 2D material anode materials Li-ion batteries First principles calculations
下载PDF
Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries 被引量:2
16
作者 Hao-Jie Liang Zhen-Yi Gu +7 位作者 Xue-Ying Zheng Wen-Hao Li Ling-Yun Zhu Zhong-Hui Sun Yun-Feng Meng Hai-Yue Yu Xian-Kun Hou Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期589-598,I0012,共11页
Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To pr... Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs. 展开更多
关键词 K-ion batteries anode materials Carbon/carbon composite S doping Cyclic stability DFT calculation
下载PDF
Internal failure of anode materials for lithium batteriesd——A critical review 被引量:5
17
作者 Xiangqi Meng Yaolin Xu +5 位作者 Hongbin Cao Xiao Lin Pengge Ning Yi Zhang Yaiza Gonzalez Garcia Zhi Sun 《Green Energy & Environment》 CSCD 2020年第1期22-36,共15页
Prevention of mechanical and finally electrochemical failures of lithium batteries is a critical aspect to be considered during their design and performance, especially for those with high specific capacities. Interna... Prevention of mechanical and finally electrochemical failures of lithium batteries is a critical aspect to be considered during their design and performance, especially for those with high specific capacities. Internal failure is observed as one of the most serious factors, including loss of electrode materials, structure deformation and dendrite growth. It usually incubates from atomic/molecular level and progressively aggravates along with lithiation. Understanding the internal failure is of great importance for developing solutions of failure prevention and advanced anode materials. In this research, different internal failure processes of anode materials for lithium batteries are discussed. The progress on observation technologies of the anode failure is further summarized in order to understand their mechanisms of internal failure. On top of them, this review aims to summarize innovative methods to investigate the anode failure mechanisms and to gain new insights to develop advanced and stable anodes for lithium batteries. 展开更多
关键词 Lithium battery anode materials Internal failure
下载PDF
Rational Design of WO_3 Nanostructures as the Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Performance 被引量:2
18
作者 Yang Liu Yang Jiao +3 位作者 Haiyue Zhou Xiang Yu Fengyu Qu Xiang Wu 《Nano-Micro Letters》 SCIE EI CAS 2015年第1期12-16,共5页
A facile, one-step hydrothermal method was employed to synthesize two kinds of WO3 nanostructures. By using different kinds of sylvine, tungsten trioxide(WO3) with different morphologies of microflowers and nanowires ... A facile, one-step hydrothermal method was employed to synthesize two kinds of WO3 nanostructures. By using different kinds of sylvine, tungsten trioxide(WO3) with different morphologies of microflowers and nanowires was obtained, respectively. The discharge capacities for microflowers and nanowires are 107 and 146 m Ah g-1 after 180 cycles, and their corresponding capacity retentions after the first cycle are 72 and 85 %, respectively. Even at a high current density of 1,600 m Ah g-1, the discharge capacities of WO3 microflowers and nanowires are as high as 433 and557 m Ah g-1 after 40 cycles, in which the current densities were increased stepwise. It is worth mentioned that the rate capability of the nanowires is superior to that of the microflowers. However, the cycle performance of the microflowers is better than nanowires, revealing that the morphology and structure of the as-synthesized WO3 products can exert great influence on the electrochemical performances. 展开更多
关键词 WO3 nanostructures anode materials Li-ion batteries
下载PDF
Anthraquinone derivative as high-performance anode material for sodium-ion batteries using ether-based electrolytes 被引量:2
19
作者 Linqin Mu Yaxiang Lu +5 位作者 Xiaoyan Wu Yuejun Ding Yong-Sheng Hu Hong Li Liquan Chen Xuejie Huang 《Green Energy & Environment》 SCIE 2018年第1期63-70,共8页
Organic materials, especially the carbonyl compounds, are promising anode materials for room temperature sodium-ion batteries owing to their high reversible capacity, structural diversity as well as eco-friendly synth... Organic materials, especially the carbonyl compounds, are promising anode materials for room temperature sodium-ion batteries owing to their high reversible capacity, structural diversity as well as eco-friendly synthesis from bio-mass. Herein, we report a novel anthraquinone derivative, C_(14)H_6 O_4 Na_2 composited with carbon nanotube(C_(14)H_6 O_4 Na_2-CNT), used as an anode material for sodium-ion batteries in etherbased electrolyte. The C_(14)H_6 O_4 Na_2-CNT electrode delivers a reversible capacity of 173 mAh g^(-1) and an ultra-high initial Coulombic efficiency of 98% at the rate of 0.1 C. The capacity retention is 82% after 50 cycles at 0.2 C and a good rate capability is displayed at 2 C.Furthermore, the average Na insertion voltage of 1.27 V vs. Na^+/Na makes it a unique and safety battery material, which would avoid Na plating and formation of solid electrolyte interface. Our contribution provides new insights for designing developed organic anode materials with high initial Coulombic efficiency and improved safety capability for sodium-ion batteries. 展开更多
关键词 ANTHRAQUINONE C14H6O4Na2-CNT anode material Ether-based electrolyte Sodium-ion batteries
下载PDF
A new anode material LiMoS_2 for use in rechargeable Lithium Ion Batteries 被引量:2
20
作者 YANG Shui-jin AI Chang-chun +1 位作者 LIANG Yong-guang SUN Ju-tang 《合成化学》 CAS CSCD 2004年第z1期139-139,共1页
关键词 LiMoS2 Hydrothermal Synthesis anode material Electrochemical Properties.
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部