The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut...The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.展开更多
Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electro...Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electrochemical characteristics of Mg-alloy anode materials.While Mg metal anodes provide high volumetric capacity and dendrite-free electrodeposition,their practical application is hindered by challenges such as sluggish Mg^(2+)ion diffusion and electrolyte compatibility.Alloy-type anodes that incorporate groups XIII,XIV,and XV elements have the potential to overcome these limitations.We review various Mg alloys,emphasizing their alloying/dealloying reaction mechanisms,their theoretical capacities,and the practical aspects of MIBs.Furthermore,we discuss the influence of the electrolyte composition on the reversibility and efficiency of these alloy anodes.Emphasis is placed on overcoming current limitations through innovative materials and structural engineering.This review concludes with perspectives on future research directions aimed at enhancing the performance and commercial viability of Mg alloy anodes and contributing to the development of high-capacity,safe,and cost-effective energy storage systems.展开更多
Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in...Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs.展开更多
There is an ideal desire to develop the high-performance anodes materials for Liion batteries(LIBs),which requires not onlyhigh stability and reversibility,but also rapidcharging/discharging rate.In this work,webuilta...There is an ideal desire to develop the high-performance anodes materials for Liion batteries(LIBs),which requires not onlyhigh stability and reversibility,but also rapidcharging/discharging rate.In this work,webuiltablue phosphorene-graphene(BlueP-G)intralayer heterostructure by connecting BlueP and graphene monolayers at zigzag edges with covalent bonds.Based on the density functional theory simulation,the electronic structure of the heterostructure,Li adsorption and Li diffusion on heterostructure were systematically investigated.Compared with the pristine BlueP,the existence of graphene layer increases the overall conductivity of BlueP-G intralayer heterostructure.The significantly enhanced adsorption energy indicates the Li deposition on anode surface is energetically favored.The fast diffusion of Li with energy barrier as low as 0.02-0.09 eV indicates the growth of Li dendrite could be suppressed and the stability and reversibility of the battery will be increased.With a combination of increased conductivity of electronic charge,excellent Li adsorption and Li mobility on surface,BlueP-G intralayer heterostructure with zigzag interface is quite promising in the application of anode material for Li-ion batteries.展开更多
Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast...Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast reduced battery cycle life.In this work,an ap-proach is pioneered for preparing high-performance Fe_(2)O_(3)anode materials,by innovatively synthesizing a triple-layer yolk-shell Fe_(2)O_(3)uniformly coated with a conductive polypyrrole(Ppy)layer(Fe_(2)O_(3)@Ppy-TLY).The uniform polypyrrole coating introduces more reac-tion sites and adsorption sites,and maintains structure stability through charge-discharge process.In the uses as lithium-ion battery elec-trodes,Fe_(2)O_(3)@Ppy-TLY demonstrates high reversible specific capacity(maintaining a discharge capacity of 1375.11 mAh·g^(−1)after 500 cycles at 1 C),exceptional cycling stability(retaining the steady charge-discharge performance at 544.33 mAh·g^(−1)after 6000 ultrafast charge-discharge cycles at a 10 C current density),and outstanding high current charge-discharge performance(retaining a reversible ca-pacity of 156.75 mAh·g^(−1)after 10000 cycles at 15 C),thereby exhibiting superior lithium storage performance.This work introduces in-novative advancements for Fe_(2)O_(3)anode design,aiming to enhance its performance in energy storage fields.展开更多
A facile way was used to synthesize Cu2O/reduced graphene oxide (rGO) composites with octahedron-like morphology in aqueous solution without any surfactant. TEM images of the obtained Cu2O/rGOs reveal that the Cu2O ...A facile way was used to synthesize Cu2O/reduced graphene oxide (rGO) composites with octahedron-like morphology in aqueous solution without any surfactant. TEM images of the obtained Cu2O/rGOs reveal that the Cu2O particles and rGO distribute hierarchically and the primary Cu2O particles are encapsulated well in the graphene nanosheets. The electrochemical performance of Cu2O/rGOs is enhanced compared with bare Cu2O when they are employed as anode materials for lithium ion batteries. The Cu2O/rGO composites maintain a reversible capacity of 348.4 mA?h/g after 50 cycles at a current density of 100 mA/g. In addition, the composites retain 305.8 mA?h/g after 60 cycles at various current densities of 50, 100, 200, 400 and 800 mA/g.展开更多
Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed...Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed and developing industries like stationary storage and electric cars, etc. Concerns about the cost and availability of lithium have prompted research into alternatives, such as sodium-ion batteries(SIBs), which use sodium instead of lithium as the charge carrier. This is especially relevant for stationary applications, where the size and weight of battery are less important. The working efficiency and capacity of these batteries are mainly dependent on the anode, cathode, and electrolyte. The anode,which is one of these components, is by far the most important part of the rechargeable battery.Because of its characteristics and its structure, the anode has a tremendous impact on the overall performance of the battery as a whole. Keeping the above in view, in this review we critically reviewed the different types of anodes and their performances studied to date in LIBs and SIBs. The review article is divided into three main sections, namely:(i) intercalation reaction-based anode materials;(ii) alloying reaction-based anode materials;and(iii) conversion reaction-based anode materials, which are further classified into a number of subsections based on the type of material used. In each main section, we have discussed the merits and challenges faced by their particular system. Afterward, a brief summary of the review has been discussed. Finally, the road ahead for better application of Li/Na-ion batteries is discussed, which seems to mainly depend on exploring the innovative materials as anode and on the inoperando characterization of the existing materials for making them more capable in terms of application in rechargeable batteries.展开更多
The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of ...The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of LIBs rely directly on the electrode materials.As far as the development of the advanced LIBs electrode is concerned,the improvement of anode materials is more urgent than the cathode materials.Industrial production of anode materials superior to commercial graphite still faces some challenges.This review sets out the most basic LIBs anode material design.The reaction principles and structural design of carbon materials,various transition metal oxides,silicon and germanium are summarized,and then the progress of other anode materials are analyzed.Due to the rapid development of metal organic frameworks(MOFs)in energy storage and conversion in recent years,the synthesis process and energy storage mechanism of nanostructures derived from MOF precursors are also discussed.From the perspective of novel structural design,the progress of various MOFs-derived materials for alleviating the volume expansion of anode materials is discussed.Finally,challenges for the future development of advanced anode materials for LIBs will be considered.展开更多
Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To pr...Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs.展开更多
Bismuth (Bi) has indeed inspired great interests in lithium-ion batteries (LIBs) due to the high capacity,but was still limited by the low electrical conductivity and large volume variation.Herein,a composite material...Bismuth (Bi) has indeed inspired great interests in lithium-ion batteries (LIBs) due to the high capacity,but was still limited by the low electrical conductivity and large volume variation.Herein,a composite material based on Bi nanoparticles in situ encapsulated by carbon film (Bi@CF) is prepared successfully through a facile metal–organic framework (MOF)-engaged approach.As anode materials for LIBs,the Bi@CF composites achieved high reversible capacities of 705 and 538 mAh g^(-1)at 0.2 and 0.5 A g^(-1) after200 cycles,and long cycling performance with a stable capacity of 306 mAh g^(-1)at 1.0 A g^(-1) even after 900 cycles.In situ X-ray diffraction (XRD) measurements clearly revealed the conversion between Bi and Li_(3)Bi during the alloying/dealloying process,confirming the good electrochemical reversibility of Bi@CF for Li-storage.The reaction kinetics of this Bi@CF composite was further studied by galvanostatic intermittent titration technique (GITT).This work may provide an inspiration for the elaborate design and facile preparation of alloy-type anode materials for high-performance rechargeable batteries.展开更多
Co Fe2O4-graphene nanosheets(Co Fe2O4-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The nanocomposites ob...Co Fe2O4-graphene nanosheets(Co Fe2O4-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The nanocomposites obtained at 350 °C maintained a high specific capacity of 1,257 m Ah g-1even after 200 cycles at 0.1 A g-1. Furthermore,the obtained materials also have better rate capability, and it can be maintained to 696, 495, 308, and 254 m Ah g-1at 1, 2,5, and 10 A g-1, respectively. The enhancements realized in the reversible capacity and cyclic stability can be attributed to the good improvement in the electrical conductivity achieved by annealing at appropriate temperature, and the electrochemical nature of Co Fe2O4 and GNSs during discharge–charge processes.展开更多
Prevention of mechanical and finally electrochemical failures of lithium batteries is a critical aspect to be considered during their design and performance, especially for those with high specific capacities. Interna...Prevention of mechanical and finally electrochemical failures of lithium batteries is a critical aspect to be considered during their design and performance, especially for those with high specific capacities. Internal failure is observed as one of the most serious factors, including loss of electrode materials, structure deformation and dendrite growth. It usually incubates from atomic/molecular level and progressively aggravates along with lithiation. Understanding the internal failure is of great importance for developing solutions of failure prevention and advanced anode materials. In this research, different internal failure processes of anode materials for lithium batteries are discussed. The progress on observation technologies of the anode failure is further summarized in order to understand their mechanisms of internal failure. On top of them, this review aims to summarize innovative methods to investigate the anode failure mechanisms and to gain new insights to develop advanced and stable anodes for lithium batteries.展开更多
Potassium-ion batteries(KIBs)as one of the most promising alternatives to lithium-ion batteries have been highly valued in recent years.However,progress in KIBs is largely restricted by the sluggish development in ano...Potassium-ion batteries(KIBs)as one of the most promising alternatives to lithium-ion batteries have been highly valued in recent years.However,progress in KIBs is largely restricted by the sluggish development in anode materials.Therefore,it is imperative to systematically outline and evaluate the recent research advances in the field of anode materials for KIBs toward promoting the development of high-performance anode materials for KIBs.In this review,the recent achievements in anode materials for KIBs are summarized.The electrochemical properties(ie.charge storage mechanism,capacity,rate performance,and cycling stability)of these reported anode materials,as well as their advantages/disadvantages,are discerned and analyzed,enabling high-performance KIBs to meet the requirements for practical applications.Finally,technological developments,scientific challenges,and future research opportunities of anode materials for KIBs are briefly reviewed.展开更多
Nitrogen-doped TiO_2–C composite nanofibers(TiO_2/N–C NFs) were manufactured by a convenient and green electrospinning technique in which urea acted as both the nitrogen source and a pore-forming agent. The TiO_2/N...Nitrogen-doped TiO_2–C composite nanofibers(TiO_2/N–C NFs) were manufactured by a convenient and green electrospinning technique in which urea acted as both the nitrogen source and a pore-forming agent. The TiO_2/N–C NFs exhibit a large specific surface area(213.04 m^2 g^(-1)) and a suitable nitrogen content(5.37 wt%). The large specific surface area can increase the contribution of the extrinsic pseudocapacitance, which greatly enhances the rate capability. Further, the diffusion coefficient of sodium ions(DNa_+) could be greatly improved by the incorporation of nitrogen atoms. Thus, the TiO_2/N–C NFs display excellent electrochemical properties in Na-ion batteries. A TiO_2/N–C NF anode delivers a high reversible discharge capacity of 265.8 mAh g^(-1) at 0.05 A g^(-1) and an outstanding long cycling performance even at a high current density(118.1 m Ah g^(-1)) with almost no capacity decay at 5 A g^(-1) over 2000 cycles. Therefore, this work sheds light on the application of TiO_2-based materials in sodium-ion batteries.展开更多
A facile, one-step hydrothermal method was employed to synthesize two kinds of WO3 nanostructures. By using different kinds of sylvine, tungsten trioxide(WO3) with different morphologies of microflowers and nanowires ...A facile, one-step hydrothermal method was employed to synthesize two kinds of WO3 nanostructures. By using different kinds of sylvine, tungsten trioxide(WO3) with different morphologies of microflowers and nanowires was obtained, respectively. The discharge capacities for microflowers and nanowires are 107 and 146 m Ah g-1 after 180 cycles, and their corresponding capacity retentions after the first cycle are 72 and 85 %, respectively. Even at a high current density of 1,600 m Ah g-1, the discharge capacities of WO3 microflowers and nanowires are as high as 433 and557 m Ah g-1 after 40 cycles, in which the current densities were increased stepwise. It is worth mentioned that the rate capability of the nanowires is superior to that of the microflowers. However, the cycle performance of the microflowers is better than nanowires, revealing that the morphology and structure of the as-synthesized WO3 products can exert great influence on the electrochemical performances.展开更多
There is an increasing demand for rechargeable batteries in high-performance energy storage systems.The current dominating Li-ion batteries are limited by price,resource availability,as well as their theoretical capac...There is an increasing demand for rechargeable batteries in high-performance energy storage systems.The current dominating Li-ion batteries are limited by price,resource availability,as well as their theoretical capacities.So that the community has started to explore alternative battery chemistries.As a promising multivalent battery type,rechargeable magnesium batteries(RMBs)have attracted increasing attention because of high safety,high volumetric energy density,and low cost thanks to abundant resource of Mg.However,the development of high-performance anodes is still hampered by formation of passivating layers on the Mg surface.Additionally,dendrites can also grow under certain conditions with pure Mg anodes,which requires further studies for reliable operation window and substitutes.Therefore,this review specifically aims to provide an overview on the often overlooked yet very important anode materials of RMBs,with the hope to inspire more attention and research efforts for the achievement of over-all better performance of future RMBs.c 2020 Published by Elsevier B.V.on behalf of Chongqing University.展开更多
The next-generation smart grid for the storage and delivery of renewable energy urgently needs to develop a low-cost and rechargeable energy storage technology beyond lithium-ion batteries(LIBs).Owing to the abundance...The next-generation smart grid for the storage and delivery of renewable energy urgently needs to develop a low-cost and rechargeable energy storage technology beyond lithium-ion batteries(LIBs).Owing to the abundance of potassium(K) resources and the similar electrochemical performance to that of LIBs,potassium-ion batteries(PIBs) have been attracted considerable interest in recent years,and significant progress has been achieved concerning the discovery of high-performance electrode materials for PIBs.This review especially summarizes the latest research progress regarding anode materials for PIBs,including carbon materials,organic materials,alloys,metal-based compounds,and other new types of compounds.The reversible K-ion storage principle and the electrochemical performance(i.e.,capacity,potential,rate capability,and cyclability) of these developed anode materials are summarized.Furthermore,the challenges and the corresponding effective strategies to enhance the battery performance of the anode materials are highlighted.Finally,prospects of the future development of high-performance anode materials for PIBs are discussed.展开更多
Well-dispersed SnO2 nanorods with diameter of 4-15 nm and length of 100-200 nm are synthesised through a hydrothermal route and their potential as anode materials in lithium-ion batteries is investigated. The observed...Well-dispersed SnO2 nanorods with diameter of 4-15 nm and length of 100-200 nm are synthesised through a hydrothermal route and their potential as anode materials in lithium-ion batteries is investigated. The observed initial discharge capacity is as high as 1778 mA.h/g, much higher than the theoretical value of the bulk SnO2 (1494 mA.h/g). During the following 15 cycles, the reversible capacity decreases from 929 to 576 mA-h/g with a fading rate of 3.5% per cycle. The fading mechanism is discussed. Serious capacity fading can be avoided by reducing the cycling voltages from 0.05-3.0 to 0.4-1.2 V. At the end, SnO2 nanorods with much smaller size are synthesized and their performance as anode materials is studied. The size effect on the electrochemical properties is briefly discussed.展开更多
A facile ultrasonic method was used to synthesize CoO/graphene nanohybrids by employing Co4(CO)12 as a cobalt precursor. The nanohybrids were characterized by SEM, TEM and XPS, and the results show that CoO nanopart...A facile ultrasonic method was used to synthesize CoO/graphene nanohybrids by employing Co4(CO)12 as a cobalt precursor. The nanohybrids were characterized by SEM, TEM and XPS, and the results show that CoO nanoparticles (3-5 nm) distribute uniformly on the surface of graphene. The CoO/graphene nanohybrids display high performance as an anode material for lithium-ion battery, such as high reversible lithium storage capacity (650 mA-h/g after 50 cycles, almost twice that of commercial graphite anode), high coulombic efficiency (over 95%) and excellent cycling stability. The extraordinary performance arises from the structure of the nanohybrids: the nanosized CoO particles with high dispersity on conductive graphene substrates are beneficial for lithium-ion insertion/extraction, shortening diffusion length for lithium ions and improving conductivity, thus the lithium storage performance was improved.展开更多
A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported.The morphology and crystal structure were studied by X-ray ...A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported.The morphology and crystal structure were studied by X-ray diffraction (XRD),field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM).The electrochemical performance was evaluated by galvanostatic charge-lischarge tests and alternating current (AC) impedance spectroscopy.The results show that the TiO2/GNS electrode exhibit higher electrochemical performance than that of TiO2 electrode regardless of the rate.Even at 500 mA/g,the capacity of TiO2/GNS is 120.3 mAh/g,which is higher than that of TiO2 61.6 mAh/g.The high performance is attributed to the addition of graphene to improve electrical conductivity and reduce polarization.展开更多
基金supported by the National Key Research and Development Program of China(No.2019YFA0705601)the National Natural Science Foundation of China(No.U23A20122,52101267)the Key Science and Technology Special Project of Henan Province(No.201111311400).
文摘The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.
基金supported by the Global Joint Research Program funded by the Pukyong National University(202411790001).
文摘Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electrochemical characteristics of Mg-alloy anode materials.While Mg metal anodes provide high volumetric capacity and dendrite-free electrodeposition,their practical application is hindered by challenges such as sluggish Mg^(2+)ion diffusion and electrolyte compatibility.Alloy-type anodes that incorporate groups XIII,XIV,and XV elements have the potential to overcome these limitations.We review various Mg alloys,emphasizing their alloying/dealloying reaction mechanisms,their theoretical capacities,and the practical aspects of MIBs.Furthermore,we discuss the influence of the electrolyte composition on the reversibility and efficiency of these alloy anodes.Emphasis is placed on overcoming current limitations through innovative materials and structural engineering.This review concludes with perspectives on future research directions aimed at enhancing the performance and commercial viability of Mg alloy anodes and contributing to the development of high-capacity,safe,and cost-effective energy storage systems.
基金supported by the National Natural Science Foundation of China (52307239,52102300,52207234)the Natural Science Foundation of Hubei Province (2022CFB1003,2021CFA025)。
文摘Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs.
基金This work was supported by the National Natural Science Foundation of China(No.21825302 and No.21903076)the Taishan Scholar Program of Shandong Province of China(tsqn201909122)We also thank Supercomputing Center of USTC(USTC-SCC),Supercomputing Center of the Chinese Academy of Sciences(SCCAS),Tianjin Supercomputer Center,Guangzhou Supercomputer Center,and the Shanghai Supercomputer Center.
文摘There is an ideal desire to develop the high-performance anodes materials for Liion batteries(LIBs),which requires not onlyhigh stability and reversibility,but also rapidcharging/discharging rate.In this work,webuiltablue phosphorene-graphene(BlueP-G)intralayer heterostructure by connecting BlueP and graphene monolayers at zigzag edges with covalent bonds.Based on the density functional theory simulation,the electronic structure of the heterostructure,Li adsorption and Li diffusion on heterostructure were systematically investigated.Compared with the pristine BlueP,the existence of graphene layer increases the overall conductivity of BlueP-G intralayer heterostructure.The significantly enhanced adsorption energy indicates the Li deposition on anode surface is energetically favored.The fast diffusion of Li with energy barrier as low as 0.02-0.09 eV indicates the growth of Li dendrite could be suppressed and the stability and reversibility of the battery will be increased.With a combination of increased conductivity of electronic charge,excellent Li adsorption and Li mobility on surface,BlueP-G intralayer heterostructure with zigzag interface is quite promising in the application of anode material for Li-ion batteries.
基金supported by the Natural Science Foundation of Jiangsu Province of China(No.BK20201008).
文摘Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast reduced battery cycle life.In this work,an ap-proach is pioneered for preparing high-performance Fe_(2)O_(3)anode materials,by innovatively synthesizing a triple-layer yolk-shell Fe_(2)O_(3)uniformly coated with a conductive polypyrrole(Ppy)layer(Fe_(2)O_(3)@Ppy-TLY).The uniform polypyrrole coating introduces more reac-tion sites and adsorption sites,and maintains structure stability through charge-discharge process.In the uses as lithium-ion battery elec-trodes,Fe_(2)O_(3)@Ppy-TLY demonstrates high reversible specific capacity(maintaining a discharge capacity of 1375.11 mAh·g^(−1)after 500 cycles at 1 C),exceptional cycling stability(retaining the steady charge-discharge performance at 544.33 mAh·g^(−1)after 6000 ultrafast charge-discharge cycles at a 10 C current density),and outstanding high current charge-discharge performance(retaining a reversible ca-pacity of 156.75 mAh·g^(−1)after 10000 cycles at 15 C),thereby exhibiting superior lithium storage performance.This work introduces in-novative advancements for Fe_(2)O_(3)anode design,aiming to enhance its performance in energy storage fields.
基金Project (2014CB643406) supported by the National Basic Research Program of ChinaProject (2011FJ1005) supported by Major Special Project of Science and Technology of Hunan Province,China
文摘A facile way was used to synthesize Cu2O/reduced graphene oxide (rGO) composites with octahedron-like morphology in aqueous solution without any surfactant. TEM images of the obtained Cu2O/rGOs reveal that the Cu2O particles and rGO distribute hierarchically and the primary Cu2O particles are encapsulated well in the graphene nanosheets. The electrochemical performance of Cu2O/rGOs is enhanced compared with bare Cu2O when they are employed as anode materials for lithium ion batteries. The Cu2O/rGO composites maintain a reversible capacity of 348.4 mA?h/g after 50 cycles at a current density of 100 mA/g. In addition, the composites retain 305.8 mA?h/g after 60 cycles at various current densities of 50, 100, 200, 400 and 800 mA/g.
文摘Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed and developing industries like stationary storage and electric cars, etc. Concerns about the cost and availability of lithium have prompted research into alternatives, such as sodium-ion batteries(SIBs), which use sodium instead of lithium as the charge carrier. This is especially relevant for stationary applications, where the size and weight of battery are less important. The working efficiency and capacity of these batteries are mainly dependent on the anode, cathode, and electrolyte. The anode,which is one of these components, is by far the most important part of the rechargeable battery.Because of its characteristics and its structure, the anode has a tremendous impact on the overall performance of the battery as a whole. Keeping the above in view, in this review we critically reviewed the different types of anodes and their performances studied to date in LIBs and SIBs. The review article is divided into three main sections, namely:(i) intercalation reaction-based anode materials;(ii) alloying reaction-based anode materials;and(iii) conversion reaction-based anode materials, which are further classified into a number of subsections based on the type of material used. In each main section, we have discussed the merits and challenges faced by their particular system. Afterward, a brief summary of the review has been discussed. Finally, the road ahead for better application of Li/Na-ion batteries is discussed, which seems to mainly depend on exploring the innovative materials as anode and on the inoperando characterization of the existing materials for making them more capable in terms of application in rechargeable batteries.
基金financial support from the National Natural Science Foundation of China(81671737)the support from‘Sponsored by Shanghai Pujiang Program’(18PJD020)the Interdisciplinary Program of Shanghai Jiao Tong University(YG2019QNB31)。
文摘The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of LIBs rely directly on the electrode materials.As far as the development of the advanced LIBs electrode is concerned,the improvement of anode materials is more urgent than the cathode materials.Industrial production of anode materials superior to commercial graphite still faces some challenges.This review sets out the most basic LIBs anode material design.The reaction principles and structural design of carbon materials,various transition metal oxides,silicon and germanium are summarized,and then the progress of other anode materials are analyzed.Due to the rapid development of metal organic frameworks(MOFs)in energy storage and conversion in recent years,the synthesis process and energy storage mechanism of nanostructures derived from MOF precursors are also discussed.From the perspective of novel structural design,the progress of various MOFs-derived materials for alleviating the volume expansion of anode materials is discussed.Finally,challenges for the future development of advanced anode materials for LIBs will be considered.
基金the financial support from the National Natural Science Foundation of China(No.91963118)the 111 Project(No.B13013)supported by the Open Project Program of Key Laboratory of Preparation and Application of Environmental Friendly Materials(Jilin Normal University),Ministry of Education,China(No.2020004)。
文摘Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs.
基金supported by the 100 Talents Plan Foundation of Sun Yat-sen UniversityThousand Youth Talents Plan of China and Guangdong Province+1 种基金the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07C069)the NSFC Projects (22075321, 21821003 and 21890380)。
文摘Bismuth (Bi) has indeed inspired great interests in lithium-ion batteries (LIBs) due to the high capacity,but was still limited by the low electrical conductivity and large volume variation.Herein,a composite material based on Bi nanoparticles in situ encapsulated by carbon film (Bi@CF) is prepared successfully through a facile metal–organic framework (MOF)-engaged approach.As anode materials for LIBs,the Bi@CF composites achieved high reversible capacities of 705 and 538 mAh g^(-1)at 0.2 and 0.5 A g^(-1) after200 cycles,and long cycling performance with a stable capacity of 306 mAh g^(-1)at 1.0 A g^(-1) even after 900 cycles.In situ X-ray diffraction (XRD) measurements clearly revealed the conversion between Bi and Li_(3)Bi during the alloying/dealloying process,confirming the good electrochemical reversibility of Bi@CF for Li-storage.The reaction kinetics of this Bi@CF composite was further studied by galvanostatic intermittent titration technique (GITT).This work may provide an inspiration for the elaborate design and facile preparation of alloy-type anode materials for high-performance rechargeable batteries.
基金supported by the Program of National Natural Science Foundation of China (21071097, 20901050)National Basic Research Program of China (2014CB239700)+1 种基金Shanghai Nano-Project (12 nm0503502)Minhang District Developing Project
文摘Co Fe2O4-graphene nanosheets(Co Fe2O4-GNSs) were synthesized through an ultrasonic method, and their electrochemical performances as Li-ion battery electrode were improved by annealing processes. The nanocomposites obtained at 350 °C maintained a high specific capacity of 1,257 m Ah g-1even after 200 cycles at 0.1 A g-1. Furthermore,the obtained materials also have better rate capability, and it can be maintained to 696, 495, 308, and 254 m Ah g-1at 1, 2,5, and 10 A g-1, respectively. The enhancements realized in the reversible capacity and cyclic stability can be attributed to the good improvement in the electrical conductivity achieved by annealing at appropriate temperature, and the electrochemical nature of Co Fe2O4 and GNSs during discharge–charge processes.
基金the financial support on this research from National Key Research and Development Program of China (2017YFB0403300/2017YFB043305)National Natural Science Foundation of China under Grant No. 51425405+1 种基金Key Program of Chinese Academy of Sciences KFZD-SW-3151000 Talents Program of China (Z.S.)
文摘Prevention of mechanical and finally electrochemical failures of lithium batteries is a critical aspect to be considered during their design and performance, especially for those with high specific capacities. Internal failure is observed as one of the most serious factors, including loss of electrode materials, structure deformation and dendrite growth. It usually incubates from atomic/molecular level and progressively aggravates along with lithiation. Understanding the internal failure is of great importance for developing solutions of failure prevention and advanced anode materials. In this research, different internal failure processes of anode materials for lithium batteries are discussed. The progress on observation technologies of the anode failure is further summarized in order to understand their mechanisms of internal failure. On top of them, this review aims to summarize innovative methods to investigate the anode failure mechanisms and to gain new insights to develop advanced and stable anodes for lithium batteries.
基金This study was financially supported by the German Research Foundation(DFG:LE2249/5-1)Mo Sha and Long Liu appreciate the China Scholarship Council(CSC)for providing the doctoral scholarship(Nos.201806920051 and 201608370095).
文摘Potassium-ion batteries(KIBs)as one of the most promising alternatives to lithium-ion batteries have been highly valued in recent years.However,progress in KIBs is largely restricted by the sluggish development in anode materials.Therefore,it is imperative to systematically outline and evaluate the recent research advances in the field of anode materials for KIBs toward promoting the development of high-performance anode materials for KIBs.In this review,the recent achievements in anode materials for KIBs are summarized.The electrochemical properties(ie.charge storage mechanism,capacity,rate performance,and cycling stability)of these reported anode materials,as well as their advantages/disadvantages,are discerned and analyzed,enabling high-performance KIBs to meet the requirements for practical applications.Finally,technological developments,scientific challenges,and future research opportunities of anode materials for KIBs are briefly reviewed.
基金supported financially by the National Natural Science Foundation of China (Grant No.51672234)Hunan 2011 Collaborative Innovation Center of Chemical Engineering and Technology with Environmental Benignity and Effective Resource Utilization, Program for Innovative Research Cultivation Team in University of Ministry of Education of China (1337304)the 111 Project (B12015)
文摘Nitrogen-doped TiO_2–C composite nanofibers(TiO_2/N–C NFs) were manufactured by a convenient and green electrospinning technique in which urea acted as both the nitrogen source and a pore-forming agent. The TiO_2/N–C NFs exhibit a large specific surface area(213.04 m^2 g^(-1)) and a suitable nitrogen content(5.37 wt%). The large specific surface area can increase the contribution of the extrinsic pseudocapacitance, which greatly enhances the rate capability. Further, the diffusion coefficient of sodium ions(DNa_+) could be greatly improved by the incorporation of nitrogen atoms. Thus, the TiO_2/N–C NFs display excellent electrochemical properties in Na-ion batteries. A TiO_2/N–C NF anode delivers a high reversible discharge capacity of 265.8 mAh g^(-1) at 0.05 A g^(-1) and an outstanding long cycling performance even at a high current density(118.1 m Ah g^(-1)) with almost no capacity decay at 5 A g^(-1) over 2000 cycles. Therefore, this work sheds light on the application of TiO_2-based materials in sodium-ion batteries.
基金supported by the Scientific Research Fund of Heilongjiang Provincial Education Department (12531179)Program for Scientific and Technological Innovation Team Construction in Universities of Heilongjiang (No. 2011TD010)
文摘A facile, one-step hydrothermal method was employed to synthesize two kinds of WO3 nanostructures. By using different kinds of sylvine, tungsten trioxide(WO3) with different morphologies of microflowers and nanowires was obtained, respectively. The discharge capacities for microflowers and nanowires are 107 and 146 m Ah g-1 after 180 cycles, and their corresponding capacity retentions after the first cycle are 72 and 85 %, respectively. Even at a high current density of 1,600 m Ah g-1, the discharge capacities of WO3 microflowers and nanowires are as high as 433 and557 m Ah g-1 after 40 cycles, in which the current densities were increased stepwise. It is worth mentioned that the rate capability of the nanowires is superior to that of the microflowers. However, the cycle performance of the microflowers is better than nanowires, revealing that the morphology and structure of the as-synthesized WO3 products can exert great influence on the electrochemical performances.
基金the German Research Foundation DFG project(LI 2839/1-1)National Natural Science Foundation of China(51971044)MF acknowledges funding from EU research and innovation framework programme via ttE-MAGIC,project(ID:824066)。
文摘There is an increasing demand for rechargeable batteries in high-performance energy storage systems.The current dominating Li-ion batteries are limited by price,resource availability,as well as their theoretical capacities.So that the community has started to explore alternative battery chemistries.As a promising multivalent battery type,rechargeable magnesium batteries(RMBs)have attracted increasing attention because of high safety,high volumetric energy density,and low cost thanks to abundant resource of Mg.However,the development of high-performance anodes is still hampered by formation of passivating layers on the Mg surface.Additionally,dendrites can also grow under certain conditions with pure Mg anodes,which requires further studies for reliable operation window and substitutes.Therefore,this review specifically aims to provide an overview on the often overlooked yet very important anode materials of RMBs,with the hope to inspire more attention and research efforts for the achievement of over-all better performance of future RMBs.c 2020 Published by Elsevier B.V.on behalf of Chongqing University.
基金financially supported by the German Research Foundation(DFG:LE2249/5-1)sponsored by China Scholarship Council(CSC)
文摘The next-generation smart grid for the storage and delivery of renewable energy urgently needs to develop a low-cost and rechargeable energy storage technology beyond lithium-ion batteries(LIBs).Owing to the abundance of potassium(K) resources and the similar electrochemical performance to that of LIBs,potassium-ion batteries(PIBs) have been attracted considerable interest in recent years,and significant progress has been achieved concerning the discovery of high-performance electrode materials for PIBs.This review especially summarizes the latest research progress regarding anode materials for PIBs,including carbon materials,organic materials,alloys,metal-based compounds,and other new types of compounds.The reversible K-ion storage principle and the electrochemical performance(i.e.,capacity,potential,rate capability,and cyclability) of these developed anode materials are summarized.Furthermore,the challenges and the corresponding effective strategies to enhance the battery performance of the anode materials are highlighted.Finally,prospects of the future development of high-performance anode materials for PIBs are discussed.
基金Project supported by the National Key Basic Research Program of China (Grant No 2007CB310500)the Chinese Ministry of Education (Grant No 705040)the National Natural Science Foundation of China (Grant Nos 90606009, 60571044 and 10774174)
文摘Well-dispersed SnO2 nanorods with diameter of 4-15 nm and length of 100-200 nm are synthesised through a hydrothermal route and their potential as anode materials in lithium-ion batteries is investigated. The observed initial discharge capacity is as high as 1778 mA.h/g, much higher than the theoretical value of the bulk SnO2 (1494 mA.h/g). During the following 15 cycles, the reversible capacity decreases from 929 to 576 mA-h/g with a fading rate of 3.5% per cycle. The fading mechanism is discussed. Serious capacity fading can be avoided by reducing the cycling voltages from 0.05-3.0 to 0.4-1.2 V. At the end, SnO2 nanorods with much smaller size are synthesized and their performance as anode materials is studied. The size effect on the electrochemical properties is briefly discussed.
基金Project (4340142501) supported by Start-up Funds of Chair Professor, Tongji University, ChinaProject (51173135) supported by the National Natural Science Foundation of China
文摘A facile ultrasonic method was used to synthesize CoO/graphene nanohybrids by employing Co4(CO)12 as a cobalt precursor. The nanohybrids were characterized by SEM, TEM and XPS, and the results show that CoO nanoparticles (3-5 nm) distribute uniformly on the surface of graphene. The CoO/graphene nanohybrids display high performance as an anode material for lithium-ion battery, such as high reversible lithium storage capacity (650 mA-h/g after 50 cycles, almost twice that of commercial graphite anode), high coulombic efficiency (over 95%) and excellent cycling stability. The extraordinary performance arises from the structure of the nanohybrids: the nanosized CoO particles with high dispersity on conductive graphene substrates are beneficial for lithium-ion insertion/extraction, shortening diffusion length for lithium ions and improving conductivity, thus the lithium storage performance was improved.
基金Project(Y4110230)supported by Natural Science Foundation of Zhejiang Province,ChinaProject(51204146,51101140)supported by the National Natural Science Foundation of ChinaProject(2012M521197)supported by Postdoctoral Science Foundation of China
文摘A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported.The morphology and crystal structure were studied by X-ray diffraction (XRD),field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM).The electrochemical performance was evaluated by galvanostatic charge-lischarge tests and alternating current (AC) impedance spectroscopy.The results show that the TiO2/GNS electrode exhibit higher electrochemical performance than that of TiO2 electrode regardless of the rate.Even at 500 mA/g,the capacity of TiO2/GNS is 120.3 mAh/g,which is higher than that of TiO2 61.6 mAh/g.The high performance is attributed to the addition of graphene to improve electrical conductivity and reduce polarization.