Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical cap...Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical capacity of 372 mA·h·g^(−1),thus hindering further development toward high-capacity and large-scale applications.Alkaline earth metal iron-based oxides are considered a promising candidate to replace graphite because of their low preparation cost,good thermal stability,superior stability,and high electrochemical performance.Nonetheless,many issues and challenges remain to be addressed.Herein,we systematically summarize the research progress of alkaline earth metal iron-based oxides as LIB anodes.Meanwhile,the material and structural properties,synthesis methods,electrochemical reaction mechanisms,and improvement strategies are introduced.Finally,existing challenges and future research directions are discussed to accelerate their practical application in commercial LIBs.展开更多
Melt-spun Al75-xSi25Crx (x=2, 4, 7, 10, mole fraction, %) alloys were investigated as anode materials for lithium-ion batteries. The as-quenched ribbons consist of nano-grains and metallic glass. The electrochemical...Melt-spun Al75-xSi25Crx (x=2, 4, 7, 10, mole fraction, %) alloys were investigated as anode materials for lithium-ion batteries. The as-quenched ribbons consist of nano-grains and metallic glass. The electrochemical measurements reveal that an activation behavior is exhibited in the anodes. The specific capacity of the A173Si25Cr2 anodes can reach a maximum of 1119 mA.h/g and maintain at 586 mA·hg after 30 cycles. A more stable cycle performance is shown and a capacity loss is only 24% over 30 cycles for Al71Si25Cr4. The intermetallic compounds with Li cannot be detected in the lithiated anodes. After the ribbons were annealed, the specific capacities become much lower due to the formation of inert Al13SiaCr4, and an A1Li phase can be tested in the lithiated anodes. The Cr dissolved in the non-equilibrium alloys causes low lithiation activity and strong structure stability, which could be the main reason of the activation and a restriction of structure evolution.展开更多
With the advantages of abundant resources,high specific capacity,and relatively stable cycling performance,silicon suboxides(SiO_(x) ,x<2)have been recently suggested as promising anodes for next-generation lithium...With the advantages of abundant resources,high specific capacity,and relatively stable cycling performance,silicon suboxides(SiO_(x) ,x<2)have been recently suggested as promising anodes for next-generation lithium-ion batteries(LIBs).SiO_(x) exhibits superior storage capability because of the presence of silicon and smaller volume change upon charge/discharge than Si owing to the buffering effect of the initial lithiation products of inert lithium oxide and lithium silicates,enabling a stable cycle life of electrodes.However,significant improvements such as overcoming issues related to volume changes in cycling and initial irreversible capacity loss and enhancing the ionic and electronic charge transport in poorly conducting SiO_(x) electrodes,are still needed to achieve the satisfactory performance required for commercial applications.This review summarizes recent progress on the cycling performance and initial coulombic efficiency of SiO_(x) .Advances in the design of particle morphology and composite composition,prelithiation and prereduction methods,and usage of electrolyte additives and optimized electrode binders are discussed.Perspectives on the promising research directions that might lead to further improvement of the electrochemical properties of SiO_(x) -based anodes are noted.This paper can serve as a basis for the research and development of high-energy-density LIBs.展开更多
Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical...Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical conductivity.To mitigate these issues,free-standing N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites(Si/C-ZIF-8/CNFs)are designed and synthesized by electrospinning and carbonization methods,which present greatly enhanced electrochemical properties for lithium-ion battery anodes.This particular structure alleviates the volume variation,promotes the formation of stable solid electrolyte interphase(SEI)film,and improves the electrical conductivity.As a result,the as-obtained free-standing Si/C-ZIF-8/CNFs electrode delivers a high reversible capacity of 945.5 mAh g^(-1) at 0.2 A g^(-1) with a capacity retention of 64% for 150 cycles,and exhibits a reversible capacity of 538.6 mA h g^(-1) at 0.5 A g^(-1) over 500 cycles.Moreover,the full cell composed of a freestanding Si/C-ZIF-8/CNFs anode and commercial LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2)(NCM)cathode shows a capacity of 63.4 mA h g^(-1) after 100 cycles at 0.2 C,which corresponds to a capacity retention of 60%.This rational design could provide a new path for the development of high-performance Si-based anodes.展开更多
Silicon has been investigated intensively as a promising anode material for rechargeable lithium-ion batteries. The choice of a binder is very important to solve the problem of the large capacity fade observed along c...Silicon has been investigated intensively as a promising anode material for rechargeable lithium-ion batteries. The choice of a binder is very important to solve the problem of the large capacity fade observed along cycling. The effect of modified elastomeric binders on the electrochemical performance of crystalline nano-silicon powders was studied. Compared with the conventional binder (polyvinylidene fluoride (PVDF)), Si electrodes using the elastomeric styrene butadiene rubber (SBR) and sodium carboxymethyl cellulose (SCMC) com- bined binder show an improved cycling performance. The reversible capacity of the Si electrode with the SCMC/SBR binder is as high as 2221 mA.h/g for 30 cycles in a voltage window between 0.005 and 2 V. The structure changes from SEM images of the silicon electrodes with different binders were used to explore the property improvement.展开更多
As a new type of green energy, lithium-ion battery(LIB) has been widely used in various electric portable devices because of its high-voltage, large specific capacity, long cycle life and environmental friendliness [1...As a new type of green energy, lithium-ion battery(LIB) has been widely used in various electric portable devices because of its high-voltage, large specific capacity, long cycle life and environmental friendliness [1,2]. However, today’s anode materials of commercial LIBs cannot meet the further development requirements of smart devices and electric car due to the limitations of the electrode capacity(e.g. 372 mAh g-1 for graphite).展开更多
With the further requirements of electronic products and powered vehicles,the development of a new generation with low-voltage and high-capacity anode materials is crucial for lithium-ion batteries(LIBs).Transition me...With the further requirements of electronic products and powered vehicles,the development of a new generation with low-voltage and high-capacity anode materials is crucial for lithium-ion batteries(LIBs).Transition metal phosphides,especially cobalt phosphide(CoP)composites,have become a research hotspot for LIBs anode materials in recent years due to their high theoretical specific capacity,low polarization,and suitable voltage plateau.This review first systematically discusses the lithium storage mechanism and preparation methods of CoP in current research.Subsequently,the applications of CoP anode materials in LIBs are categorically reviewed,including the composites of CoP with various types of carbon materials and heterostructures.Finally,the challenges and future development directions of CoP anode materials are summarized to provide guidance for further improving the lithium storage performance of CoP and its practical applications.展开更多
Silicon monoxide(SiO)is widely recognized as a promising anode material for next-generation lithium-ion batteries.Owing to its metastable amorphous structure,SiO exhibits a highly complex degree of crystallization at ...Silicon monoxide(SiO)is widely recognized as a promising anode material for next-generation lithium-ion batteries.Owing to its metastable amorphous structure,SiO exhibits a highly complex degree of crystallization at the microscopic level,which significantly influences its electrochemical behavior.As a consequence,accurately regulating the crystallization of SiO,and further establishing the relationship between crystallinity and electrochemical performance are very critical for SiO anodes.In this article,carbon-coated SiO materials with different crystallinity degrees were synthesized using lithium hydroxide monohydrate(LiOH·H_(2)O)as a structural modifier to reveal this rule.Additionally,moderate amount of LiOH·H_(2)O addition results in the forming of an oxygen-rich shell,which effectively inhibits the inward migration of oxygen atoms on the SiO surface and suppresses volume expansion.However,the crystallinity of SiO will gradually enhance and the crystalline phase appears with increasing the amount of LiOH·H_(2)O,which will generate a deteriorative Li+diffusion kinetic.After balancing the above two contradictions,a mass fraction of 1%LiOH·H_(2)O for the additive yielded SiO@C-1,characterized by optimal crystallinity.SiO@C-1 demonstrates exceptional long-cycle stability with 74.8%capacity retention after 500 cycles at 1 A·g^(-1).Furthermore,it achieves a capacity retention of 52.2%even at a high density of 5 A·g^(-1).This study first reveals the relationship between SiO crystallinity and electrochemical performance,which efficiently guides the design of high-performance SiO anodes.展开更多
Silicon anodes are promising for use in lithium-ion batteries.However,their practical application is severely limited by their large volume expansion leading to irreversible material fracture and electrical disconnect...Silicon anodes are promising for use in lithium-ion batteries.However,their practical application is severely limited by their large volume expansion leading to irreversible material fracture and electrical disconnects.This study proposes a new top-down strategy for preparing microsize porous silicon and introduces polyacrylonitrile(PAN)for a nitrogen-doped carbon coating,which is designed to maintain the internal pore volume and lower the expansion of the anode during lithiation and delithiation.We then explore the effect of temperature on the evolution of the structure of PAN and the electrochemical behavior of the composite electrode.After treatment at 400℃,the PAN coating retains a high nitrogen content of 11.35 at%,confirming the presence of C—N and C—O bonds that improve the ionic-electronic transport properties.This treatment not only results in a more intact carbon layer structure,but also introduces carbon defects,and produces a material that has remarkable stable cycling even at high rates.When cycled at 4 A g^(-1),the anode had a specific capacity of 857.6 mAh g^(-1) even after 200 cycles,demonstrating great potential for high-capacity energy storage applications.展开更多
Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anode...Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle.展开更多
Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low re...Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.展开更多
Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,hi...Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs.展开更多
Despite advancements in silicon-based anodes for high-capacity lithium-ion batteries,their widespread commercial adoption is still hindered by significant volume expansion during cycling,especially at high active mass...Despite advancements in silicon-based anodes for high-capacity lithium-ion batteries,their widespread commercial adoption is still hindered by significant volume expansion during cycling,especially at high active mass loadings crucial for practical use.The root of these challenges lies in the mechanical instability of the material,which subsequently leads to the structural failure of the electrode.Here,we present a novel synthesis of a composite combining expanded graphite and silicon nanoparticles.This composite features a unique interlayer-bonded graphite structure,achieved through the application of a modified spark plasma sintering method.Notably,this innovative structure not only facilitates efficient ion and electron transport but also provides exceptional mechanical strength(Vickers hardness:up to658 MPa,Young's modulus:11.6 GPa).This strength effectively accommodates silicon expansion,resulting in an impressive areal capacity of 2.9 mA h cm^(-2)(736 mA h g^(-1)) and a steady cycle life(93% after 100cycles).Such outsta nding performance is paired with features appropriate for large-scale industrial production of silicon batteries,such as active mass loading of at least 3.9 mg cm^(-2),a high-tap density electrode material of 1.68 g cm^(-3)(secondary clusters:1.12 g cm^(-3)),and a production yield of up to 1 kg per day.展开更多
In the development of rechargeable lithium ion batteries(LIBs),silicon anodes have attracted much attention because of their extremely high theoretical capacity,relatively low Li-insertion voltage and the availability...In the development of rechargeable lithium ion batteries(LIBs),silicon anodes have attracted much attention because of their extremely high theoretical capacity,relatively low Li-insertion voltage and the availability of silicon resources.However,their large volume expansion and fragile solid electrolyte interface(SEI)film hinder their commercial application.To solve these problems,Si has been combined with various carbon materials to increase their structural stability and improve their interface properties.The use of different carbon materials,such as amorphous carbon and graphite,as three-dimensional(3D)protective anode coatings that help buffer mechanical strain and isolate the electrolyte is detailed,and novel methods for applying the coatings are outlined.However,carbon materials used as a protective layer still have some disadvantages,necessitating their modification.Recent developments have focused on modifying the protective carbon shells,and substitutes for the carbon have been suggested.展开更多
Si anode is of paramount importance for advanced energy-dense lithium-ion batteries(LIBs).However,the large volume change as well as stress generates during its lithiation-delithiation process poses a great challenge ...Si anode is of paramount importance for advanced energy-dense lithium-ion batteries(LIBs).However,the large volume change as well as stress generates during its lithiation-delithiation process poses a great challenge to the long-term cycling and hindering its application.Herein this work,a composite binder is prepared with a soft component,guar gum(GG),and a rigid linear polymer,anionic polyacrylamide(APAM).Rich hydroxy,carboxyl,and amide groups on the polymer chains not only enable intermolecular crosslinking to form a web-like binder,A2G1,but also realize strong chemical binding as well as physical encapsulating to Si particles.The resultant electrode shows limited thickness change of merely 9%on lithiation and almost recovers its original thickness on delithiation.It demonstrates high reversible capacity of 2104.3 mAh g^(-1)after 100 cycles at a current density of 1800 mA g^(-1),and in constant capacity(1000 mAh g^(-1))test,it also shows a long life of 392 cycles.Therefore,this soft-hard combining web-like binder illustrates its great potential in the future applications.展开更多
Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast...Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast reduced battery cycle life.In this work,an ap-proach is pioneered for preparing high-performance Fe_(2)O_(3)anode materials,by innovatively synthesizing a triple-layer yolk-shell Fe_(2)O_(3)uniformly coated with a conductive polypyrrole(Ppy)layer(Fe_(2)O_(3)@Ppy-TLY).The uniform polypyrrole coating introduces more reac-tion sites and adsorption sites,and maintains structure stability through charge-discharge process.In the uses as lithium-ion battery elec-trodes,Fe_(2)O_(3)@Ppy-TLY demonstrates high reversible specific capacity(maintaining a discharge capacity of 1375.11 mAh·g^(−1)after 500 cycles at 1 C),exceptional cycling stability(retaining the steady charge-discharge performance at 544.33 mAh·g^(−1)after 6000 ultrafast charge-discharge cycles at a 10 C current density),and outstanding high current charge-discharge performance(retaining a reversible ca-pacity of 156.75 mAh·g^(−1)after 10000 cycles at 15 C),thereby exhibiting superior lithium storage performance.This work introduces in-novative advancements for Fe_(2)O_(3)anode design,aiming to enhance its performance in energy storage fields.展开更多
Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zin...Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zinc dendrites, passivation, corrosion, and hydrogen evolution reactions during the charging and discharging of batteries, becoming obstacles to the practical application of ZIBs. Appropriate zinc metal-free anodes provide a higher working potential than metallic zinc anodes, effectively solving the problems of zinc dendrites, hydrogen evolution, and side reactions during the operation of metallic zinc anodes. The improvement in the safety and cycle life of batteries creates conditions for further commercialization of ZIBs. Therefore, this work systematically introduces the research progress of zinc metal-free anodes in “rocking chair” ZIBs. Zinc metal-free anodes are mainly discussed in four categories: transition metal oxides,transition metal sulfides, MXene(two dimensional transition metal carbide) composites, and organic compounds, with discussions on their properties and zinc storage mechanisms. Finally, the outlook for the development of zinc metal-free anodes is proposed. This paper is expected to provide a reference for the further promotion of commercial rechargeable ZIBs.展开更多
Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,n...Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,numerous pores,and disordered carbon layers in HCs plays a significant role in determining their sodium storage ability,but these structural features depend on the precursor used.The influence of functional groups,including heteroatoms and oxygen-containing groups,and the microstructure of the precursor on the physical and electrochemical properties of the HC produced are evaluated,and the effects of carbonization conditions(carbonization temperature,heating rate and atmosphere)are also discussed.展开更多
3D hierarchical flowerlike WS_(2) microspheres were synthesized through a facile one-pot hydrothermal route.The as-synthesized samples were characterized by powder X-ray powder diffraction (XRD),energy-dispersive spec...3D hierarchical flowerlike WS_(2) microspheres were synthesized through a facile one-pot hydrothermal route.The as-synthesized samples were characterized by powder X-ray powder diffraction (XRD),energy-dispersive spectroscopy (EDS),scanning electron microscopy (SEM) and Raman.SEM images of the samples reveal that the hierarchical flowerlike WS_(2) microspheres with diameters of about 3-5μm are composed of a number of curled nanosheets.Electrochemical tests such as charge/discharge,cyclic voltammetry,cycle life and rate performance were carried out on the WS_(2) sample.As an anode material for lithium-ion batteries,hierarchical flowerlike WS_(2) microspheres show excellent electrochemical performance.At a current density of100 mA·g^(-1),a high specific capacity of 647.8 mA·h·g^(-1) was achieved after 120 discharge/charge cycles.The excellent electrochemical performance of WS_(2) as an anode material for lithium-ion batteries can be attributed to its special 3D hierarchical structure.展开更多
Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-e...Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-energy lithium-ion batteries.Various strategies have been designed to synthesize silicon/carbon composites for tackling the issues of anode pulverization and poor stability in the anodes,thereby improving the lithium storage ability.The effect of the regulation method at each scale on the final negative electrode performance remains unclear.However,it has not been fully clarified how the regulation methods at each scale influence the final anode performance.This review will categorize the materials structure into three scales:molecular scale,nanoscale,and microscale.First,the review will examine modification methods at the molecular scale,focusing on the interfacial bonding force between silicon and carbon.Next,it will summarize various nanostructures and special shapes in the nanoscale to explore the construction of silicon/carbon composites.Lastly,the review will provide an analysis of microscale control approaches,focusing on the formation of composite particle with micron size and the utilization of micro-Si.This review provides a comprehensive overview of the multi-scale design of silicon/carbon composite anode materials and their optimization strategies to enhance the performance of lithium-ion batteries.展开更多
基金The authors acknowledge the support of the Shenyang University of Technology(QNPY202209-4)the National Natural Science Foundation of China(21571132)+1 种基金Jiangsu University Advanced Talent Fund(5501710002)the Education Department of Liaoning Province(JYTQN2023285).
文摘Anode materials are an essential part of lithium-ion batteries(LIBs),which determine the performance and safety of LIBs.Currently,graphite,as the anode material of commercial LIBs,is limited by its low theoretical capacity of 372 mA·h·g^(−1),thus hindering further development toward high-capacity and large-scale applications.Alkaline earth metal iron-based oxides are considered a promising candidate to replace graphite because of their low preparation cost,good thermal stability,superior stability,and high electrochemical performance.Nonetheless,many issues and challenges remain to be addressed.Herein,we systematically summarize the research progress of alkaline earth metal iron-based oxides as LIB anodes.Meanwhile,the material and structural properties,synthesis methods,electrochemical reaction mechanisms,and improvement strategies are introduced.Finally,existing challenges and future research directions are discussed to accelerate their practical application in commercial LIBs.
基金Projects (50871081,51002117,51071117) supported by the National Natural Science Foundation of China
文摘Melt-spun Al75-xSi25Crx (x=2, 4, 7, 10, mole fraction, %) alloys were investigated as anode materials for lithium-ion batteries. The as-quenched ribbons consist of nano-grains and metallic glass. The electrochemical measurements reveal that an activation behavior is exhibited in the anodes. The specific capacity of the A173Si25Cr2 anodes can reach a maximum of 1119 mA.h/g and maintain at 586 mA·hg after 30 cycles. A more stable cycle performance is shown and a capacity loss is only 24% over 30 cycles for Al71Si25Cr4. The intermetallic compounds with Li cannot be detected in the lithiated anodes. After the ribbons were annealed, the specific capacities become much lower due to the formation of inert Al13SiaCr4, and an A1Li phase can be tested in the lithiated anodes. The Cr dissolved in the non-equilibrium alloys causes low lithiation activity and strong structure stability, which could be the main reason of the activation and a restriction of structure evolution.
基金financially supported by the National Natural Science Foundation of China(Nos.U1637202 and52074023)the National Key R&D Program of China(No.2018YFB0905600)and the Beijing Municipal Education Commission-Natural Science Foundation Joint Key Project(No.KZ201910005003)。
文摘With the advantages of abundant resources,high specific capacity,and relatively stable cycling performance,silicon suboxides(SiO_(x) ,x<2)have been recently suggested as promising anodes for next-generation lithium-ion batteries(LIBs).SiO_(x) exhibits superior storage capability because of the presence of silicon and smaller volume change upon charge/discharge than Si owing to the buffering effect of the initial lithiation products of inert lithium oxide and lithium silicates,enabling a stable cycle life of electrodes.However,significant improvements such as overcoming issues related to volume changes in cycling and initial irreversible capacity loss and enhancing the ionic and electronic charge transport in poorly conducting SiO_(x) electrodes,are still needed to achieve the satisfactory performance required for commercial applications.This review summarizes recent progress on the cycling performance and initial coulombic efficiency of SiO_(x) .Advances in the design of particle morphology and composite composition,prelithiation and prereduction methods,and usage of electrolyte additives and optimized electrode binders are discussed.Perspectives on the promising research directions that might lead to further improvement of the electrochemical properties of SiO_(x) -based anodes are noted.This paper can serve as a basis for the research and development of high-energy-density LIBs.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.21965034,21703185,U1903217,51901013,and 21666037)the Xinjiang Autonomous Region Major Projects(2017A02004)+4 种基金the Leading Project Foundation of Science Department of Fujian Province(Grant No.2018H0034)the Resource Sharing Platform Construction Project of Xinjiang Province(PT1909)the Nature Science Foundation of Xinjiang Province(2017D01C074)the Opening Project of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials,Henan University of Science and Technology(No.HKDNM201906)the Young Scholar Science Foundation of Xinjiang Educational Institutions(XJEDU2016S030)。
文摘Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical conductivity.To mitigate these issues,free-standing N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites(Si/C-ZIF-8/CNFs)are designed and synthesized by electrospinning and carbonization methods,which present greatly enhanced electrochemical properties for lithium-ion battery anodes.This particular structure alleviates the volume variation,promotes the formation of stable solid electrolyte interphase(SEI)film,and improves the electrical conductivity.As a result,the as-obtained free-standing Si/C-ZIF-8/CNFs electrode delivers a high reversible capacity of 945.5 mAh g^(-1) at 0.2 A g^(-1) with a capacity retention of 64% for 150 cycles,and exhibits a reversible capacity of 538.6 mA h g^(-1) at 0.5 A g^(-1) over 500 cycles.Moreover,the full cell composed of a freestanding Si/C-ZIF-8/CNFs anode and commercial LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2)(NCM)cathode shows a capacity of 63.4 mA h g^(-1) after 100 cycles at 0.2 C,which corresponds to a capacity retention of 60%.This rational design could provide a new path for the development of high-performance Si-based anodes.
基金supported by the National Natural Science Foundation of China (No.51004016)
文摘Silicon has been investigated intensively as a promising anode material for rechargeable lithium-ion batteries. The choice of a binder is very important to solve the problem of the large capacity fade observed along cycling. The effect of modified elastomeric binders on the electrochemical performance of crystalline nano-silicon powders was studied. Compared with the conventional binder (polyvinylidene fluoride (PVDF)), Si electrodes using the elastomeric styrene butadiene rubber (SBR) and sodium carboxymethyl cellulose (SCMC) com- bined binder show an improved cycling performance. The reversible capacity of the Si electrode with the SCMC/SBR binder is as high as 2221 mA.h/g for 30 cycles in a voltage window between 0.005 and 2 V. The structure changes from SEM images of the silicon electrodes with different binders were used to explore the property improvement.
基金supported by National Key Research and Development Program of China (No.2017YFB0702100)the National Natural Science Foundation of China (No.11404017)+4 种基金Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Human Resources and Social Security of China, Beijing Natural Science Foundation (No.20192029)supported by the European Regional Development Fund in the IT4Innovations National Supercomputing Center-Path to Exascale project, No.CZ.02.1.01/ 0.0/0.0/16_013/0001791 within the Operational Programme Research, Development and Education by the Ministry of Education, Youth, and Sport of the Czech Republicgrant No.17-27790S of the Czech Science FoundationsMobility grant No.8J18DE004 of the Ministry of Education, Youngth and Sports of the Czech RepublicSGS No.SP2019/110。
文摘As a new type of green energy, lithium-ion battery(LIB) has been widely used in various electric portable devices because of its high-voltage, large specific capacity, long cycle life and environmental friendliness [1,2]. However, today’s anode materials of commercial LIBs cannot meet the further development requirements of smart devices and electric car due to the limitations of the electrode capacity(e.g. 372 mAh g-1 for graphite).
基金supported by the China Postdoctoral Science Foundation(grant Nos.2019M662405,2019M650612)Natural Science Foundation of Shandong Province(grant Nos.ZR2019BF047,ZR2020KE059)+1 种基金School city integration in Zibo(grant No.2019ZBXC299)Financially Sponsored by Heilongjiang Touyan Team Program,Fundamental Research Funds for the Central Universities(grant No.HIT.OCEF.2021003).
文摘With the further requirements of electronic products and powered vehicles,the development of a new generation with low-voltage and high-capacity anode materials is crucial for lithium-ion batteries(LIBs).Transition metal phosphides,especially cobalt phosphide(CoP)composites,have become a research hotspot for LIBs anode materials in recent years due to their high theoretical specific capacity,low polarization,and suitable voltage plateau.This review first systematically discusses the lithium storage mechanism and preparation methods of CoP in current research.Subsequently,the applications of CoP anode materials in LIBs are categorically reviewed,including the composites of CoP with various types of carbon materials and heterostructures.Finally,the challenges and future development directions of CoP anode materials are summarized to provide guidance for further improving the lithium storage performance of CoP and its practical applications.
基金supported by the National Natural Science Foundation of China(No.22138013)the Taishan Scholar Project(No.ts201712020).
文摘Silicon monoxide(SiO)is widely recognized as a promising anode material for next-generation lithium-ion batteries.Owing to its metastable amorphous structure,SiO exhibits a highly complex degree of crystallization at the microscopic level,which significantly influences its electrochemical behavior.As a consequence,accurately regulating the crystallization of SiO,and further establishing the relationship between crystallinity and electrochemical performance are very critical for SiO anodes.In this article,carbon-coated SiO materials with different crystallinity degrees were synthesized using lithium hydroxide monohydrate(LiOH·H_(2)O)as a structural modifier to reveal this rule.Additionally,moderate amount of LiOH·H_(2)O addition results in the forming of an oxygen-rich shell,which effectively inhibits the inward migration of oxygen atoms on the SiO surface and suppresses volume expansion.However,the crystallinity of SiO will gradually enhance and the crystalline phase appears with increasing the amount of LiOH·H_(2)O,which will generate a deteriorative Li+diffusion kinetic.After balancing the above two contradictions,a mass fraction of 1%LiOH·H_(2)O for the additive yielded SiO@C-1,characterized by optimal crystallinity.SiO@C-1 demonstrates exceptional long-cycle stability with 74.8%capacity retention after 500 cycles at 1 A·g^(-1).Furthermore,it achieves a capacity retention of 52.2%even at a high density of 5 A·g^(-1).This study first reveals the relationship between SiO crystallinity and electrochemical performance,which efficiently guides the design of high-performance SiO anodes.
文摘Silicon anodes are promising for use in lithium-ion batteries.However,their practical application is severely limited by their large volume expansion leading to irreversible material fracture and electrical disconnects.This study proposes a new top-down strategy for preparing microsize porous silicon and introduces polyacrylonitrile(PAN)for a nitrogen-doped carbon coating,which is designed to maintain the internal pore volume and lower the expansion of the anode during lithiation and delithiation.We then explore the effect of temperature on the evolution of the structure of PAN and the electrochemical behavior of the composite electrode.After treatment at 400℃,the PAN coating retains a high nitrogen content of 11.35 at%,confirming the presence of C—N and C—O bonds that improve the ionic-electronic transport properties.This treatment not only results in a more intact carbon layer structure,but also introduces carbon defects,and produces a material that has remarkable stable cycling even at high rates.When cycled at 4 A g^(-1),the anode had a specific capacity of 857.6 mAh g^(-1) even after 200 cycles,demonstrating great potential for high-capacity energy storage applications.
基金National Research Foundation,Grant/Award Number:2022R1A2C1092273。
文摘Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle.
基金the financial support from the National Natural Science Foundation of China (Grant Nos. 52201201, 52372171)the State Key Lab of Advanced Metals and Materials (Grant No. 2022Z-11)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 00007747, 06500205)the Initiative Postdocs Supporting Program (Grant No. BX20190002)。
文摘Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.
基金the financial support from the Australian Research Council,Centre for Materials Science,Queensland University of Technologythe Supported by the Fundamental Research Funds for the Central Universities。
文摘Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs.
基金supported by the National Research Foundation, Prime Minister’s Office, Singapore, under its Competitive Research Programme (CRP award number NRF-CRP22-2019-008)Medium-Sized Centre Programme (CA2DM)+1 种基金the Ministry of Education of Singapore, under its Research Centre of Excellence award to the Institute for Functional Intelligent Materials (I-FIM, Project No. EDUNC-33-18-279-V12)by the EDB Singapore, under its Space Technology Development Programme (S2219013-STDP)。
文摘Despite advancements in silicon-based anodes for high-capacity lithium-ion batteries,their widespread commercial adoption is still hindered by significant volume expansion during cycling,especially at high active mass loadings crucial for practical use.The root of these challenges lies in the mechanical instability of the material,which subsequently leads to the structural failure of the electrode.Here,we present a novel synthesis of a composite combining expanded graphite and silicon nanoparticles.This composite features a unique interlayer-bonded graphite structure,achieved through the application of a modified spark plasma sintering method.Notably,this innovative structure not only facilitates efficient ion and electron transport but also provides exceptional mechanical strength(Vickers hardness:up to658 MPa,Young's modulus:11.6 GPa).This strength effectively accommodates silicon expansion,resulting in an impressive areal capacity of 2.9 mA h cm^(-2)(736 mA h g^(-1)) and a steady cycle life(93% after 100cycles).Such outsta nding performance is paired with features appropriate for large-scale industrial production of silicon batteries,such as active mass loading of at least 3.9 mg cm^(-2),a high-tap density electrode material of 1.68 g cm^(-3)(secondary clusters:1.12 g cm^(-3)),and a production yield of up to 1 kg per day.
文摘In the development of rechargeable lithium ion batteries(LIBs),silicon anodes have attracted much attention because of their extremely high theoretical capacity,relatively low Li-insertion voltage and the availability of silicon resources.However,their large volume expansion and fragile solid electrolyte interface(SEI)film hinder their commercial application.To solve these problems,Si has been combined with various carbon materials to increase their structural stability and improve their interface properties.The use of different carbon materials,such as amorphous carbon and graphite,as three-dimensional(3D)protective anode coatings that help buffer mechanical strain and isolate the electrolyte is detailed,and novel methods for applying the coatings are outlined.However,carbon materials used as a protective layer still have some disadvantages,necessitating their modification.Recent developments have focused on modifying the protective carbon shells,and substitutes for the carbon have been suggested.
基金supported by the National Key Research and Development Program of China(No.2021YFB2500100)Science Fund for Creative Research Groupsof the National Natural Science Foundation of China(No.21921005)+1 种基金Beijing Natural Science Foundation(No.2222031)Hebei Natural Science Foundation(No.B2020103028)
文摘Si anode is of paramount importance for advanced energy-dense lithium-ion batteries(LIBs).However,the large volume change as well as stress generates during its lithiation-delithiation process poses a great challenge to the long-term cycling and hindering its application.Herein this work,a composite binder is prepared with a soft component,guar gum(GG),and a rigid linear polymer,anionic polyacrylamide(APAM).Rich hydroxy,carboxyl,and amide groups on the polymer chains not only enable intermolecular crosslinking to form a web-like binder,A2G1,but also realize strong chemical binding as well as physical encapsulating to Si particles.The resultant electrode shows limited thickness change of merely 9%on lithiation and almost recovers its original thickness on delithiation.It demonstrates high reversible capacity of 2104.3 mAh g^(-1)after 100 cycles at a current density of 1800 mA g^(-1),and in constant capacity(1000 mAh g^(-1))test,it also shows a long life of 392 cycles.Therefore,this soft-hard combining web-like binder illustrates its great potential in the future applications.
基金supported by the Natural Science Foundation of Jiangsu Province of China(No.BK20201008).
文摘Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast reduced battery cycle life.In this work,an ap-proach is pioneered for preparing high-performance Fe_(2)O_(3)anode materials,by innovatively synthesizing a triple-layer yolk-shell Fe_(2)O_(3)uniformly coated with a conductive polypyrrole(Ppy)layer(Fe_(2)O_(3)@Ppy-TLY).The uniform polypyrrole coating introduces more reac-tion sites and adsorption sites,and maintains structure stability through charge-discharge process.In the uses as lithium-ion battery elec-trodes,Fe_(2)O_(3)@Ppy-TLY demonstrates high reversible specific capacity(maintaining a discharge capacity of 1375.11 mAh·g^(−1)after 500 cycles at 1 C),exceptional cycling stability(retaining the steady charge-discharge performance at 544.33 mAh·g^(−1)after 6000 ultrafast charge-discharge cycles at a 10 C current density),and outstanding high current charge-discharge performance(retaining a reversible ca-pacity of 156.75 mAh·g^(−1)after 10000 cycles at 15 C),thereby exhibiting superior lithium storage performance.This work introduces in-novative advancements for Fe_(2)O_(3)anode design,aiming to enhance its performance in energy storage fields.
基金financially supported by the National Natural Science Foundation of China (Nos.51872090 and51772097)the Hebei Natural Science Fund for Distinguished Young Scholar,China (No.E2019209433)+2 种基金the Youth Talent Program of Hebei Provincial Education Department,China (No.BJ2018020)the Natural Science Foundation of Hebei Province,China (No.E2020209151)the Science and Technology Project of Hebei Education Department,China (No.SLRC2019028)。
文摘Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zinc dendrites, passivation, corrosion, and hydrogen evolution reactions during the charging and discharging of batteries, becoming obstacles to the practical application of ZIBs. Appropriate zinc metal-free anodes provide a higher working potential than metallic zinc anodes, effectively solving the problems of zinc dendrites, hydrogen evolution, and side reactions during the operation of metallic zinc anodes. The improvement in the safety and cycle life of batteries creates conditions for further commercialization of ZIBs. Therefore, this work systematically introduces the research progress of zinc metal-free anodes in “rocking chair” ZIBs. Zinc metal-free anodes are mainly discussed in four categories: transition metal oxides,transition metal sulfides, MXene(two dimensional transition metal carbide) composites, and organic compounds, with discussions on their properties and zinc storage mechanisms. Finally, the outlook for the development of zinc metal-free anodes is proposed. This paper is expected to provide a reference for the further promotion of commercial rechargeable ZIBs.
文摘Hard carbons(HCs)are recognized as potential anode materials for sodium-ion batteries(SIBs)because of their low cost,environmental friendliness,and the abundance of their precursors.The presence of graphitic domains,numerous pores,and disordered carbon layers in HCs plays a significant role in determining their sodium storage ability,but these structural features depend on the precursor used.The influence of functional groups,including heteroatoms and oxygen-containing groups,and the microstructure of the precursor on the physical and electrochemical properties of the HC produced are evaluated,and the effects of carbonization conditions(carbonization temperature,heating rate and atmosphere)are also discussed.
基金Funded by the Jiangsu Province Industry-University-Research Cooperation Project (No.BY2018314)the Scientific Research Foundation of Jiangsu University of Technology (No.KYY18030)Jiangsu Overseas Visiting Scholar Program for University Prominent Young&Middle-aged Teachers and Presidents。
文摘3D hierarchical flowerlike WS_(2) microspheres were synthesized through a facile one-pot hydrothermal route.The as-synthesized samples were characterized by powder X-ray powder diffraction (XRD),energy-dispersive spectroscopy (EDS),scanning electron microscopy (SEM) and Raman.SEM images of the samples reveal that the hierarchical flowerlike WS_(2) microspheres with diameters of about 3-5μm are composed of a number of curled nanosheets.Electrochemical tests such as charge/discharge,cyclic voltammetry,cycle life and rate performance were carried out on the WS_(2) sample.As an anode material for lithium-ion batteries,hierarchical flowerlike WS_(2) microspheres show excellent electrochemical performance.At a current density of100 mA·g^(-1),a high specific capacity of 647.8 mA·h·g^(-1) was achieved after 120 discharge/charge cycles.The excellent electrochemical performance of WS_(2) as an anode material for lithium-ion batteries can be attributed to its special 3D hierarchical structure.
基金funded by the Research Fund of State Key Laboratory of Mesoscience and Engineering (MESO-23-T03)the National Natural Science Foundation (22278423)+1 种基金the National Key Research and Development Program of China (2022YFB3805602)the Science Foundation of China University of Petroleum,Beijing (2462021QNXZ007)。
文摘Silicon/carbon composites,which integrate the high lithium storage performance of silicon with the exceptional mechanical strength and conductivity of carbon,will replace the traditional graphite electrodes for high-energy lithium-ion batteries.Various strategies have been designed to synthesize silicon/carbon composites for tackling the issues of anode pulverization and poor stability in the anodes,thereby improving the lithium storage ability.The effect of the regulation method at each scale on the final negative electrode performance remains unclear.However,it has not been fully clarified how the regulation methods at each scale influence the final anode performance.This review will categorize the materials structure into three scales:molecular scale,nanoscale,and microscale.First,the review will examine modification methods at the molecular scale,focusing on the interfacial bonding force between silicon and carbon.Next,it will summarize various nanostructures and special shapes in the nanoscale to explore the construction of silicon/carbon composites.Lastly,the review will provide an analysis of microscale control approaches,focusing on the formation of composite particle with micron size and the utilization of micro-Si.This review provides a comprehensive overview of the multi-scale design of silicon/carbon composite anode materials and their optimization strategies to enhance the performance of lithium-ion batteries.