Ti6Al4V substrates were anodized in a 0.5 mol/L H_2SO_4 solution at applied voltages of 90-140 V.A hydroxyapatite-titanium oxide(HA-TiO2)coating was then deposited on the anodized Ti6Al4 V substrates via a hydrother...Ti6Al4V substrates were anodized in a 0.5 mol/L H_2SO_4 solution at applied voltages of 90-140 V.A hydroxyapatite-titanium oxide(HA-TiO2)coating was then deposited on the anodized Ti6Al4 V substrates via a hydrothermal-electrochemicalmethod at a constant current.The obtained films and coatings were characterized by X-ray diffraction,scanning electron microscopy,energy-dispersive X-ray spectroscopy,and Fourier-transform infrared spectrometry.The microstructures of the porous films on the Ti6Al4 V substrates were studied to investigate the effect of the anodizing voltage on the phase and morphology of the HATiO_2 coating.The results indicated that both the phase composition and the morphology of the coatings were significantly influenced by changes in the anodizing voltage.HA-TiO_2 was directly precipitated onto the surface of the substrate when the applied voltage was between 110 and 140 V.The coatings had a gradient structure and the HA exhibited both needle-like and cotton-like structures.The amount of cotton-like HA structures decreased with an increase in voltage from 90 to 120 V,and then increased slightly when the voltage was higher than 120 V.The orientation index of the(002)plane of the coating was at a minimum when the Ti6Al4 V substrate was pretreated at 120 V.展开更多
Zn and Co multi-doped CeO2 thin films have been prepared using an anodic electrochemical method. The structures and magnetic behaviors are characterized by several techniques, in which the oxygen states in the lattice...Zn and Co multi-doped CeO2 thin films have been prepared using an anodic electrochemical method. The structures and magnetic behaviors are characterized by several techniques, in which the oxygen states in the lattice and the absorptive oxygen bonds at the surface are carefully examined. The absorptive oxygen bond is about 50% of the total oxygen bond by using a semi-quantitative method. The value of actual stoichiometry δ′ is close to 2. The experimental results indicate that the thin films are of a cerium oxide-based solid solution with few oxygen vacancies in the lattice and many absorptive oxygen bonds at the surface. Week ferromagnetic behaviors were evidenced by observed M-H hysteresis loops at room temperature. Furthermore, an evidence of relative ferromagnetic contributions was revealed by the temperature dependence of magnetization. It is believed that the ferromagnetic contributions exhibited in the M-H loops originate from the absorptive oxygen on the surface rather than the oxygen vacancies in the lattice.展开更多
TiO2 films were formed on metallic titanium substrates by the anodic oxidation method in H2SO4 solution under the 80V D.C..Phase component and microstructure were characterized by X-ray diffraction (XRD) and scanning ...TiO2 films were formed on metallic titanium substrates by the anodic oxidation method in H2SO4 solution under the 80V D.C..Phase component and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).Water contact angles on titanium oxide film surface were measured under both dark and sunlight illumination conditions.Corrosion tests were carried out in seawater under different illumination conditions by electrochemistry impedance spectrum (EIS) and polarization curves.The result showed that the TiO2 film prepared by the anodic oxidation method was anatase with a uniform structure and without obvious pores or cracks on its surface.The average water contact angle of the film was 116.4? in dark, in contrast to an angle of 42.7? under the UV illumination for 2 hours, which demonstrates good hydrophobic property.The anti-corrosion behavior of the TiO2 film was declining with the extended immersion time.Under dark conditions, however, the hydrophobic TiO2 film retarded the water infiltrating into the substrate.The impedance changed slowly and the corrosion current density was 2 orders of magnitude lower than that with the film illuminated by sunlight.All of those mentioned above indicate that the TiO2 film possesses much better performance under dark condition, and it can be applied as an engineering material under dark seawater environment.展开更多
In order to improve the efficiency of traditional electrokinetic remediation method of heavy metal-contaminated soil, cadmium-contaminated soil was remediated by two enhanced electrokinetic techniques, namely, the app...In order to improve the efficiency of traditional electrokinetic remediation method of heavy metal-contaminated soil, cadmium-contaminated soil was remediated by two enhanced electrokinetic techniques, namely, the approaching anode method and intermittent current method. The remediation effect was verified under the conditions that the electric field strength was 2 V/cm, 0.1 mol/L citric acid was used as the electrolyte, and the remediation reaction time was 96 h. The results showed that for the approaching anode method, when the average electromigration distance was 5.48, the removal rate was 88.12%, which was 10.47% higher than the unenhanced technique, and the energy consumption per unit volume was 7.36 kWh/m^3;and as to the intermittent current method, the removal rate was 80.81%, and the energy consumption per unit volume was 8.12 kWh/m^3, which was relatively reduced by 33.07%. After the remediation, the proportions of the weak acid extractive form and reducible form of calcium decreased, and the proportions of the oxidizable form and residual form of cadmium did not change significantly.展开更多
Zn 2+-TiO2 nanotube arrays were prepared by anodic oxidation method.The current-time curves were used to investigate their growth mechanism.Scanning electron microscopy and X-ray diffractometry were applied to charact...Zn 2+-TiO2 nanotube arrays were prepared by anodic oxidation method.The current-time curves were used to investigate their growth mechanism.Scanning electron microscopy and X-ray diffractometry were applied to characterizing their structures and properties.The photoelectrochemical properties were studied by electrochemical impedance spectrum(EIS).The optimised working conditions for TiO2 nanotube arrays were found to be pH 1,0.5%HF(mass fraction),20 V oxidation voltage and for 2 h.The produced sample was in anatase form,with length of 70-100 nm,thickness of 10 nm,uniform diameter and structure that does not collapse under the preparation conditions.The EIS results show that TiO2 nanotube arrays prepared with 0.5%HF(mass fraction) present a low impedance and TiO2 nanotube arrays loaded by Zn 2+could have a decreased resistance.This decrease could likely accelerate the transfer of carriers and even increase photoelectric conversion.展开更多
The porous anodic alumina membranes (PAAMs) have been successfully used as templates for the fabrication of functional nano-materials due to their outstanding regularity and physicochemical properties. In this paper...The porous anodic alumina membranes (PAAMs) have been successfully used as templates for the fabrication of functional nano-materials due to their outstanding regularity and physicochemical properties. In this paper, a transparent double-sided anodic alumina membrane with ultra-thin aluminum substrate was fabricated with the three-step anodic oxidation method in the oxalic acid electrolyte. The characters such as the top-surface morphology, membrane thickness, and depth of nanopores of this three-layer (A1203-A1-A1203) sandwiched nano-structure were controllable through regulating the main anodic oxidation conditions, e.g., anodic oxidation time of various steps, coating remove process. The experiments data revealed that the aluminum substrate is exponential declined with the oxidation time when it was approximately reduced by a few micrometers. This new double-sided anodic alumina membrane can be used as the high-quality functional field emission materials and templates.展开更多
Carbon-encapsulated Fe3O4 composites were successfully fabricated via hydrothermal method and ex- amined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The Fe3O4@C nanocomposi...Carbon-encapsulated Fe3O4 composites were successfully fabricated via hydrothermal method and ex- amined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The Fe3O4@C nanocomposite as an anode material with novel structure demonstrated excellent electrochemical performance, with enhanced specific reversible current density of 50 mA/g capacity (950 mAh/g at the after 50 cycles), remarkable rate capability (more than 650 mAh/g even at the current density of 1,000 mAJg) and good cycle ability with less capacity fading (2.4 % after 50 cycles). Two factors have been attributed to the ultrahigh electrochemical perfor- mance: Firstly, the 30- to 50-nm spherical structure with a short diffusion pathway and the amorphous carbon layer could not only provide extra space for buffering the volumetric change during the continuous charging-dis- charging but also improve the whole conductivity of the Fe3O4@C nanocomposite electrode; secondly, the syner- gistic effects of Fe304 and carbon could avoid Fe304 direct exposure to the electrolyte and maintain the structural stabilization of Fe3O4@C nanocomposite. It was suggested that the Fe3O4@C nanocomposite could be suitable as analternative anode for lithium-ion batteries with a high ap- plication potential.展开更多
基金Funded in part by the Key Laboratory of Inorginic Coating MaterialsChinese Academy of Sciences(No.KLICM-2014-11)the Shanghai Municipal Natural Science Foundation Sponsored by Shanghai Municipal Science and Technology Commissions(No.15ZR1428300)
文摘Ti6Al4V substrates were anodized in a 0.5 mol/L H_2SO_4 solution at applied voltages of 90-140 V.A hydroxyapatite-titanium oxide(HA-TiO2)coating was then deposited on the anodized Ti6Al4 V substrates via a hydrothermal-electrochemicalmethod at a constant current.The obtained films and coatings were characterized by X-ray diffraction,scanning electron microscopy,energy-dispersive X-ray spectroscopy,and Fourier-transform infrared spectrometry.The microstructures of the porous films on the Ti6Al4 V substrates were studied to investigate the effect of the anodizing voltage on the phase and morphology of the HATiO_2 coating.The results indicated that both the phase composition and the morphology of the coatings were significantly influenced by changes in the anodizing voltage.HA-TiO_2 was directly precipitated onto the surface of the substrate when the applied voltage was between 110 and 140 V.The coatings had a gradient structure and the HA exhibited both needle-like and cotton-like structures.The amount of cotton-like HA structures decreased with an increase in voltage from 90 to 120 V,and then increased slightly when the voltage was higher than 120 V.The orientation index of the(002)plane of the coating was at a minimum when the Ti6Al4 V substrate was pretreated at 120 V.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant No.LY12A01002)the National Natural Science Foundation of China(Grant Nos.11204058 and 21073162)the Hangzhou Dianzi University,China(Grant No.KYF09150603)
文摘Zn and Co multi-doped CeO2 thin films have been prepared using an anodic electrochemical method. The structures and magnetic behaviors are characterized by several techniques, in which the oxygen states in the lattice and the absorptive oxygen bonds at the surface are carefully examined. The absorptive oxygen bond is about 50% of the total oxygen bond by using a semi-quantitative method. The value of actual stoichiometry δ′ is close to 2. The experimental results indicate that the thin films are of a cerium oxide-based solid solution with few oxygen vacancies in the lattice and many absorptive oxygen bonds at the surface. Week ferromagnetic behaviors were evidenced by observed M-H hysteresis loops at room temperature. Furthermore, an evidence of relative ferromagnetic contributions was revealed by the temperature dependence of magnetization. It is believed that the ferromagnetic contributions exhibited in the M-H loops originate from the absorptive oxygen on the surface rather than the oxygen vacancies in the lattice.
文摘TiO2 films were formed on metallic titanium substrates by the anodic oxidation method in H2SO4 solution under the 80V D.C..Phase component and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).Water contact angles on titanium oxide film surface were measured under both dark and sunlight illumination conditions.Corrosion tests were carried out in seawater under different illumination conditions by electrochemistry impedance spectrum (EIS) and polarization curves.The result showed that the TiO2 film prepared by the anodic oxidation method was anatase with a uniform structure and without obvious pores or cracks on its surface.The average water contact angle of the film was 116.4? in dark, in contrast to an angle of 42.7? under the UV illumination for 2 hours, which demonstrates good hydrophobic property.The anti-corrosion behavior of the TiO2 film was declining with the extended immersion time.Under dark conditions, however, the hydrophobic TiO2 film retarded the water infiltrating into the substrate.The impedance changed slowly and the corrosion current density was 2 orders of magnitude lower than that with the film illuminated by sunlight.All of those mentioned above indicate that the TiO2 film possesses much better performance under dark condition, and it can be applied as an engineering material under dark seawater environment.
文摘In order to improve the efficiency of traditional electrokinetic remediation method of heavy metal-contaminated soil, cadmium-contaminated soil was remediated by two enhanced electrokinetic techniques, namely, the approaching anode method and intermittent current method. The remediation effect was verified under the conditions that the electric field strength was 2 V/cm, 0.1 mol/L citric acid was used as the electrolyte, and the remediation reaction time was 96 h. The results showed that for the approaching anode method, when the average electromigration distance was 5.48, the removal rate was 88.12%, which was 10.47% higher than the unenhanced technique, and the energy consumption per unit volume was 7.36 kWh/m^3;and as to the intermittent current method, the removal rate was 80.81%, and the energy consumption per unit volume was 8.12 kWh/m^3, which was relatively reduced by 33.07%. After the remediation, the proportions of the weak acid extractive form and reducible form of calcium decreased, and the proportions of the oxidizable form and residual form of cadmium did not change significantly.
基金Project(20976016)supported by the National Natural Science Foundation of ChinaProject(09JJ606)supported by the Natural Science Foundation of Hunan Province,ChinaProject(08FJ1002)supported by Key Science Research Project of the Hunan Provincial Natural Science,China
文摘Zn 2+-TiO2 nanotube arrays were prepared by anodic oxidation method.The current-time curves were used to investigate their growth mechanism.Scanning electron microscopy and X-ray diffractometry were applied to characterizing their structures and properties.The photoelectrochemical properties were studied by electrochemical impedance spectrum(EIS).The optimised working conditions for TiO2 nanotube arrays were found to be pH 1,0.5%HF(mass fraction),20 V oxidation voltage and for 2 h.The produced sample was in anatase form,with length of 70-100 nm,thickness of 10 nm,uniform diameter and structure that does not collapse under the preparation conditions.The EIS results show that TiO2 nanotube arrays prepared with 0.5%HF(mass fraction) present a low impedance and TiO2 nanotube arrays loaded by Zn 2+could have a decreased resistance.This decrease could likely accelerate the transfer of carriers and even increase photoelectric conversion.
基金supported by the Major Research Plan of the National Nat-ural Science Foundation of China(Grant No.91123030)the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011DFA12220)the National Natural Science Foundation of China(Grant No.61378083)
文摘The porous anodic alumina membranes (PAAMs) have been successfully used as templates for the fabrication of functional nano-materials due to their outstanding regularity and physicochemical properties. In this paper, a transparent double-sided anodic alumina membrane with ultra-thin aluminum substrate was fabricated with the three-step anodic oxidation method in the oxalic acid electrolyte. The characters such as the top-surface morphology, membrane thickness, and depth of nanopores of this three-layer (A1203-A1-A1203) sandwiched nano-structure were controllable through regulating the main anodic oxidation conditions, e.g., anodic oxidation time of various steps, coating remove process. The experiments data revealed that the aluminum substrate is exponential declined with the oxidation time when it was approximately reduced by a few micrometers. This new double-sided anodic alumina membrane can be used as the high-quality functional field emission materials and templates.
基金supported by the National Natural Science Foundation of China(51201066 and 51171065)the Natural Science Foundation of Guangdong Province(S2012020010937 and 10351063101000001)+1 种基金the Scientific and Technological Plan of Guangdong Province(2013B010403032)the Education Department of Guangdong Province Science and Technology Innovation Project(2013KJCX0183)
文摘Carbon-encapsulated Fe3O4 composites were successfully fabricated via hydrothermal method and ex- amined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The Fe3O4@C nanocomposite as an anode material with novel structure demonstrated excellent electrochemical performance, with enhanced specific reversible current density of 50 mA/g capacity (950 mAh/g at the after 50 cycles), remarkable rate capability (more than 650 mAh/g even at the current density of 1,000 mAJg) and good cycle ability with less capacity fading (2.4 % after 50 cycles). Two factors have been attributed to the ultrahigh electrochemical perfor- mance: Firstly, the 30- to 50-nm spherical structure with a short diffusion pathway and the amorphous carbon layer could not only provide extra space for buffering the volumetric change during the continuous charging-dis- charging but also improve the whole conductivity of the Fe3O4@C nanocomposite electrode; secondly, the syner- gistic effects of Fe304 and carbon could avoid Fe304 direct exposure to the electrolyte and maintain the structural stabilization of Fe3O4@C nanocomposite. It was suggested that the Fe3O4@C nanocomposite could be suitable as analternative anode for lithium-ion batteries with a high ap- plication potential.