期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Microstructure and abrasive wear behaviour of anodizing composite films containing Si C nanoparticles on Ti6Al4V alloy 被引量:6
1
作者 李松梅 郁秀梅 +3 位作者 刘建华 于美 吴量 杨康 《Journal of Central South University》 SCIE EI CAS 2014年第12期4415-4423,共9页
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ... Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed. 展开更多
关键词 Ti6Al4V alloy anodic oxidation Si C nanoparticle composite film
下载PDF
Effects of boric acid on microstructure and corrosion resistance of boric/sulfuric acid anodic film on 7050 aluminum alloy 被引量:14
2
作者 杜楠 王帅星 +1 位作者 赵晴 邵志松 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1655-1660,共6页
The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and... The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and scanning Kelvin probe(SKP).The results show that boric acid does not change the structure of barrier layer of anodic film,but will significantly affect the structure of porous layer,consequently affect the corrosion resistance of anodic film.As the content of boric acid in electrolyte increases from 0 to 8 g/L,the resistance of porous layer(Rp) of BSAA film increases,the capacitance of porous layer(CPEp) decreases,the surface potential moves positively,the pore size lessens,and the corrosion resistance improves.However,the Rp,CPEp and surface potential will change towards opposite direction when the content of boric acid is over 8 g/L. 展开更多
关键词 aluminum alloy anodic film corrosion resistance boric acid
下载PDF
Influence of oxidation heat on hard anodic film of aluminum alloy 被引量:5
3
作者 魏晓伟 陈朝英 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2707-2712,共6页
The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to t... The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant. 展开更多
关键词 aluminum alloy 2024 aluminum alloy oxidation heat sulfuric acid electrolyte hard anodic oxidation anodic film
下载PDF
Effect of citric acid on microstructure and electrochemical characteristics of high voltage anodized alumina film formed on etched Al Foils 被引量:5
4
作者 班朝磊 何业东 邵鑫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期133-138,共6页
Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of... Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of the resulting anodized film were examined by TEM and XRD.The special capacitance,resistance and withstanding voltage of the film were explored with electrochemical impedance spectroscopy(EIS),LCR meter and small-current charging.The results show that the high voltage anodized oxide film consists of an inner layer with high crystallinity and an outer layer with low crystallinity.However,the crystallinity of the film formed in boric acid+citric acid mixed solution is higher than that of the film formed in only boric acid solution,leading to an increase in film's field strength and special capacitance.Meanwhile,there are more defects from phase transformation in the out layer of the film formed in boric acid+citric acid mixed solution than in that of film formed in only boric acid solution,leading to a decrease in film's resistance and withstanding voltage. 展开更多
关键词 citric acid anodized oxide film Al foil Al electrolytic capacitor electrochemical performance
下载PDF
Morphology and growth of porous anodic oxide films on Ti-10V-2Fe-3Al in neutral tartrate solution 被引量:5
5
作者 易俊兰 刘建华 +3 位作者 李松梅 于美 吴国龙 吴量 《Journal of Central South University》 SCIE EI CAS 2011年第1期6-15,共10页
Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning el... Porous anodic oxide films were fabricated galvanostatically on titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate solution with different anodizing time.Scanning electron microscopy(SEM) and field emission scanning electron microscopy(FE-SEM) were used to investigate the morphology evolution of the anodic oxide film.It is shown that above the breakdown voltage,oxygen is generated with the occurrence of drums morphology.These drums grow and extrude,which yields the compression stress.Subsequently,microcracks are generated.With continuous anodizing,porous oxides form at the microcracks.Those oxides grow and connect to each other,finally replace the microcrack morphology.The depth profile of the anodic oxide film formed at 1 800 s was examined by Auger electron spectroscopy(AES).It is found that the film is divided into three layers according to the molar fractions of elements.The outer layer is incorporated by carbon,which may come from electrolyte solution.The thickness of the outer layer is approximately 0.2-0.3 μm.The molar fractions of elements in the intermediate layer are extraordinarily stable,while those in the inner layer vary significantly with sputtering depth.The thicknesses of the intermediate layer and the inner layer are 2 μm and 1.0-1.5 μm,respectively.Moreover,the growth mechanism of porous anodic oxide films in neutral tartrate solution was proposed. 展开更多
关键词 titanium alloy porous anodic oxide films morphology evolution growth mechanism
下载PDF
Fabrication and characterization of anodic oxide films on a Ti-10V-2Fe-3Al titanium alloy 被引量:6
6
作者 Jian-hua Liu Jun-lan Yi Song-mei Li Mei Yu Yong-zhen Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第1期96-100,共5页
Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characte... Anodic oxide films of the titanium alloy Ti-10V-2Fe-3Al in ammonium tartrate electrolyte without hydrofluoric acid or fluoride were fabricated. The morphology, components, and microstructure of the films were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The results showed that the films were thick, uniform, and nontransparent. Such films exhibited sedimentary morphology, with a thickness of about 3 μm, and the pore diameters of the deposits ranged from several hundred nanometers to 1.5 μm. The films were mainly titanium dioxide. Some coke-like deposits, which may contain or be changed by OH, NH, C-C, C-O, and C=O groups, were doped in the films. The films were mainly amorphous with a small amount of anatase and rutile phase. 展开更多
关键词 titanium alloys anodic oxide films titanium dioxide pulse current method
下载PDF
Growth characterization of anodic film on AZ91D magnesium alloy in an electrolyte of Na_2SiO_3 and KF 被引量:2
7
作者 Weiping Li Liqun Zhu +1 位作者 Yihong Li Bo Zhao 《Journal of University of Science and Technology Beijing》 CSCD 2006年第5期450-455,共6页
Anodization of AZ91D magnesium alloy in the electrolyte solution of 0.5 mol/L of sodium silicate and 1.0 mol/L of potassium fluoride was investigated. The anodic films were characterized using optical microscopy (OM... Anodization of AZ91D magnesium alloy in the electrolyte solution of 0.5 mol/L of sodium silicate and 1.0 mol/L of potassium fluoride was investigated. The anodic films were characterized using optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The corrosion resistance of the various anodized alloys was evaluated by a fast corrosion test using the solution of hydrochloric acid and potassium dichromate. The results showed that the addition of KF resulted in the presence of NaF in the anodic film. The thickness of the anodic film formed under a constant current density of 20 mA/cm^2 for 16 rain at 60℃ exceeded 100 gm. The growth of the anodic film could be divided into three stages based on the anodizing time; the growth rate was much faster during stage Ⅱ than in stages I and Ⅲ. The anodic film exhibited the highest corrosion resistance for the AZ91 alloy, which is attributed to the fact that the anodization was maintained until the end of stage Ⅱ. 展开更多
关键词 magnesium alloy anodic film growth characterization chromate-free anodizing
下载PDF
Formation and capacitance properties of Ti-Al composite oxide film on aluminum 被引量:1
8
作者 姚雷 刘建华 +2 位作者 于美 李松梅 吴昊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期825-830,共6页
Al specimens were covered with TiO2 film by sol-gel dip-coating and then anodized in ammonium adipate solution.The structure,composition and capacitance properties of the anodic oxide film were investigated by transmi... Al specimens were covered with TiO2 film by sol-gel dip-coating and then anodized in ammonium adipate solution.The structure,composition and capacitance properties of the anodic oxide film were investigated by transmission electron microscopy (TEM),Auger electron spectroscopy (AES),X-ray diffractometry (XRD) and electrochemical impedance spectroscopy (EIS).It was found that an anodic oxide film with a dual-layer structure formed between TiO2 coating and Al substrate.The film consisted of an inner Al2O3 layer and an outer Ti-Al composite oxide layer.The thickness of layers varied with the number of times of sol-gel dip-coating.The capacitance of anodic oxide films formed on coated specimens was at most 80% higher than that without TiO2.In film formation mechanism,it was claimed that the formation of composite oxide film was mainly affected by the structure of micro-pores network in TiO2 coating which had an influence on Al3+ and O2? ions transport during the anodizing. 展开更多
关键词 Al electrolytic capacitor composite oxide film anodized dielectric film sol-gel coating capacitance property
下载PDF
INFLUENCE OF MAGNETIC FIELD ON ACCURACY OF ECM BY CHANGING THE CONDUCTIVITY OF ANODE FILM 被引量:3
9
作者 FAN Zhijian ZHANG Lixin TANG lin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第4期11-14,共4页
The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are inve... The change of conductivity, thickness and scanning electron microscopy (SEM) appearance of the anode film of CrWMn in 10% NaNO3 at different anode potential either with or without the magnetic field applied are investigated by testing film resistance, galvanostatic transient and using SEM to design magnetic circuit in magnetic assisted electrochemical machining (MAECM). The experiments show that the anode film has semi-conducting property. Compared with the situation without magnetic field applied, the resistance of the film formed at 1 .SV (anode potential) increased and decreased at 4.0V while B=0.4T and the magnetic north pole points toward anode. The SEM photo demonstrates that the magnetic field will densify the film in the passivation area and quicken dissolution of the anode metal in over-passivation area. Based on the influence of magnetic field on electrochemical machining(ECM) due to the changes of the anode film conductivity behavior, the magnetic north pole should be designed to point towards the workpiece surface that has been machined. Process experiments agree with the results of test analysis. 展开更多
关键词 Magnetic field Passive electrolyte Anode film Conductivity Magnetic assisted electrochemical machining(MAECM) Scanning electron microscopy(SEM)
下载PDF
EIS Characterization of Sealed Anodic Oxide Films on Titanium Alloy Ti-10V-2Fe-3Al 被引量:1
10
作者 刘建华 WU Liang +3 位作者 YU Mei LI Songmei WU Guolong ZHANG You 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期599-605,共7页
Anodic oxide films grown on titanium alloy Ti-10V-2Fe-3Al in the solution of sodium tartrate, then sealed in boiling deionised water and calcium acetate solution were observed by using field emission scanning electron... Anodic oxide films grown on titanium alloy Ti-10V-2Fe-3Al in the solution of sodium tartrate, then sealed in boiling deionised water and calcium acetate solution were observed by using field emission scanning electron microscopy (FE-SEM), and were chemically analysed by using energy dispersive spectroscopy (EDS). Corrosion behaviour was investigated in a 3.5% sodium chloride solution, using electrochemical impedance spectroscopy (EIS). The morphology of the anodic oxide films was dependent on the sealing processes. The surface sealed in calcium acetate solution presented a more homogeneous and smooth structure compared with that sealed in boiling deionised water. The corrosion resistance of the oxide films sealed in calcium acetate solution was better than that sealed in boiling deionised water. 展开更多
关键词 EIS anodic oxide films sealed calcium acetate TI-10V-2FE-3AL
下载PDF
Preparation and Properties of Al-Ni Composite Anodic Films on Aluminum Surface
11
作者 赵旭辉 左禹 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第2期242-246,共5页
Ni element was introduced to aluminum surface by a simple chemical immersion method, and A1-Ni composite anodic films were obtained by following anodizing. The morphology, structure and composition of the A1-Ni anodic... Ni element was introduced to aluminum surface by a simple chemical immersion method, and A1-Ni composite anodic films were obtained by following anodizing. The morphology, structure and composition of the A1-Ni anodic films were examined by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) and atomic force microscopy(AFM). The electrochemical behaviors of the films were studied by means of polarization measurement and electrochemical impedance spectroscopy (EIS). The experimental results show that the A1-Ni composite anodic film is more compact with smaller pore diameters than that of the A1 anodic film. The introduction of nickel increases the impedances of both the barrier layer and the porous layer of the anodic films. In NaC1 solutions, the A1-Ni composite anodic films show higher impedance values and better corrosion resistance. 展开更多
关键词 ALUMINUM anodizing composite anodic film corrosion resistance
下载PDF
WO_3 Anodic Oxide Film——I.Electrochromism and Auto-bleaching mechanism
12
作者 Lin Zhonghua, Chen Kunyao, Zheng Zhizhen, Chen Haiyi (Dept. of Chem. and Inst. of Phys. Chem. , Xiamen University, Xiamen) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1990年第4期320-326,共7页
Electrochromic and auto-bleaching processes at the WO2 anodic film in 0. 5 mol/L H2SO4 solution were investigated by cyclic voltammetry, a. c. impedance technique and photocurrent spectrometry. The colouration mechani... Electrochromic and auto-bleaching processes at the WO2 anodic film in 0. 5 mol/L H2SO4 solution were investigated by cyclic voltammetry, a. c. impedance technique and photocurrent spectrometry. The colouration mechanism consists of hydrogen adsorption on the WO2 surface and the transport of H atoms in the WO, lattice. The bleaching process involves at least two steps: transport of interstitial H atoms and hydrogen desorption on the W surface, resulting in interstitial H+ ions; then extration of the H+ ions driven by the external electric field. The auto-bleaching arises from the hydroxylation due to both partial interstitial H atoms and a little of water contained in the film. 展开更多
关键词 ELECTROCHROMISM Tungsten trioxide film Tungsten electrode Anodic oxide film
下载PDF
Formation and Morphology of Anodic Oxide Films of Ti
13
作者 Kyo-Han Kim X.L.Zhu and Won-Woo Son Department of Dental Biomaterials, Kyungpook National University, Taegu 700-422, Korea Yong-Soo Jeong Department of Surface Engineering, Korea institute of Machinery and Materials, Changwon, Korea 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第1期33-34,共2页
The morphology and structure of the oxide films of Ti in H3PO4 were investigated by galvanos tatic anodization, SEM and XRD. The oxide film grew from some pores in the grooves to layered microdomains as increasing ano... The morphology and structure of the oxide films of Ti in H3PO4 were investigated by galvanos tatic anodization, SEM and XRD. The oxide film grew from some pores in the grooves to layered microdomains as increasing anodizing voltage. The crystallinity of the oxide films decreased with the increase of the concentration of the electrolyte. The model has been proposed for the growth of the oxide films by two steps, i.e. by uniform thickening and by local deposition. 展开更多
关键词 RES Formation and Morphology of Anodic Oxide films of Ti
下载PDF
SEMICONDUCTING PROPERTIES OF In_2O_3 ANODIC FILM
14
作者 Zhonghua LIN Haiyi CHEN Zhaowu TIAN NATIONAL LABORATORY OF PHYSICAL CHEMISTRY OF SOLID SURFACE XIAMEN UNIVERSITY,XIAMEN,361005 《Chinese Chemical Letters》 SCIE CAS CSCD 1990年第3期275-276,共2页
The good potentiality of the In_2O_3 anodic film as a photoanodic material has been demonstrated.The anodic oxidation of In substrate in alkaline solution for obtaining In_2O_3 film has been developed and their semico... The good potentiality of the In_2O_3 anodic film as a photoanodic material has been demonstrated.The anodic oxidation of In substrate in alkaline solution for obtaining In_2O_3 film has been developed and their semiconducting properties have been investigated through capacitance, photoelectrochemistry and electroreflection measurements. 展开更多
关键词 In SEMICONDUCTING PROPERTIES OF In2O3 ANODIC film
下载PDF
Macroscopic Studies on the Properties of the Anodic Oxide Films on Titanium
15
作者 Mahdy, G.A. Mahmoud, S.S. 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第3期241-246,共6页
The effect of fluoride ions on the formation and dissolution behaviour of anodic oxide films on Ti has been investigated in acidic fluoride media (pH=1) using impedance and galvanostatic techniques. A5 the fluoride io... The effect of fluoride ions on the formation and dissolution behaviour of anodic oxide films on Ti has been investigated in acidic fluoride media (pH=1) using impedance and galvanostatic techniques. A5 the fluoride ion concentration and temperature increase the rate of oxide film formation decreases while the dissolution process increases. oxide film formed at high tem-perature and formation voltage was found to contain more defect sites in the film than that formed at a lower one. Activation energies are calculated during the oxide film formation and dissolution and found to be 20.76 and 28.72 kJ/mol, respectively. Formation rate and reciprocal capacitance data are reported as a function of polarizing current density. Values are recorded for the electrolytic parameters A and B. Potentiostatic curves are derived from the galvanostatic results. 展开更多
关键词 FIGURE Macroscopic Studies on the Properties of the Anodic Oxide films on Titanium
全文增补中
Formation mechanism of electroless plating nickel-based composite coating on highly active rare earth magnesium alloys and its corrosion resistance and adhesion performance
16
作者 WANG Bo LI Jia-wei +3 位作者 XIE Zhi-hui LIU Kang XU Tao YU Gang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3517-3531,共15页
The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on acti... The process of preparing anodic oxide film containing active sites and electroless nickel plating on highly active rare earth magnesium alloy was developed.The formation mechanism of electroless nickel plating on active anodic oxide film and the structure and properties of the composite coating were studied by several surface and electrochemical techniques.The results showed that Ag nanograins with an average size of 10 nm were embedded into the anodic oxide film with pores of 0.1−2μm.Ag nanoparticles provided a catalytic site for the deposition of Ni-B alloy,and the Ni crystal nucleus was first grown in horizontal mode and then in cylindrical mode.The corrosion potential of the composite coating increased by 1.37 V and the corrosion current reduced two orders of magnitude due to the subsequent deposition of Ni-P alloy.The high corrosion resistance was attributed to the misaligning of these micro defects in the three different layers and the amorphous structure of the Ni-P alloy in the outer layer.These findings provide a new idea for electroless nickel plating on anodic oxide film. 展开更多
关键词 rare earth magnesium alloy electroless nickel plating composite coating Ag+activation active anodic oxidation film growth mechanism
下载PDF
Anodic Layer of Pb-Ca-Sn-Ce Alloy for Maintenance-Free Lead/Acid Batteries
17
作者 李党国 周根树 +1 位作者 林冠发 郑茂盛 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第3期353-357,共5页
The anodic films of novel Pb-Ca-Sn-Ce alloy, traditional Pb-Ca-Sn and Pb-Sb alloys formed in sulfuric solution at anodic +0.9 V potential corrosion for 6 h were investigated by means of XPS, XRD methods and AC impedan... The anodic films of novel Pb-Ca-Sn-Ce alloy, traditional Pb-Ca-Sn and Pb-Sb alloys formed in sulfuric solution at anodic +0.9 V potential corrosion for 6 h were investigated by means of XPS, XRD methods and AC impedance measurement. The results show that the growth of Pb(Ⅱ) oxide on the new Pb-Ca-Sn-Ce alloy surface is inhibited. The AC impedance measurement shows that resistance of the corrosion layer of novel Pb-Ca-Sn-Ce alloy decreases. It is found that the novel Pb-Ca-Sn-Ce alloy can encourage the development of PbO2 in the scale, and enhance the conductivity of the anodic scale. Hence the deep recycling properties of the battery can be expected better. 展开更多
关键词 new Pb-Ca-Sn-Ce alloy anodic films XPS AC impedance rare earths
下载PDF
Effects of current density on the corrosion behaviour of anodized aluminum alloy in FeCl_3 solution
18
作者 崔新芳 乔英杰 +1 位作者 刘瑞良 练小正 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第3期56-60,共5页
In the present study, 2024 aluminum alloy specimen was anodized in acetic acid and oxalic acid e- lectrolytes. Effects of the current density on the microstructure and corrosion resistance of anodic oxide film have be... In the present study, 2024 aluminum alloy specimen was anodized in acetic acid and oxalic acid e- lectrolytes. Effects of the current density on the microstructure and corrosion resistance of anodic oxide film have been investigated. The steady voltage increases from 11 V to 71 V with the current density increase from 0. 5 A/din2 to 2. 5 A/din2. The SEM reveals that there are pits, cavities and irregular pores in the anodic film, and their size and morphologies change with the current density. The corrosion resistance of the film was evalua- ted by potentiodynamic polarization and electrochemical impedance in 0.1 mol/L FeC13 solution at room temper- ature. The results show that corrosion resistance of the anodic oxide film changes with the current density, and the anodic fihn formed at the current density of 1.0 A/dm2 has the best corrosion resistance. These observations indicate that anodic film formed at J -- 1.0 A/dm2can serve as a support material for the Cu micrometallic pat- 展开更多
关键词 aluminum alloy anodic oxide film corrosion resistance FeC13 solution
下载PDF
Crack Propagation in Pipelines Under Extreme Conditions of Near-Neutral PH SCC
19
作者 Abdullah Alsit Mohammad Alkhedher Hasan Hamdan 《Computers, Materials & Continua》 SCIE EI 2022年第12期5315-5329,共15页
Stress Corrosion Cracking(SCC)process through which cracks occur in a variety of susceptible materials is a result of a combination of residual or applied stresses and corrosion.In oil and gas field,buried pipeline st... Stress Corrosion Cracking(SCC)process through which cracks occur in a variety of susceptible materials is a result of a combination of residual or applied stresses and corrosion.In oil and gas field,buried pipeline steels are made of low-alloy steels with a ferritic-pearlitic structure,such as X70.In dilute solutions,these materials are prone to SCC failure.The Near-neutral simulated soil solution(NS4)solution is established to imitate SCC conditions and subsequently became the industry requirement for crack growth experiments in the majority of laboratories.The strainassisted active crack pathways are considered while modelling SCC growth as an oxide film rupture and anodic dissolution process.It’s been hypothesized that increasing the strain concentration can help with dissolution at the filmfree crack tip.This research focuses on estimating the SCC crack growth rate under various environmental conditions in oil and gas pipelines using finite element modelling.The simulation is carried out using the J-integral theory in the COMSOL Multiphysics program.Simulations are performed to model the crack growth rate(CGR)using slip anodic dissolution(film rupture)mechanism.The plastic strain gradient is required to compute the SCC CGR(da/dt).Because the plastic strain located at crack tip increases proportionally to the crack length as it propagates,the CGR increases as the stress intensity factor(SIF)increases.The crack growth rates increase when constant loads are applied and as the temperature rises,and elevating the cathodic potential has a minimal influence on the propagation rate of cracks but raises the material yield strength and imparts brittle behavior to it. 展开更多
关键词 Stress corrosion cracking SCC oxide film rupture and anodic dissolution crack growth rate CGR J-INTEGRAL stress intensity factor SIF
下载PDF
Printing on Anodized Aluminium Surface
20
作者 Stamatina Theohari Isidoros Iakovidis +1 位作者 Athanasios Karampotsos Ioannis Sianoudis 《Open Journal of Applied Sciences》 2016年第11期783-795,共14页
Anodizing of aluminium is widely applied when a controllable morphology and properties of the surface are required. Anodic oxide films may be developed by appropriate selection of electrolyte and film-forming conditio... Anodizing of aluminium is widely applied when a controllable morphology and properties of the surface are required. Anodic oxide films may be developed by appropriate selection of electrolyte and film-forming conditions for various applications in the fields of architecture, aerospace, electronics, packaging and printing. In the present study, the printability of aluminium with respect to anodizing conditions is discussed. In particular, AA1050 alloy specimens were anodized in either sulfuric acid or phosphoric acid at temperatures ranging from 10?C to 40?C, thereby affecting the porosity and anodic layer thickness. Both the porosity and oxide thickness increase with the temperature, whereas anodization in phosphoric acid produces thinner and more porous layer than that in sulfuric acid. After the anodization step, two different printing techniques were used (i.e. digital printing and screen printing). Printed specimens were characterized by means of colour parameters, microscopy, adhesion and light fastness test. Colour parameters and ink adhesion measurements indicate that both digital and screen printing techniques give a better print quality when the anodization step is conducted in the range of 20?C - 30?C. 展开更多
关键词 Aluminium Aluminium Alloy Surface Treatment anodizing Anodic Oxide film PRINTING
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部