Based on the Kubo formalism, the anomalous Hall effect in a magnetic two-dimensional hole gas with cubic-Rashba spin-orbit coupling is studied in the presence of δ-function scattering potential. When the weak, shortr...Based on the Kubo formalism, the anomalous Hall effect in a magnetic two-dimensional hole gas with cubic-Rashba spin-orbit coupling is studied in the presence of δ-function scattering potential. When the weak, shortranged disorder scattering is considered in the Born approximation, we find that the self-energy becomes diagonal in the helicity basis and its value is independent of the wave number, and the vertex correction to the anomalous Hall conductivity due to impurity scattering vanishes when both subbands are occupied. That is to say, the anomalous Hall effect is not vanishing or influenced by the vertex correction for two-dimensional heavy-hole system, which is in sharp contrast to the case of linear-Rashba spin-orbit coupling in the electron band when the short-range disorder scattering is considered and the extrinsic mechanism as well as the effect of external electric field on the SO interaction are ignored.展开更多
Density functional calculations have been performed to investigate the adsorption of twenty two different kinds of metal adatoms on graphene-like BC3. In contrast to the graphene adsorbed with adatoms, the BC3 with ad...Density functional calculations have been performed to investigate the adsorption of twenty two different kinds of metal adatoms on graphene-like BC3. In contrast to the graphene adsorbed with adatoms, the BC3 with adatoms shows many interesting properties.(1) The interaction between the metal adatoms and the BC3 sheet is remarkably strong. The Li, Na, K, and Ca possess the binding energies larger than the cohesive energies of their corresponding bulk metals.(2)The Li, Na, and K adatoms form approximately ideal ionic bonds with BC3, while the Be, Mg, and Ca adatoms form ionic bonds with BC3 with slight hybridization of covalent bonds. The Al, Ga, In, Sn, and all transition metal adatoms form covalent bonds with BC3.(3) For all the structures studied, there exhibit metal, half-metal, semiconducting, and spin-semiconducting behaviors. Especially, the BC3 with Co adatom shows a quantum anomalous Hall(QAH) phase with a Chern number of -1 based on local density approximation calculations.(4) For Li, Na, K, Ca, Ga, In, Sn, Ti, V, Cr,Ni, Pd, and Pt, there exists a trend that the adatom species with lower ionization potential have lower work function. Our results indicate the potential applications of functionalization of BC3 with metal adatoms.展开更多
基金Supported by the Research Fund for Outstanding Young Teachers in Higher Education Institutions of Shanghai under Grant No.gjd08040the Scientific Research Startup Funds of SUESthe National Natural Science Foundation of China under Grant No.C-6201-10-001
文摘Based on the Kubo formalism, the anomalous Hall effect in a magnetic two-dimensional hole gas with cubic-Rashba spin-orbit coupling is studied in the presence of δ-function scattering potential. When the weak, shortranged disorder scattering is considered in the Born approximation, we find that the self-energy becomes diagonal in the helicity basis and its value is independent of the wave number, and the vertex correction to the anomalous Hall conductivity due to impurity scattering vanishes when both subbands are occupied. That is to say, the anomalous Hall effect is not vanishing or influenced by the vertex correction for two-dimensional heavy-hole system, which is in sharp contrast to the case of linear-Rashba spin-orbit coupling in the electron band when the short-range disorder scattering is considered and the extrinsic mechanism as well as the effect of external electric field on the SO interaction are ignored.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774396 and 11704322)Shandong Natural Science Funds for Doctoral Program,China(Grant No.ZR2017BA017)
文摘Density functional calculations have been performed to investigate the adsorption of twenty two different kinds of metal adatoms on graphene-like BC3. In contrast to the graphene adsorbed with adatoms, the BC3 with adatoms shows many interesting properties.(1) The interaction between the metal adatoms and the BC3 sheet is remarkably strong. The Li, Na, K, and Ca possess the binding energies larger than the cohesive energies of their corresponding bulk metals.(2)The Li, Na, and K adatoms form approximately ideal ionic bonds with BC3, while the Be, Mg, and Ca adatoms form ionic bonds with BC3 with slight hybridization of covalent bonds. The Al, Ga, In, Sn, and all transition metal adatoms form covalent bonds with BC3.(3) For all the structures studied, there exhibit metal, half-metal, semiconducting, and spin-semiconducting behaviors. Especially, the BC3 with Co adatom shows a quantum anomalous Hall(QAH) phase with a Chern number of -1 based on local density approximation calculations.(4) For Li, Na, K, Ca, Ga, In, Sn, Ti, V, Cr,Ni, Pd, and Pt, there exists a trend that the adatom species with lower ionization potential have lower work function. Our results indicate the potential applications of functionalization of BC3 with metal adatoms.