Internet of Things(IoT)is vulnerable to data-tampering(DT)attacks.Due to resource limitations,many anomaly detection systems(ADSs)for IoT have high false positive rates when detecting DT attacks.This leads to the misr...Internet of Things(IoT)is vulnerable to data-tampering(DT)attacks.Due to resource limitations,many anomaly detection systems(ADSs)for IoT have high false positive rates when detecting DT attacks.This leads to the misreporting of normal data,which will impact the normal operation of IoT.To mitigate the impact caused by the high false positive rate of ADS,this paper proposes an ADS management scheme for clustered IoT.First,we model the data transmission and anomaly detection in clustered IoT.Then,the operation strategy of the clustered IoT is formulated as the running probabilities of all ADSs deployed on every IoT device.In the presence of a high false positive rate in ADSs,to deal with the trade-off between the security and availability of data,we develop a linear programming model referred to as a security trade-off(ST)model.Next,we develop an analysis framework for the ST model,and solve the ST model on an IoT simulation platform.Last,we reveal the effect of some factors on the maximum combined detection rate through theoretical analysis.Simulations show that the ADS management scheme can mitigate the data unavailability loss caused by the high false positive rates in ADS.展开更多
While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),...While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features.展开更多
As energy-related problems continue to emerge,the need for stable energy supplies and issues regarding both environmental and safety require urgent consideration.Renewable energy is becoming increasingly important,wit...As energy-related problems continue to emerge,the need for stable energy supplies and issues regarding both environmental and safety require urgent consideration.Renewable energy is becoming increasingly important,with solar power accounting for the most significant proportion of renewables.As the scale and importance of solar energy have increased,cyber threats against solar power plants have also increased.So,we need an anomaly detection system that effectively detects cyber threats to solar power plants.However,as mentioned earlier,the existing solar power plant anomaly detection system monitors only operating information such as power generation,making it difficult to detect cyberattacks.To address this issue,in this paper,we propose a network packet-based anomaly detection system for the Programmable Logic Controller(PLC)of the inverter,an essential system of photovoltaic plants,to detect cyber threats.Cyberattacks and vulnerabilities in solar power plants were analyzed to identify cyber threats in solar power plants.The analysis shows that Denial of Service(DoS)and Manin-the-Middle(MitM)attacks are primarily carried out on inverters,aiming to disrupt solar plant operations.To develop an anomaly detection system,we performed preprocessing,such as correlation analysis and normalization for PLC network packets data and trained various machine learning-based classification models on such data.The Random Forest model showed the best performance with an accuracy of 97.36%.The proposed system can detect anomalies based on network packets,identify potential cyber threats that cannot be identified by the anomaly detection system currently in use in solar power plants,and enhance the security of solar plants.展开更多
In this paper, we present an adaptive anomaly detection framework that isapplicable to network-based intrusion detection. Our framework employs fuzzy cluster algorithm to detect anomalies in an online, adaptive fashio...In this paper, we present an adaptive anomaly detection framework that isapplicable to network-based intrusion detection. Our framework employs fuzzy cluster algorithm to detect anomalies in an online, adaptive fashion without a priori knowledge of the underlying data. We evaluate our method by performing experiments over network records from the KDD CUP99 data set.展开更多
This article presents an anomaly detection system based on principal component analysis (PCA) and support vector machine (SVM). The system first creates a profile defining a normal behavior by frequency-based sche...This article presents an anomaly detection system based on principal component analysis (PCA) and support vector machine (SVM). The system first creates a profile defining a normal behavior by frequency-based scheme, and then compares the similarity of a current behavior with the created profile to decide whether the input instance is norreal or anomaly. In order to avoid overfitting and reduce the computational burden, normal behavior principal features are extracted by the PCA method. SVM is used to distinguish normal or anomaly for user behavior after training procedure has been completed by learning. In the experiments for performance evaluation the system achieved a correct detection rate equal to 92.2% and a false detection rate equal to 2.8%.展开更多
Industrial Control Systems (ICS) or SCADA networks are increasingly targeted by cyber-attacks as their architectures shifted from proprietary hardware, software and protocols to standard and open sources ones. Further...Industrial Control Systems (ICS) or SCADA networks are increasingly targeted by cyber-attacks as their architectures shifted from proprietary hardware, software and protocols to standard and open sources ones. Furthermore, these systems which used to be isolated are now interconnected to corporate networks and to the Internet. Among the countermeasures to mitigate the threats, anomaly detection systems play an important role as they can help detect even unknown attacks. Deep learning which has gained a great attention in the last few years due to excellent results in image, video and natural language processing is being used for anomaly detection in information security, particularly in SCADA networks. The salient features of the data from SCADA networks are learnt as hierarchical representation using deep architectures, and those learnt features are used to classify the data into normal or anomalous ones. This article is a review of various architectures such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Stacked Autoencoder (SAE), Long Short Term Memory (LSTM), or a combination of those architectures, for anomaly detection purpose in SCADA networks.展开更多
In this paper, we propose a novel anomaly detection method for data centers based on a combination of graphstructure and abnormal attention mechanism. The method leverages the sensor monitoring data from targetpower s...In this paper, we propose a novel anomaly detection method for data centers based on a combination of graphstructure and abnormal attention mechanism. The method leverages the sensor monitoring data from targetpower substations to construct multidimensional time series. These time series are subsequently transformed intograph structures, and corresponding adjacency matrices are obtained. By incorporating the adjacency matricesand additional weights associated with the graph structure, an aggregation matrix is derived. The aggregationmatrix is then fed into a pre-trained graph convolutional neural network (GCN) to extract graph structure features.Moreover, both themultidimensional time series segments and the graph structure features are inputted into a pretrainedanomaly detectionmodel, resulting in corresponding anomaly detection results that help identify abnormaldata. The anomaly detection model consists of a multi-level encoder-decoder module, wherein each level includesa transformer encoder and decoder based on correlation differences. The attention module in the encoding layeradopts an abnormal attention module with a dual-branch structure. Experimental results demonstrate that ourproposed method significantly improves the accuracy and stability of anomaly detection.展开更多
Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconst...Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly detection.However,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series.In this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as CAFFN.Specifically,a series and feature mixing block is introduced to learn representations in 1D space.Additionally,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature extraction.Finally,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly detection.Experimental results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection.展开更多
Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural N...Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural Network(BNN)for road feature extraction,utilizing quantization and compression through a pruning strategy.The modifications resulted in a 28-fold decrease in memory usage and a 25%enhancement in inference speed while only experiencing a 2.5%decrease in accuracy.It showcases its superiority over conventional detection algorithms in different road image scenarios.Although constrained by computer resources and training datasets,our results indicate opportunities for future research,demonstrating that quantization and focused optimization can significantly improve machine learning models’accuracy and operational efficiency.ARM Cortex-M0 gives practical feasibility and substantial benefits while deploying our optimized BNN model on this low-power device:Advanced machine learning in edge computing.The analysis work delves into the educational significance of TinyML and its essential function in analyzing road networks using remote sensing,suggesting ways to improve smart city frameworks in road network assessment,traffic management,and autonomous vehicle navigation systems by emphasizing the importance of new technologies for maintaining and safeguarding road networks.展开更多
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient...Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance.展开更多
Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL...Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL)models find helpful in the detection and classification of anomalies.This article designs an oversampling with an optimal deep learning-based streaming data classification(OS-ODLSDC)model.The aim of the OSODLSDC model is to recognize and classify the presence of anomalies in the streaming data.The proposed OS-ODLSDC model initially undergoes preprocessing step.Since streaming data is unbalanced,support vector machine(SVM)-Synthetic Minority Over-sampling Technique(SVM-SMOTE)is applied for oversampling process.Besides,the OS-ODLSDC model employs bidirectional long short-term memory(Bi LSTM)for AD and classification.Finally,the root means square propagation(RMSProp)optimizer is applied for optimal hyperparameter tuning of the Bi LSTM model.For ensuring the promising performance of the OS-ODLSDC model,a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018,KDD-Cup 1999,and NSL-KDD datasets.展开更多
Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance o...Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance on anomaly detection to preempt equipment malfunctions faces the challenge of sudden anomaly discernment.To address this challenge,this paper proposes a dual-task learning approach for bearing anomaly detection and state evaluation of safe regions.The proposed method transforms the execution of the two tasks into an optimization issue of the hypersphere center.By leveraging the monotonicity and distinguishability pertinent to the tasks as the foundation for optimization,it reconstructs the SVDD model to ensure equilibrium in the model’s performance across the two tasks.Subsequent experiments verify the proposed method’s effectiveness,which is interpreted from the perspectives of parameter adjustment and enveloping trade-offs.In the meantime,experimental results also show two deficiencies in anomaly detection accuracy and state evaluation metrics.Their theoretical analysis inspires us to focus on feature extraction and data collection to achieve improvements.The proposed method lays the foundation for realizing predictive maintenance in a healthy stage by improving condition awareness in safe regions.展开更多
In the IoT(Internet of Things)domain,the increased use of encryption protocols such as SSL/TLS,VPN(Virtual Private Network),and Tor has led to a rise in attacks leveraging encrypted traffic.While research on anomaly d...In the IoT(Internet of Things)domain,the increased use of encryption protocols such as SSL/TLS,VPN(Virtual Private Network),and Tor has led to a rise in attacks leveraging encrypted traffic.While research on anomaly detection using AI(Artificial Intelligence)is actively progressing,the encrypted nature of the data poses challenges for labeling,resulting in data imbalance and biased feature extraction toward specific nodes.This study proposes a reconstruction error-based anomaly detection method using an autoencoder(AE)that utilizes packet metadata excluding specific node information.The proposed method omits biased packet metadata such as IP and Port and trains the detection model using only normal data,leveraging a small amount of packet metadata.This makes it well-suited for direct application in IoT environments due to its low resource consumption.In experiments comparing feature extraction methods for AE-based anomaly detection,we found that using flowbased features significantly improves accuracy,precision,F1 score,and AUC(Area Under the Receiver Operating Characteristic Curve)score compared to packet-based features.Additionally,for flow-based features,the proposed method showed a 30.17%increase in F1 score and improved false positive rates compared to Isolation Forest and OneClassSVM.Furthermore,the proposedmethod demonstrated a 32.43%higherAUCwhen using packet features and a 111.39%higher AUC when using flow features,compared to previously proposed oversampling methods.This study highlights the impact of feature extraction methods on attack detection in imbalanced,encrypted traffic environments and emphasizes that the one-class method using AE is more effective for attack detection and reducing false positives compared to traditional oversampling methods.展开更多
The management of network intelligence in Beyond 5G(B5G)networks encompasses the complex challenges of scalability,dynamicity,interoperability,privacy,and security.These are essential steps towards achieving the reali...The management of network intelligence in Beyond 5G(B5G)networks encompasses the complex challenges of scalability,dynamicity,interoperability,privacy,and security.These are essential steps towards achieving the realization of truly ubiquitous Artificial Intelligence(AI)-based analytics,empowering seamless integration across the entire Continuum(Edge,Fog,Core,Cloud).This paper introduces a Federated Network Intelligence Orchestration approach aimed at scalable and automated Federated Learning(FL)-based anomaly detection in B5Gnetworks.By leveraging a horizontal Federated learning approach based on the FedAvg aggregation algorithm,which employs a deep autoencoder model trained on non-anomalous traffic samples to recognize normal behavior,the systemorchestrates network intelligence to detect and prevent cyber-attacks.Integrated into a B5G Zero-touch Service Management(ZSM)aligned Security Framework,the proposal utilizes multi-domain and multi-tenant orchestration to automate and scale the deployment of FL-agents and AI-based anomaly detectors,enhancing reaction capabilities against cyber-attacks.The proposed FL architecture can be dynamically deployed across the B5G Continuum,utilizing a hierarchy of Network Intelligence orchestrators for real-time anomaly and security threat handling.Implementation includes FL enforcement operations for interoperability and extensibility,enabling dynamic deployment,configuration,and reconfiguration on demand.Performance validation of the proposed solution was conducted through dynamic orchestration,FL,and real-time anomaly detection processes using a practical test environment.Analysis of key performance metrics,leveraging the 5G-NIDD dataset,demonstrates the system’s capability for automatic and near real-time handling of anomalies and attacks,including real-time network monitoring and countermeasure implementation for mitigation.展开更多
Due to their simple hardware,sensor nodes in IoT are vulnerable to attack,leading to data routing blockages or malicious tampering,which significantly disrupts secure data collection.An Intelligent Active Probing and ...Due to their simple hardware,sensor nodes in IoT are vulnerable to attack,leading to data routing blockages or malicious tampering,which significantly disrupts secure data collection.An Intelligent Active Probing and Trace-back Scheme for IoT Anomaly Detection(APTAD)is proposed to collect integrated IoT data by recruiting Mobile Edge Users(MEUs).(a)An intelligent unsupervised learning approach is used to identify anomalous data from the collected data by MEUs and help to identify anomalous nodes.(b)Recruit MEUs to trace back and propose a series of trust calculation methods to determine the trust of nodes.(c)The last,the number of active detection packets and detection paths are designed,so as to accurately identify the trust of nodes in IoT at the minimum cost of the network.A large number of experimental results show that the recruiting cost and average anomaly detection time are reduced by 6.5 times and 34.33%respectively,while the accuracy of trust identification is improved by 20%.展开更多
With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve suffi...With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed.展开更多
In video surveillance,anomaly detection requires training machine learning models on spatio-temporal video sequences.However,sometimes the video-only data is not sufficient to accurately detect all the abnormal activi...In video surveillance,anomaly detection requires training machine learning models on spatio-temporal video sequences.However,sometimes the video-only data is not sufficient to accurately detect all the abnormal activities.Therefore,we propose a novel audio-visual spatiotemporal autoencoder specifically designed to detect anomalies for video surveillance by utilizing audio data along with video data.This paper presents a competitive approach to a multi-modal recurrent neural network for anomaly detection that combines separate spatial and temporal autoencoders to leverage both spatial and temporal features in audio-visual data.The proposed model is trained to produce low reconstruction error for normal data and high error for abnormal data,effectively distinguishing between the two and assigning an anomaly score.Training is conducted on normal datasets,while testing is performed on both normal and anomalous datasets.The anomaly scores from the models are combined using a late fusion technique,and a deep dense layer model is trained to produce decisive scores indicating whether a sequence is normal or anomalous.The model’s performance is evaluated on the University of California,San Diego Pedestrian 2(UCSD PED 2),University of Minnesota(UMN),and Tampere University of Technology(TUT)Rare Sound Events datasets using six evaluation metrics.It is compared with state-of-the-art methods depicting a high Area Under Curve(AUC)and a low Equal Error Rate(EER),achieving an(AUC)of 93.1 and an(EER)of 8.1 for the(UCSD)dataset,and an(AUC)of 94.9 and an(EER)of 5.9 for the UMN dataset.The evaluations demonstrate that the joint results from the combined audio-visual model outperform those from separate models,highlighting the competitive advantage of the proposed multi-modal approach.展开更多
The identification and mitigation of anomaly data,characterized by deviations from normal patterns or singularities,stand as critical endeavors in modern technological landscapes,spanning domains such as Non-Fungible ...The identification and mitigation of anomaly data,characterized by deviations from normal patterns or singularities,stand as critical endeavors in modern technological landscapes,spanning domains such as Non-Fungible Tokens(NFTs),cyber-security,and the burgeoning metaverse.This paper presents a novel proposal aimed at refining anomaly detection methodologies,with a particular focus on continuous data streams.The essence of the proposed approach lies in analyzing the rate of change within such data streams,leveraging this dynamic aspect to discern anomalies with heightened precision and efficacy.Through empirical evaluation,our method demonstrates a marked improvement over existing techniques,showcasing more nuanced and sophisticated result values.Moreover,we envision a trajectory of continuous research and development,wherein iterative refinement and supplementation will tailor our approach to various anomaly detection scenarios,ensuring adaptability and robustness in real-world applications.展开更多
In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)da...In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)datasets?This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things(IoT)devices,which can significantly improve the reliability and safety of these systems.In this paper,we propose a hybrid autoencoder model,called ConvBiLSTMAE,which combines convolutional neural network(CNN)and bidirectional long short-term memory(BiLSTM)to more effectively train complex temporal data patterns in anomaly detection.On the hardware-in-the-loopbased extended industrial control system dataset,the ConvBiLSTM-AE model demonstrated remarkable anomaly detection performance,achieving F1 scores of 0.78 and 0.41 for the first and second datasets,respectively.The results suggest that hybrid autoencoder models are not only viable,but potentially superior alternatives for unsupervised anomaly detection in complex industrial systems,offering a promising approach to improving their reliability and safety.展开更多
Mural paintings hold significant historical information and possess substantial artistic and cultural value.However,murals are inevitably damaged by natural environmental factors such as wind and sunlight,as well as b...Mural paintings hold significant historical information and possess substantial artistic and cultural value.However,murals are inevitably damaged by natural environmental factors such as wind and sunlight,as well as by human activities.For this reason,the study of damaged areas is crucial for mural restoration.These damaged regions differ significantly from undamaged areas and can be considered abnormal targets.Traditional manual visual processing lacks strong characterization capabilities and is prone to omissions and false detections.Hyperspectral imaging can reflect the material properties more effectively than visual characterization methods.Thus,this study employs hyperspectral imaging to obtain mural information and proposes a mural anomaly detection algorithm based on a hyperspectral multi-scale residual attention network(HM-MRANet).The innovations of this paper include:(1)Constructing mural painting hyperspectral datasets.(2)Proposing a multi-scale residual spectral-spatial feature extraction module based on a 3D CNN(Convolutional Neural Networks)network to better capture multiscale information and improve performance on small-sample hyperspectral datasets.(3)Proposing the Enhanced Residual Attention Module(ERAM)to address the feature redundancy problem,enhance the network’s feature discrimination ability,and further improve abnormal area detection accuracy.The experimental results show that the AUC(Area Under Curve),Specificity,and Accuracy of this paper’s algorithm reach 85.42%,88.84%,and 87.65%,respectively,on this dataset.These results represent improvements of 3.07%,1.11%and 2.68%compared to the SSRN algorithm,demonstrating the effectiveness of this method for mural anomaly detection.展开更多
基金This study was funded by the Chongqing Normal University Startup Foundation for PhD(22XLB021)was also supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2023B40).
文摘Internet of Things(IoT)is vulnerable to data-tampering(DT)attacks.Due to resource limitations,many anomaly detection systems(ADSs)for IoT have high false positive rates when detecting DT attacks.This leads to the misreporting of normal data,which will impact the normal operation of IoT.To mitigate the impact caused by the high false positive rate of ADS,this paper proposes an ADS management scheme for clustered IoT.First,we model the data transmission and anomaly detection in clustered IoT.Then,the operation strategy of the clustered IoT is formulated as the running probabilities of all ADSs deployed on every IoT device.In the presence of a high false positive rate in ADSs,to deal with the trade-off between the security and availability of data,we develop a linear programming model referred to as a security trade-off(ST)model.Next,we develop an analysis framework for the ST model,and solve the ST model on an IoT simulation platform.Last,we reveal the effect of some factors on the maximum combined detection rate through theoretical analysis.Simulations show that the ADS management scheme can mitigate the data unavailability loss caused by the high false positive rates in ADS.
文摘While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(MOTIE)(20224B10100140,50%)the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety(KoFONS)using the financial resource granted by the Nuclear Safety and Security Commission(NSSC)of the Republic of Korea(No.2106058,40%)the Gachon University Research Fund of 2023(GCU-202110280001,10%)。
文摘As energy-related problems continue to emerge,the need for stable energy supplies and issues regarding both environmental and safety require urgent consideration.Renewable energy is becoming increasingly important,with solar power accounting for the most significant proportion of renewables.As the scale and importance of solar energy have increased,cyber threats against solar power plants have also increased.So,we need an anomaly detection system that effectively detects cyber threats to solar power plants.However,as mentioned earlier,the existing solar power plant anomaly detection system monitors only operating information such as power generation,making it difficult to detect cyberattacks.To address this issue,in this paper,we propose a network packet-based anomaly detection system for the Programmable Logic Controller(PLC)of the inverter,an essential system of photovoltaic plants,to detect cyber threats.Cyberattacks and vulnerabilities in solar power plants were analyzed to identify cyber threats in solar power plants.The analysis shows that Denial of Service(DoS)and Manin-the-Middle(MitM)attacks are primarily carried out on inverters,aiming to disrupt solar plant operations.To develop an anomaly detection system,we performed preprocessing,such as correlation analysis and normalization for PLC network packets data and trained various machine learning-based classification models on such data.The Random Forest model showed the best performance with an accuracy of 97.36%.The proposed system can detect anomalies based on network packets,identify potential cyber threats that cannot be identified by the anomaly detection system currently in use in solar power plants,and enhance the security of solar plants.
基金Supported by the National Natural Science Foun-dation of China (60573101) the Natural Science Foundation ofShaanxi Province (2005f43)
文摘In this paper, we present an adaptive anomaly detection framework that isapplicable to network-based intrusion detection. Our framework employs fuzzy cluster algorithm to detect anomalies in an online, adaptive fashion without a priori knowledge of the underlying data. We evaluate our method by performing experiments over network records from the KDD CUP99 data set.
基金Supported by the Natural Science Foundation ofHubei Province (2005ABA256)
文摘This article presents an anomaly detection system based on principal component analysis (PCA) and support vector machine (SVM). The system first creates a profile defining a normal behavior by frequency-based scheme, and then compares the similarity of a current behavior with the created profile to decide whether the input instance is norreal or anomaly. In order to avoid overfitting and reduce the computational burden, normal behavior principal features are extracted by the PCA method. SVM is used to distinguish normal or anomaly for user behavior after training procedure has been completed by learning. In the experiments for performance evaluation the system achieved a correct detection rate equal to 92.2% and a false detection rate equal to 2.8%.
文摘Industrial Control Systems (ICS) or SCADA networks are increasingly targeted by cyber-attacks as their architectures shifted from proprietary hardware, software and protocols to standard and open sources ones. Furthermore, these systems which used to be isolated are now interconnected to corporate networks and to the Internet. Among the countermeasures to mitigate the threats, anomaly detection systems play an important role as they can help detect even unknown attacks. Deep learning which has gained a great attention in the last few years due to excellent results in image, video and natural language processing is being used for anomaly detection in information security, particularly in SCADA networks. The salient features of the data from SCADA networks are learnt as hierarchical representation using deep architectures, and those learnt features are used to classify the data into normal or anomalous ones. This article is a review of various architectures such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Stacked Autoencoder (SAE), Long Short Term Memory (LSTM), or a combination of those architectures, for anomaly detection purpose in SCADA networks.
基金the Science and Technology Project of China Southern Power Grid Company,Ltd.(031200KK52200003)the National Natural Science Foundation of China(Nos.62371253,52278119).
文摘In this paper, we propose a novel anomaly detection method for data centers based on a combination of graphstructure and abnormal attention mechanism. The method leverages the sensor monitoring data from targetpower substations to construct multidimensional time series. These time series are subsequently transformed intograph structures, and corresponding adjacency matrices are obtained. By incorporating the adjacency matricesand additional weights associated with the graph structure, an aggregation matrix is derived. The aggregationmatrix is then fed into a pre-trained graph convolutional neural network (GCN) to extract graph structure features.Moreover, both themultidimensional time series segments and the graph structure features are inputted into a pretrainedanomaly detectionmodel, resulting in corresponding anomaly detection results that help identify abnormaldata. The anomaly detection model consists of a multi-level encoder-decoder module, wherein each level includesa transformer encoder and decoder based on correlation differences. The attention module in the encoding layeradopts an abnormal attention module with a dual-branch structure. Experimental results demonstrate that ourproposed method significantly improves the accuracy and stability of anomaly detection.
基金supported in part by the National Natural Science Foundation of China(Grants 62376172,62006163,62376043)in part by the National Postdoctoral Program for Innovative Talents(Grant BX20200226)in part by Sichuan Science and Technology Planning Project(Grants 2022YFSY0047,2022YFQ0014,2023ZYD0143,2022YFH0021,2023YFQ0020,24QYCX0354,24NSFTD0025).
文摘Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly detection.However,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series.In this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as CAFFN.Specifically,a series and feature mixing block is introduced to learn representations in 1D space.Additionally,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature extraction.Finally,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly detection.Experimental results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection.
基金supported by the National Natural Science Foundation of China(61170147)Scientific Research Project of Zhejiang Provincial Department of Education in China(Y202146796)+2 种基金Natural Science Foundation of Zhejiang Province in China(LTY22F020003)Wenzhou Major Scientific and Technological Innovation Project of China(ZG2021029)Scientific and Technological Projects of Henan Province in China(202102210172).
文摘Integrating Tiny Machine Learning(TinyML)with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level.Constrained devices efficiently implement a Binary Neural Network(BNN)for road feature extraction,utilizing quantization and compression through a pruning strategy.The modifications resulted in a 28-fold decrease in memory usage and a 25%enhancement in inference speed while only experiencing a 2.5%decrease in accuracy.It showcases its superiority over conventional detection algorithms in different road image scenarios.Although constrained by computer resources and training datasets,our results indicate opportunities for future research,demonstrating that quantization and focused optimization can significantly improve machine learning models’accuracy and operational efficiency.ARM Cortex-M0 gives practical feasibility and substantial benefits while deploying our optimized BNN model on this low-power device:Advanced machine learning in edge computing.The analysis work delves into the educational significance of TinyML and its essential function in analyzing road networks using remote sensing,suggesting ways to improve smart city frameworks in road network assessment,traffic management,and autonomous vehicle navigation systems by emphasizing the importance of new technologies for maintaining and safeguarding road networks.
基金supported by the Research and Development Center of Transport Industry of New Generation of Artificial Intelligence Technology(Grant No.202202H)the National Key R&D Program of China(Grant No.2019YFB1600702)the National Natural Science Foundation of China(Grant Nos.51978600&51808336).
文摘Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance.
文摘Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL)models find helpful in the detection and classification of anomalies.This article designs an oversampling with an optimal deep learning-based streaming data classification(OS-ODLSDC)model.The aim of the OSODLSDC model is to recognize and classify the presence of anomalies in the streaming data.The proposed OS-ODLSDC model initially undergoes preprocessing step.Since streaming data is unbalanced,support vector machine(SVM)-Synthetic Minority Over-sampling Technique(SVM-SMOTE)is applied for oversampling process.Besides,the OS-ODLSDC model employs bidirectional long short-term memory(Bi LSTM)for AD and classification.Finally,the root means square propagation(RMSProp)optimizer is applied for optimal hyperparameter tuning of the Bi LSTM model.For ensuring the promising performance of the OS-ODLSDC model,a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018,KDD-Cup 1999,and NSL-KDD datasets.
基金Supported by Sichuan Provincial Key Research and Development Program of China(Grant No.2023YFG0351)National Natural Science Foundation of China(Grant No.61833002).
文摘Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance on anomaly detection to preempt equipment malfunctions faces the challenge of sudden anomaly discernment.To address this challenge,this paper proposes a dual-task learning approach for bearing anomaly detection and state evaluation of safe regions.The proposed method transforms the execution of the two tasks into an optimization issue of the hypersphere center.By leveraging the monotonicity and distinguishability pertinent to the tasks as the foundation for optimization,it reconstructs the SVDD model to ensure equilibrium in the model’s performance across the two tasks.Subsequent experiments verify the proposed method’s effectiveness,which is interpreted from the perspectives of parameter adjustment and enveloping trade-offs.In the meantime,experimental results also show two deficiencies in anomaly detection accuracy and state evaluation metrics.Their theoretical analysis inspires us to focus on feature extraction and data collection to achieve improvements.The proposed method lays the foundation for realizing predictive maintenance in a healthy stage by improving condition awareness in safe regions.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2023-00235509,Development of Security Monitoring Technology Based Network Behavior against Encrypted Cyber Threats in ICT Convergence Environment).
文摘In the IoT(Internet of Things)domain,the increased use of encryption protocols such as SSL/TLS,VPN(Virtual Private Network),and Tor has led to a rise in attacks leveraging encrypted traffic.While research on anomaly detection using AI(Artificial Intelligence)is actively progressing,the encrypted nature of the data poses challenges for labeling,resulting in data imbalance and biased feature extraction toward specific nodes.This study proposes a reconstruction error-based anomaly detection method using an autoencoder(AE)that utilizes packet metadata excluding specific node information.The proposed method omits biased packet metadata such as IP and Port and trains the detection model using only normal data,leveraging a small amount of packet metadata.This makes it well-suited for direct application in IoT environments due to its low resource consumption.In experiments comparing feature extraction methods for AE-based anomaly detection,we found that using flowbased features significantly improves accuracy,precision,F1 score,and AUC(Area Under the Receiver Operating Characteristic Curve)score compared to packet-based features.Additionally,for flow-based features,the proposed method showed a 30.17%increase in F1 score and improved false positive rates compared to Isolation Forest and OneClassSVM.Furthermore,the proposedmethod demonstrated a 32.43%higherAUCwhen using packet features and a 111.39%higher AUC when using flow features,compared to previously proposed oversampling methods.This study highlights the impact of feature extraction methods on attack detection in imbalanced,encrypted traffic environments and emphasizes that the one-class method using AE is more effective for attack detection and reducing false positives compared to traditional oversampling methods.
基金supported by the grants:PID2020-112675RBC44(ONOFRE-3),funded by MCIN/AEI/10.13039/501100011033Horizon Project RIGOUROUS funded by European Commission,GA:101095933TSI-063000-2021-{36,44,45,62}(Cerberus)funded by MAETD’s 2021 UNICO I+D Program.
文摘The management of network intelligence in Beyond 5G(B5G)networks encompasses the complex challenges of scalability,dynamicity,interoperability,privacy,and security.These are essential steps towards achieving the realization of truly ubiquitous Artificial Intelligence(AI)-based analytics,empowering seamless integration across the entire Continuum(Edge,Fog,Core,Cloud).This paper introduces a Federated Network Intelligence Orchestration approach aimed at scalable and automated Federated Learning(FL)-based anomaly detection in B5Gnetworks.By leveraging a horizontal Federated learning approach based on the FedAvg aggregation algorithm,which employs a deep autoencoder model trained on non-anomalous traffic samples to recognize normal behavior,the systemorchestrates network intelligence to detect and prevent cyber-attacks.Integrated into a B5G Zero-touch Service Management(ZSM)aligned Security Framework,the proposal utilizes multi-domain and multi-tenant orchestration to automate and scale the deployment of FL-agents and AI-based anomaly detectors,enhancing reaction capabilities against cyber-attacks.The proposed FL architecture can be dynamically deployed across the B5G Continuum,utilizing a hierarchy of Network Intelligence orchestrators for real-time anomaly and security threat handling.Implementation includes FL enforcement operations for interoperability and extensibility,enabling dynamic deployment,configuration,and reconfiguration on demand.Performance validation of the proposed solution was conducted through dynamic orchestration,FL,and real-time anomaly detection processes using a practical test environment.Analysis of key performance metrics,leveraging the 5G-NIDD dataset,demonstrates the system’s capability for automatic and near real-time handling of anomalies and attacks,including real-time network monitoring and countermeasure implementation for mitigation.
基金supported by the National Natural Science Foundation of China(62072475)the Fundamental Research Funds for the Central Universities of Central South University(CX20230356)。
文摘Due to their simple hardware,sensor nodes in IoT are vulnerable to attack,leading to data routing blockages or malicious tampering,which significantly disrupts secure data collection.An Intelligent Active Probing and Trace-back Scheme for IoT Anomaly Detection(APTAD)is proposed to collect integrated IoT data by recruiting Mobile Edge Users(MEUs).(a)An intelligent unsupervised learning approach is used to identify anomalous data from the collected data by MEUs and help to identify anomalous nodes.(b)Recruit MEUs to trace back and propose a series of trust calculation methods to determine the trust of nodes.(c)The last,the number of active detection packets and detection paths are designed,so as to accurately identify the trust of nodes in IoT at the minimum cost of the network.A large number of experimental results show that the recruiting cost and average anomaly detection time are reduced by 6.5 times and 34.33%respectively,while the accuracy of trust identification is improved by 20%.
文摘With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-RG23148).
文摘In video surveillance,anomaly detection requires training machine learning models on spatio-temporal video sequences.However,sometimes the video-only data is not sufficient to accurately detect all the abnormal activities.Therefore,we propose a novel audio-visual spatiotemporal autoencoder specifically designed to detect anomalies for video surveillance by utilizing audio data along with video data.This paper presents a competitive approach to a multi-modal recurrent neural network for anomaly detection that combines separate spatial and temporal autoencoders to leverage both spatial and temporal features in audio-visual data.The proposed model is trained to produce low reconstruction error for normal data and high error for abnormal data,effectively distinguishing between the two and assigning an anomaly score.Training is conducted on normal datasets,while testing is performed on both normal and anomalous datasets.The anomaly scores from the models are combined using a late fusion technique,and a deep dense layer model is trained to produce decisive scores indicating whether a sequence is normal or anomalous.The model’s performance is evaluated on the University of California,San Diego Pedestrian 2(UCSD PED 2),University of Minnesota(UMN),and Tampere University of Technology(TUT)Rare Sound Events datasets using six evaluation metrics.It is compared with state-of-the-art methods depicting a high Area Under Curve(AUC)and a low Equal Error Rate(EER),achieving an(AUC)of 93.1 and an(EER)of 8.1 for the(UCSD)dataset,and an(AUC)of 94.9 and an(EER)of 5.9 for the UMN dataset.The evaluations demonstrate that the joint results from the combined audio-visual model outperform those from separate models,highlighting the competitive advantage of the proposed multi-modal approach.
基金supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea(NRF-2019S1A5B5A02041334).
文摘The identification and mitigation of anomaly data,characterized by deviations from normal patterns or singularities,stand as critical endeavors in modern technological landscapes,spanning domains such as Non-Fungible Tokens(NFTs),cyber-security,and the burgeoning metaverse.This paper presents a novel proposal aimed at refining anomaly detection methodologies,with a particular focus on continuous data streams.The essence of the proposed approach lies in analyzing the rate of change within such data streams,leveraging this dynamic aspect to discern anomalies with heightened precision and efficacy.Through empirical evaluation,our method demonstrates a marked improvement over existing techniques,showcasing more nuanced and sophisticated result values.Moreover,we envision a trajectory of continuous research and development,wherein iterative refinement and supplementation will tailor our approach to various anomaly detection scenarios,ensuring adaptability and robustness in real-world applications.
基金supported by the Culture,Sports,and Tourism R&D Program through the Korea Creative Content Agency grant funded by the Ministry of Culture,Sports,and Tourism in 2024(Project Name:Development of Distribution and Management Platform Technology and Human Resource Development for Blockchain-Based SW Copyright Protection,Project Number:RS-2023-00228867,Contribution Rate:100%)and also supported by the Soonchunhyang University Research Fund.
文摘In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)datasets?This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things(IoT)devices,which can significantly improve the reliability and safety of these systems.In this paper,we propose a hybrid autoencoder model,called ConvBiLSTMAE,which combines convolutional neural network(CNN)and bidirectional long short-term memory(BiLSTM)to more effectively train complex temporal data patterns in anomaly detection.On the hardware-in-the-loopbased extended industrial control system dataset,the ConvBiLSTM-AE model demonstrated remarkable anomaly detection performance,achieving F1 scores of 0.78 and 0.41 for the first and second datasets,respectively.The results suggest that hybrid autoencoder models are not only viable,but potentially superior alternatives for unsupervised anomaly detection in complex industrial systems,offering a promising approach to improving their reliability and safety.
基金supported by Key Research and Development Plan of Ministry of Science and Technology(No.2023YFF0906200)Shaanxi Key Research and Development Plan(No.2018ZDXM-SF-093)+3 种基金Shaanxi Province Key Industrial Innovation Chain(Nos.S2022-YF-ZDCXL-ZDLGY-0093 and 2023-ZDLGY-45)Light of West China(No.XAB2022YN10)The China Postdoctoral Science Foundation(No.2023M740760)Shaanxi Key Research and Development Plan(No.2024SF-YBXM-678).
文摘Mural paintings hold significant historical information and possess substantial artistic and cultural value.However,murals are inevitably damaged by natural environmental factors such as wind and sunlight,as well as by human activities.For this reason,the study of damaged areas is crucial for mural restoration.These damaged regions differ significantly from undamaged areas and can be considered abnormal targets.Traditional manual visual processing lacks strong characterization capabilities and is prone to omissions and false detections.Hyperspectral imaging can reflect the material properties more effectively than visual characterization methods.Thus,this study employs hyperspectral imaging to obtain mural information and proposes a mural anomaly detection algorithm based on a hyperspectral multi-scale residual attention network(HM-MRANet).The innovations of this paper include:(1)Constructing mural painting hyperspectral datasets.(2)Proposing a multi-scale residual spectral-spatial feature extraction module based on a 3D CNN(Convolutional Neural Networks)network to better capture multiscale information and improve performance on small-sample hyperspectral datasets.(3)Proposing the Enhanced Residual Attention Module(ERAM)to address the feature redundancy problem,enhance the network’s feature discrimination ability,and further improve abnormal area detection accuracy.The experimental results show that the AUC(Area Under Curve),Specificity,and Accuracy of this paper’s algorithm reach 85.42%,88.84%,and 87.65%,respectively,on this dataset.These results represent improvements of 3.07%,1.11%and 2.68%compared to the SSRN algorithm,demonstrating the effectiveness of this method for mural anomaly detection.