The greatest difficulties in recognizing geochemical hydrocarbon anomalies are: (1) how to objectively and accurately separate anomalies from background; (2) how to distinguish hydrocarbon pool related apical anomal...The greatest difficulties in recognizing geochemical hydrocarbon anomalies are: (1) how to objectively and accurately separate anomalies from background; (2) how to distinguish hydrocarbon pool related apical anomalies from lateral anomalies controlled by faults; and (3) how to eliminate interferences. These uncertainties are serious obstacles for the wide acceptance and use of geochemical techniques in hydrocarbon exploration. In this paper, the features of hydrocarbon anomalies were analyzed based on the micro migration mechanisms. In most cases, there are two anomalous populations or point groups, which are produced by two distinct mechanisms: (1) a population that directly reflects oil and gas fields, and (2) one that is related to structures such as faults. Statistical studies show that background anomalous populations and the boundaries between them can be described by the population means, prior probabilities, which are the proportions of population sizes, and covariance matrices, when background and anomalous populations have normal distributions. When this normality condition is met, a series of formulas can be derived. The method is designed on the basis of these allows: (1) univariate anomaly recognition, (2) elimination of interferences, (3) multivariate anomaly recognition, and (4) multivariate anomaly combination which depicts a more representative picture of morphology of the anomalous target than individual anomalies. The univariate and multivariate anomaly recognition can not only separate anomalies from background objectively, but also simultaneously distinguish the two types of anomalies objectively. This method was applied to the hydrocarbon data in Yangshuiwu region, Hebei Province. The interferences from regional variation of background were eliminated, and the interpretation uncertainty was reduced greatly as the anomalous populations were separated. The method was also used in Daxing region within the confines of Beijing City, and Aershan and Jiergalangtu regions in Inner Mongolia.展开更多
1 Introduction The huize Zn-Pb ore district in Yunnan province is locatedinthecentralsouthernofthe Sichuan—Yunnan—GuizhouPb-ZnPoly-metallic Mineralization Area in the southwestern margin of the Yangtze Block,and is ...1 Introduction The huize Zn-Pb ore district in Yunnan province is locatedinthecentralsouthernofthe Sichuan—Yunnan—GuizhouPb-ZnPoly-metallic Mineralization Area in the southwestern margin of the Yangtze Block,and is strictly controlled by fault structures.It has developed to one of the famous production bases of lead&zinc and germanium in China.展开更多
Interference in the data of geochemical hydrocarbon exploration is a large obstacle for anomaly recognition. The multiresolution analysis of wavelet analysis can extract the information at different scales so as to pr...Interference in the data of geochemical hydrocarbon exploration is a large obstacle for anomaly recognition. The multiresolution analysis of wavelet analysis can extract the information at different scales so as to provide a powerful tool for information analysis and processing. Based on the analysis of the geometric nature of hydrocarbon anomalies and background, Mallat wavelet and symmetric border treatment are selected and data pre-processing (logarithm-normalization) is established. This approach provide good results in Shandong and Inner Mongolia, China. It is demonstrated that this approach overcome the disadvantage of backgound variation in the window (interference in window), used in moving average, frame filtering and spatial and scaling modeling methods.展开更多
A recently developed method, on the bases of “multifractal spectrum” filters for mineral exploration, is introduced in this paper. The “multifractal spectrum” filters, a group of irregularly shaped filters that a...A recently developed method, on the bases of “multifractal spectrum” filters for mineral exploration, is introduced in this paper. The “multifractal spectrum” filters, a group of irregularly shaped filters that are constructed on each processed datum, can be used to separate various types of geochemical and geophysical anomalies. The basic model, with an emphasis on the GIS based implementation and the application to the geochemical and geophysical data processing for mineral exploration in southern Nova Scotia, Canada, indicates its advantage in the separation of multiple anomalies from the background.展开更多
When water-ice grows into salt solutions ion species are excluded by the ice differentially due to non-identical solubility in the ice lattice. This causes an electrical potential across the interface during the ice g...When water-ice grows into salt solutions ion species are excluded by the ice differentially due to non-identical solubility in the ice lattice. This causes an electrical potential across the interface during the ice growth process, initially named the Workman Reynolds Freezing Potential, and may be one of the causes for lightning. However, by measuring the voltage between the ice and water, we have found that when tetrahydrofuran hydrate crystals are grown into salt solutions all ion species are excluded equally and the potential does not manifest. When considered together, this marked difference in ion exclusion scenarios may have ramifications for hydrate exploration because of the chlorine anomaly, which is often used as an indicator of the presence of hydrate reserves.展开更多
In this paper, the Dongchuan type copper deposits are taken as an example to illustrate the application of GIS to the geo anomaly based delineation of mineral resources. The following eight steps are listed in this pa...In this paper, the Dongchuan type copper deposits are taken as an example to illustrate the application of GIS to the geo anomaly based delineation of mineral resources. The following eight steps are listed in this paper to delineate the permissive and preferable ore finding areas: (1) the analysis of favorable prospecting index using linear and planar geo anomalies; (2) the analysis of favorable prospecting index using combined anomalies; (3) the construction of a GIS based spatial model for mineral prognosis; (4) the delineation of the permissive ore finding area; (5) the determination of the synthetic anomalies and numerical range for the prediction of the favorable prospecting areas, and the determination of the weights of these two variables; (6) the superimposition of all the selected anomalies and the construction of the superimposition map; (7) the determination of unifying criterion of favorable prospective areas at various levels, and (8) the delineation of favorable prospective areas. Finally, this paper offers a detailed discussion of the results in the forecasting of Dongchuan type copper deposits.展开更多
In this paper, I introduce what are called weak gravity and magnetic anomalies and propose standards for estimating their reliability. I also introduce new techniques for processing this kind of weak anomaly. These te...In this paper, I introduce what are called weak gravity and magnetic anomalies and propose standards for estimating their reliability. I also introduce new techniques for processing this kind of weak anomaly. These techniques consist of interference elimination and weak signal extraction. Practical applications have proved their effectiveness, Weak gravity and magnetic anomalies will get more attention with the development of targeted exploration.展开更多
One of the essential tasks accelerate the decision-making process in mineral exploration projects is ranking anomalous areas.In this study,we used fourteen geologic maps(at scale 1:100,000)in areas where systematic ge...One of the essential tasks accelerate the decision-making process in mineral exploration projects is ranking anomalous areas.In this study,we used fourteen geologic maps(at scale 1:100,000)in areas where systematic geochemical explorations were conducted in the Fariman-Kashmar axis in northeast Iran to conduct the anomaly ranking.On all these maps,samples were consistently prepared to be analyzed through statistical and geostatistical methods.At first,anomaly separation was carried out by fractal methods that resulted in the detection of 308 anomalous samples in 128 areas.These samples were classified into three groups of first,second,and thirdorder anomalies,whose number of anomalous samples were calculated based on this ranking technique.Three factors,including the average concentration of each anomaly,its surface area,and the number of its samples,were used to rank the areas.According to this technique,the maximum anomaly score obtained was 172 for the Taknar area,and the minimum score was 3 for several areas.To validate the ranking results,some exploration operations were carried out in some of these anomalous areas in which mining operations started later.Several significant gold anomalous areas were introduced,which is considered an important result of this study.展开更多
A very fast simulated annealing(VFSA) global optimization is used to interpret residual gravity anomaly.Since,VFSA optimization yields a large number of best-fitted models in a vast model space;the nature of uncerta...A very fast simulated annealing(VFSA) global optimization is used to interpret residual gravity anomaly.Since,VFSA optimization yields a large number of best-fitted models in a vast model space;the nature of uncertainty in the interpretation is also examined simultaneously in the present study.The results of VFSA optimization reveal that various parameters show a number of equivalent solutions when shape of the target body is not known and shape factor 'q' is also optimized together with other model parameters.The study reveals that amplitude coefficient k is strongly dependent on shape factor.This shows that there is a multi-model type uncertainty between these two model parameters derived from the analysis of cross-plots.However,the appraised values of shape factor from various VFSA runs clearly indicate whether the subsurface structure is sphere,horizontal or vertical cylinder type structure.Accordingly,the exact shape factor(1.5 for sphere,1.0 for horizontal cylinder and 0.5 for vertical cylinder)is fixed and optimization process is repeated.After fixing the shape factor,analysis of uncertainty and cross-plots shows a well-defined uni-model characteristic.The mean model computed after fixing the shape factor gives the utmost consistent results.Inversion of noise-free and noisy synthetic data as well as field data demonstrates the efficacy of the approach.展开更多
深海热液流体与周围海水之间存在明显的物理和化学差异,通过检测海水的位温浊度异常是探测深海热液活动的重要手段之一。本文采用"海底火山带项目(Submarine Ring of Fire 2002)"拖曳式温盐深测量仪数据资料,研究了东北太平洋...深海热液流体与周围海水之间存在明显的物理和化学差异,通过检测海水的位温浊度异常是探测深海热液活动的重要手段之一。本文采用"海底火山带项目(Submarine Ring of Fire 2002)"拖曳式温盐深测量仪数据资料,研究了东北太平洋Explorer Ridge热液场的水文特征及物质能量通量的释放。结果表明Explorer Ridge热液场热液羽状流中性浮力层所在深度范围约为1 600~1 900m,距离海底的高度约为200m,最大位温、盐度和浊度异常分别为0.04℃、0.004和0.18NTU;中性浮力层热液羽状流帽呈椭圆结构,其长轴与洋中脊线重合,羽状流帽总面积约为27km^2;热液羽状流在中性层范围内存在明显的分层现象,通过经验公式计算得到Explorer Ridge热液场观测范围内热液喷口的总的浮力通量为6.19×10^(-2)m^4/s^3,平均值为2.063×10^(-2)m^4/s^3;总的体积通量为9.884×10^(-2)m^3/s,平均值为3.295×10^(-2)m^3/s;总的热通量为194.9MW,平均值为64.967MW。展开更多
Most known mineral deposits were discovered by accident using expensive,time-consuming,and knowledgebased methods such as stream sediment geochemical data,diamond drilling,reconnaissance geochemical and geophysical su...Most known mineral deposits were discovered by accident using expensive,time-consuming,and knowledgebased methods such as stream sediment geochemical data,diamond drilling,reconnaissance geochemical and geophysical surveys,and/or remote sensing.Recent years have seen a decrease in the number of newly discovered mineral deposits and a rise in demand for critical raw materials,prompting exploration geologists to seek more efficient and inventive ways for processing various data types at different phases of mineral exploration.Remote sensing is one of the most sought-after tools for early-phase mineral prospecting because of its broad coverage and low cost.Remote sensing images from satellites are publicly available and can be utilised for lithological mapping and mineral exploitation.In this study,we extend an artificial intelligence-based,unsupervised anomaly detection method to identify iron deposit occurrence using Landsat-8 Operational Land Imager(OLI)satellite imagery and machine learning.The novelty in our method includes:(1)knowledge-guided and unsupervised anomaly detection that does not assume any specific anomaly signatures;(2)detection of anomalies occurs only in the variable domain;and(3)a choice of a range of machine learning algorithms to balance between explain-ability and performance.Our new unsupervised method detects anomalies through three successive stages,namely(a)stage Ⅰ–acquisition of satellite imagery,data processing and selection of bands,(b)stage Ⅱ–predictive modelling and anomaly detection,and(c)stage Ⅲ–construction of anomaly maps and analysis.In this study,the new method was tested over the Assen iron deposit in the Transvaal Supergroup(South Africa).It detected both the known areas of the Assen iron deposit and additional deposit occurrence features around the Assen iron mine that were not known.To summarise the anomalies in the area,principal component analysis was used on the reconstruction errors across all modelled bands.Our method enhanced the Assen deposit as an anomaly and attenuated the background,including anthropogenic structural anomalies,which resulted in substantially improved visual contrast and delineation of the iron deposit relative to the background.The results demonstrate the robustness of the proposed unsupervised anomaly detection method,and it could be useful for the delineation of mineral exploration targets.In particular,the method will be useful in areas where no data labels exist regarding the existence or specific spectral signatures of anomalies,such as mineral deposits under greenfield exploration.展开更多
The existence of thermal storage will correspondingly increase the temperature of surrounding strata and promote the continuous expansion,volatilization,upward migration,and loss of gas in the strata.As a result,a low...The existence of thermal storage will correspondingly increase the temperature of surrounding strata and promote the continuous expansion,volatilization,upward migration,and loss of gas in the strata.As a result,a low-concentration gas field will be formed in the strata above geothermal reservoirs.Geothermal reservoirs could in turn heat formation water and increase the solubility of soluble inorganic salts in the surrounding rocks and the total dissolved solids(TDS)content in the formation water.Since water can strongly wet and permeate strata,the dissolved inorganic salts migrate into upper strata along with water,giving rise to the formation of a high-concentration inorganic salt field in the strata above geothermal reservoirs.A higher geothermal reservoir temperature corresponds to more significant characteristics mentioned above.Therefore,a medium-to-high temperature geothermal system has a surface geochemical anomaly pattern of high inorganic salt concentrations and low gas concentrations(also referred to as the high-salt and low-gas pattern).This pattern is applied to the surface geochemical exploration of the two geothermal fields in Guangdong Province,i.e.,the Huangshadong geothermal field in Huizhou City and the Xinzhou geothermal field in Yangjiang City,revealing low-concentration gas fields above both.The application results also show that the exposed thermal spring water in both geological fields has higher concentration of dissolved inorganic salt than the surface water and nearby seawater,forming high-amplitude anomalies on the surface above geothermal reservoirs.These characteristics,as well as the measured temperature at known geothermal wells,verify the validity of the high-salt and low-gas pattern of medium-to-high temperature geothermal systems proposed in this study.Moreover,the high-salt and low-gas pattern proposed predicts three favorable medium-to-high temperature geothermal zones in the surface geochemical exploration of the Shiba Basin near the Huangshadong geothermal field.展开更多
文摘The greatest difficulties in recognizing geochemical hydrocarbon anomalies are: (1) how to objectively and accurately separate anomalies from background; (2) how to distinguish hydrocarbon pool related apical anomalies from lateral anomalies controlled by faults; and (3) how to eliminate interferences. These uncertainties are serious obstacles for the wide acceptance and use of geochemical techniques in hydrocarbon exploration. In this paper, the features of hydrocarbon anomalies were analyzed based on the micro migration mechanisms. In most cases, there are two anomalous populations or point groups, which are produced by two distinct mechanisms: (1) a population that directly reflects oil and gas fields, and (2) one that is related to structures such as faults. Statistical studies show that background anomalous populations and the boundaries between them can be described by the population means, prior probabilities, which are the proportions of population sizes, and covariance matrices, when background and anomalous populations have normal distributions. When this normality condition is met, a series of formulas can be derived. The method is designed on the basis of these allows: (1) univariate anomaly recognition, (2) elimination of interferences, (3) multivariate anomaly recognition, and (4) multivariate anomaly combination which depicts a more representative picture of morphology of the anomalous target than individual anomalies. The univariate and multivariate anomaly recognition can not only separate anomalies from background objectively, but also simultaneously distinguish the two types of anomalies objectively. This method was applied to the hydrocarbon data in Yangshuiwu region, Hebei Province. The interferences from regional variation of background were eliminated, and the interpretation uncertainty was reduced greatly as the anomalous populations were separated. The method was also used in Daxing region within the confines of Beijing City, and Aershan and Jiergalangtu regions in Inner Mongolia.
基金supported by the Funds for the program of the National Natural Science Foundation (Noes. 41572060, U1133602)Projects of YM Lab (2011)Innovation Team of Yunnan province and KMUST (2008,2012)
文摘1 Introduction The huize Zn-Pb ore district in Yunnan province is locatedinthecentralsouthernofthe Sichuan—Yunnan—GuizhouPb-ZnPoly-metallic Mineralization Area in the southwestern margin of the Yangtze Block,and is strictly controlled by fault structures.It has developed to one of the famous production bases of lead&zinc and germanium in China.
文摘Interference in the data of geochemical hydrocarbon exploration is a large obstacle for anomaly recognition. The multiresolution analysis of wavelet analysis can extract the information at different scales so as to provide a powerful tool for information analysis and processing. Based on the analysis of the geometric nature of hydrocarbon anomalies and background, Mallat wavelet and symmetric border treatment are selected and data pre-processing (logarithm-normalization) is established. This approach provide good results in Shandong and Inner Mongolia, China. It is demonstrated that this approach overcome the disadvantage of backgound variation in the window (interference in window), used in moving average, frame filtering and spatial and scaling modeling methods.
文摘A recently developed method, on the bases of “multifractal spectrum” filters for mineral exploration, is introduced in this paper. The “multifractal spectrum” filters, a group of irregularly shaped filters that are constructed on each processed datum, can be used to separate various types of geochemical and geophysical anomalies. The basic model, with an emphasis on the GIS based implementation and the application to the geochemical and geophysical data processing for mineral exploration in southern Nova Scotia, Canada, indicates its advantage in the separation of multiple anomalies from the background.
文摘When water-ice grows into salt solutions ion species are excluded by the ice differentially due to non-identical solubility in the ice lattice. This causes an electrical potential across the interface during the ice growth process, initially named the Workman Reynolds Freezing Potential, and may be one of the causes for lightning. However, by measuring the voltage between the ice and water, we have found that when tetrahydrofuran hydrate crystals are grown into salt solutions all ion species are excluded equally and the potential does not manifest. When considered together, this marked difference in ion exclusion scenarios may have ramifications for hydrate exploration because of the chlorine anomaly, which is often used as an indicator of the presence of hydrate reserves.
文摘In this paper, the Dongchuan type copper deposits are taken as an example to illustrate the application of GIS to the geo anomaly based delineation of mineral resources. The following eight steps are listed in this paper to delineate the permissive and preferable ore finding areas: (1) the analysis of favorable prospecting index using linear and planar geo anomalies; (2) the analysis of favorable prospecting index using combined anomalies; (3) the construction of a GIS based spatial model for mineral prognosis; (4) the delineation of the permissive ore finding area; (5) the determination of the synthetic anomalies and numerical range for the prediction of the favorable prospecting areas, and the determination of the weights of these two variables; (6) the superimposition of all the selected anomalies and the construction of the superimposition map; (7) the determination of unifying criterion of favorable prospective areas at various levels, and (8) the delineation of favorable prospective areas. Finally, this paper offers a detailed discussion of the results in the forecasting of Dongchuan type copper deposits.
基金The subject is sponsored by the National 863Project Fund (Project No.2006AA06Z201)
文摘In this paper, I introduce what are called weak gravity and magnetic anomalies and propose standards for estimating their reliability. I also introduce new techniques for processing this kind of weak anomaly. These techniques consist of interference elimination and weak signal extraction. Practical applications have proved their effectiveness, Weak gravity and magnetic anomalies will get more attention with the development of targeted exploration.
文摘One of the essential tasks accelerate the decision-making process in mineral exploration projects is ranking anomalous areas.In this study,we used fourteen geologic maps(at scale 1:100,000)in areas where systematic geochemical explorations were conducted in the Fariman-Kashmar axis in northeast Iran to conduct the anomaly ranking.On all these maps,samples were consistently prepared to be analyzed through statistical and geostatistical methods.At first,anomaly separation was carried out by fractal methods that resulted in the detection of 308 anomalous samples in 128 areas.These samples were classified into three groups of first,second,and thirdorder anomalies,whose number of anomalous samples were calculated based on this ranking technique.Three factors,including the average concentration of each anomaly,its surface area,and the number of its samples,were used to rank the areas.According to this technique,the maximum anomaly score obtained was 172 for the Taknar area,and the minimum score was 3 for several areas.To validate the ranking results,some exploration operations were carried out in some of these anomalous areas in which mining operations started later.Several significant gold anomalous areas were introduced,which is considered an important result of this study.
文摘A very fast simulated annealing(VFSA) global optimization is used to interpret residual gravity anomaly.Since,VFSA optimization yields a large number of best-fitted models in a vast model space;the nature of uncertainty in the interpretation is also examined simultaneously in the present study.The results of VFSA optimization reveal that various parameters show a number of equivalent solutions when shape of the target body is not known and shape factor 'q' is also optimized together with other model parameters.The study reveals that amplitude coefficient k is strongly dependent on shape factor.This shows that there is a multi-model type uncertainty between these two model parameters derived from the analysis of cross-plots.However,the appraised values of shape factor from various VFSA runs clearly indicate whether the subsurface structure is sphere,horizontal or vertical cylinder type structure.Accordingly,the exact shape factor(1.5 for sphere,1.0 for horizontal cylinder and 0.5 for vertical cylinder)is fixed and optimization process is repeated.After fixing the shape factor,analysis of uncertainty and cross-plots shows a well-defined uni-model characteristic.The mean model computed after fixing the shape factor gives the utmost consistent results.Inversion of noise-free and noisy synthetic data as well as field data demonstrates the efficacy of the approach.
文摘深海热液流体与周围海水之间存在明显的物理和化学差异,通过检测海水的位温浊度异常是探测深海热液活动的重要手段之一。本文采用"海底火山带项目(Submarine Ring of Fire 2002)"拖曳式温盐深测量仪数据资料,研究了东北太平洋Explorer Ridge热液场的水文特征及物质能量通量的释放。结果表明Explorer Ridge热液场热液羽状流中性浮力层所在深度范围约为1 600~1 900m,距离海底的高度约为200m,最大位温、盐度和浊度异常分别为0.04℃、0.004和0.18NTU;中性浮力层热液羽状流帽呈椭圆结构,其长轴与洋中脊线重合,羽状流帽总面积约为27km^2;热液羽状流在中性层范围内存在明显的分层现象,通过经验公式计算得到Explorer Ridge热液场观测范围内热液喷口的总的浮力通量为6.19×10^(-2)m^4/s^3,平均值为2.063×10^(-2)m^4/s^3;总的体积通量为9.884×10^(-2)m^3/s,平均值为3.295×10^(-2)m^3/s;总的热通量为194.9MW,平均值为64.967MW。
基金Supported by a Department of Science and Innovation(DSI)-National Research Foundation(NRF)Thuthuka Grant(Grant UID:121973)and DSI-NRF CIMERA.
文摘Most known mineral deposits were discovered by accident using expensive,time-consuming,and knowledgebased methods such as stream sediment geochemical data,diamond drilling,reconnaissance geochemical and geophysical surveys,and/or remote sensing.Recent years have seen a decrease in the number of newly discovered mineral deposits and a rise in demand for critical raw materials,prompting exploration geologists to seek more efficient and inventive ways for processing various data types at different phases of mineral exploration.Remote sensing is one of the most sought-after tools for early-phase mineral prospecting because of its broad coverage and low cost.Remote sensing images from satellites are publicly available and can be utilised for lithological mapping and mineral exploitation.In this study,we extend an artificial intelligence-based,unsupervised anomaly detection method to identify iron deposit occurrence using Landsat-8 Operational Land Imager(OLI)satellite imagery and machine learning.The novelty in our method includes:(1)knowledge-guided and unsupervised anomaly detection that does not assume any specific anomaly signatures;(2)detection of anomalies occurs only in the variable domain;and(3)a choice of a range of machine learning algorithms to balance between explain-ability and performance.Our new unsupervised method detects anomalies through three successive stages,namely(a)stage Ⅰ–acquisition of satellite imagery,data processing and selection of bands,(b)stage Ⅱ–predictive modelling and anomaly detection,and(c)stage Ⅲ–construction of anomaly maps and analysis.In this study,the new method was tested over the Assen iron deposit in the Transvaal Supergroup(South Africa).It detected both the known areas of the Assen iron deposit and additional deposit occurrence features around the Assen iron mine that were not known.To summarise the anomalies in the area,principal component analysis was used on the reconstruction errors across all modelled bands.Our method enhanced the Assen deposit as an anomaly and attenuated the background,including anthropogenic structural anomalies,which resulted in substantially improved visual contrast and delineation of the iron deposit relative to the background.The results demonstrate the robustness of the proposed unsupervised anomaly detection method,and it could be useful for the delineation of mineral exploration targets.In particular,the method will be useful in areas where no data labels exist regarding the existence or specific spectral signatures of anomalies,such as mineral deposits under greenfield exploration.
基金This study was funded by the project entitled Exploration Technology for Deep Geothermal Resources in Igneous Rock Areas in South China(2019YFC0604902),Chinathe Ministry of Science and Technology of China,China+1 种基金the project entitled Research and Application of Key Technologies for Geophysical and Geochemical Exploration of Deep Geothermal Resources in Southeastern China(P20041-2),Chinathe Science and Technology Department of SINOPEC,China.
文摘The existence of thermal storage will correspondingly increase the temperature of surrounding strata and promote the continuous expansion,volatilization,upward migration,and loss of gas in the strata.As a result,a low-concentration gas field will be formed in the strata above geothermal reservoirs.Geothermal reservoirs could in turn heat formation water and increase the solubility of soluble inorganic salts in the surrounding rocks and the total dissolved solids(TDS)content in the formation water.Since water can strongly wet and permeate strata,the dissolved inorganic salts migrate into upper strata along with water,giving rise to the formation of a high-concentration inorganic salt field in the strata above geothermal reservoirs.A higher geothermal reservoir temperature corresponds to more significant characteristics mentioned above.Therefore,a medium-to-high temperature geothermal system has a surface geochemical anomaly pattern of high inorganic salt concentrations and low gas concentrations(also referred to as the high-salt and low-gas pattern).This pattern is applied to the surface geochemical exploration of the two geothermal fields in Guangdong Province,i.e.,the Huangshadong geothermal field in Huizhou City and the Xinzhou geothermal field in Yangjiang City,revealing low-concentration gas fields above both.The application results also show that the exposed thermal spring water in both geological fields has higher concentration of dissolved inorganic salt than the surface water and nearby seawater,forming high-amplitude anomalies on the surface above geothermal reservoirs.These characteristics,as well as the measured temperature at known geothermal wells,verify the validity of the high-salt and low-gas pattern of medium-to-high temperature geothermal systems proposed in this study.Moreover,the high-salt and low-gas pattern proposed predicts three favorable medium-to-high temperature geothermal zones in the surface geochemical exploration of the Shiba Basin near the Huangshadong geothermal field.