To optimize their Al_(2)O_(3)-SiO_(2) raw materials,anorthite based insulation refractories were prepared by the in-situ sintering process combined with the foaming method after sintering at 1350℃for 3 h,using green ...To optimize their Al_(2)O_(3)-SiO_(2) raw materials,anorthite based insulation refractories were prepared by the in-situ sintering process combined with the foaming method after sintering at 1350℃for 3 h,using green and pollution-free kaolin,kyanite,andalusite and sillimanite as Al_(2)O_(3)-SiO_(2) raw materials,respectively,and industrial CaCO_(3) as the CaO source.Effects of Al_(2)O_(3)-SiO_(2) raw material types on the physical properties,phase composition and microstructure were investigated.The results are as follows.All samples prepared by different Al_(2)O_(3)-SiO_(2) raw materials have hexagonal flake anorthite and a small amount of mullite and corundum.Their bulk density and thermal conductivity decrease in the order of using kaolin,andalusite,kyanite and sillimanite as the Al_(2)O_(3)-SiO_(2) raw material,but their apparent porosity increases.Moreover,in the sample with kaolin,the bonding between anorthite crystals on the pore walls is closer than that of the other samples,which is conducive to increasing the cold crushing strength.The bonding between anorthite crystals on pore walls gradually decreases in the order of using kyanite,andalusite and sillimanite as the Al_(2)O_(3)-SiO_(2) raw material,thus their cold crushing strength decreases accordingly.In comprehensive consideration,the properties of the sample from kyanite are the optimal.Its apparent porosity,thermal conductivity and cold crushing strength are 84.6%,0.141 W·m^(-1)·K^(-1) and 1.89 MPa,respectively.展开更多
Anorthite -diopside ceramics were prepared by sintering iron ore railings, calcium carbonate, and silicon dioxide. Rare-earth cerium nitrate was evaluated as a sintering additive for the ceramics, whose mass percentag...Anorthite -diopside ceramics were prepared by sintering iron ore railings, calcium carbonate, and silicon dioxide. Rare-earth cerium nitrate was evaluated as a sintering additive for the ceramics, whose mass percentage was 3% , 5%, 7% , 9% , and 11% , respectively. The sinterability of anorthite - diopside ceramics during heat treatment was confirmed hy X-ray diffiaction, transmission^scanning electron micrascopy, thermogravi- metric analysis- differential thermal analysis, and hotstage microscopy, respectively. The obtained results show that the density of ceramics gradnally increases, while the sintering temperature and sintering activation energy of anorthite -diopside ceramics are notably decreased with the increasing cerium content. Rare-earth cerium not only is beneficial to the complete reaction of raw materials, but a/so can accelerate the mass transfer process through forming eutectic phase with aluminum.展开更多
Bacterial adhesion is crucial to the dissolution of minerals and rocks. By employing dialysis method, we designed comparative experiments to investigate the dissolution behavior of anorthite with the mediation of both...Bacterial adhesion is crucial to the dissolution of minerals and rocks. By employing dialysis method, we designed comparative experiments to investigate the dissolution behavior of anorthite with the mediation of both adhered and non-adhered Paenibacillus polymyxa. The results show that during 10 experimental days, the dissolution of anorthite was promoted considerably by P. polymyxa and metabolites. Nanoscale precipitates were formed in contact experiment. Anorthite has a higher release of Ca and lower releases of Al and Si in dialysis experiment than in contact experiment. The difference implies that the release of Ca is controlled by mechanism of proton-exchange, whereas those of A1 and Si are controlled by ligand-complexation in which A1-O-Si bonds are destroyed first. Kinetically the release of Ca is controlled mainly by surface reaction and leached-layer diffusion. Both of them are restrained by adhered bacteria. The releases of AI and Si are controlled mainly by surface reaction, which is accelerated by adhered bacteria.展开更多
Dense CaAl2Si2O8 ceramics were prepared via a two-step sintering process at temperatures below 1000℃. First, pre-sintered CaAl2Si2O8 powders containing small amounts of other crystal phases were obtained by sintering...Dense CaAl2Si2O8 ceramics were prepared via a two-step sintering process at temperatures below 1000℃. First, pre-sintered CaAl2Si2O8 powders containing small amounts of other crystal phases were obtained by sintering a mixture of calcium hydroxide and kaolin powders at 950℃ for 6 h. Subsequently, the combination of the pre-sintered ceramic powders with MeO'2B203 (Me = Ca, Sr, Ba) flux agents enabled the low-temperature densification sintering of the CaAl2Si2O8 ceramics at 950℃. The sintering behavior and phase formation of the CaAl2Si2O8 ceramics were investigated in terms of the addition of the three MeO·2B2O3 flux agents. Furthermore, alumina and quartz were introduced into the three flux agents to investigate the sintering behaviors, phase evolvements, microstructures, and physical properties of the resulting CaA12Si208 ceramics. The results showed that, because of their low-melting characteristics, the MeO·2B2O3 (Me = Ca, Sr, Ba) flux agents facilitated the formation of the CaAl2Si2O8 ceramics with a dense microstructure via liquid-phase sintering. The addition of alumina and quartz to the flux agents also strongly affected the microstructures, phase formation, and physical properties of the CaA12Si208 ceramics.展开更多
The main objective of this work is to relate the coalescence of inherent minerals and the fragmentation of extraneous minerals to the slagging propensities of South African pulverised feed coals during combustion.By i...The main objective of this work is to relate the coalescence of inherent minerals and the fragmentation of extraneous minerals to the slagging propensities of South African pulverised feed coals during combustion.By incorporating the behaviour of inherent mineral matter or extraneous mineral matter in these coals under combustion conditions into ash-deposition prediction methods,the heterogeneous nature of the ash properties,which were disregarded in previous conventional ash deposition predictions,is considered in the study.The mode of occurrence of mineral matter in feed coals plays a crucial role in the formation of high-temperature mineral phases under combustion conditions.The float and sink fractions of the three different coals evaluated in this distinctive alternative approach provide different chemical and mineralogical properties of the derived ashes when subjected to elevated temperatures under oxidising conditions.Formation of significant concentrations of high-temperature minerals(such as mullite and cristobalite)is mainly due to the transformation reactions of extraneous kaolinite and quartz which are not associated with the extraneous fluxing minerals at elevated temperatures.However,the formation of anorthite at elevated temperatures can be attributed to the interaction of either inherent or extraneous fluxing minerals(namely calcite,dolomite,pyrite,and siderite)that are associated with either inherent or extraneous kaolinite in the coal samples under the oxidising condition.Furthermore,the anorthite,mullite,and calcium/magnesium/iron/aluminosilicate and silica glasses in ashes are formed either via crystallisation during the cooling of the hightemperature molten solution or via the solid state reactions.These high-temperature minerals and their glasses present in ashes can therefore be used as the indicators of the slagging propensity of coals.The implementation of results from this unique case study,will be of great significance to other industrial combustion processes to minimise or control ash deposition,slagging,and equipment erosion problems by either blending the density-separated fractions of coals or coals from different mines based on the chemical and mineralogical properties to prepare suitable feed coals.Furthermore,this unique alternative approach can be followed to further evaluate other feed coals in the global power stations during combustion.展开更多
Coal fly ash is an industrial by-product, produced from coal combustion in thermal power plants. It is the most complex anthropogenic materials, which consists of combination of minerals originated from different sour...Coal fly ash is an industrial by-product, produced from coal combustion in thermal power plants. It is the most complex anthropogenic materials, which consists of combination of minerals originated from different sources. Coal fly ash and its byproduct has become an environmental concern over the World. Therefore, there is a pressing and ongoing need to investigate the structures and some properties of coal fly ash and develop new recycling methods for it. The amount of silica, aluminum, calcium, potassium, magnesium, sodium, titanium and phosphorus oxides contained in power plant fly ash was determined by X-ray flouresecence (XRF) analysis. Concentration of heavy metals in fly ash was in sequence of Pb > Zn > Cu > Cr > Ni. As results of Scanning Electron Microscopy (SEM), except for porous and hollow particles, large and small microspheres were observed. These particles are classified as ferrospheres. X-ray diffraction (XRD) analysis show that fly ash consists of the following crystal phases: quartz, albite, anorthite and hematite.展开更多
The paper aims at investigating whether corundum bricks can be used for the bottom, of the direct reduction furnace of high phosphorus oolitic hematite. The reducing materials including high phosphorus oolitic hemati...The paper aims at investigating whether corundum bricks can be used for the bottom, of the direct reduction furnace of high phosphorus oolitic hematite. The reducing materials including high phosphorus oolitic hematite, bitumite, Ca(OH) 2 and Na2CO3 at a mass ratio of 1:0. 15:0. 15:0. 03 were mixed and pressed into carbon containing cylindrical specimens with the size of Ф15 mm × 20 mm. The specimens were placed on the corundum bricks and reduced in a high temperature tube furnace at 1 200 ℃ for 40, 60, 80, 140 and 220 min, respective- ly. The corrosion and penetration resistance of corundum. bricks to high phosphorus oolitic hematite reducing materials were analyzed with XRD, SEM and EDS. It shows that the reducing slag formed in the reduction process corrodes the surface of corundum bricks to form a product layer of anorthite and hercynite, retarding the further corrosion of the reducing slag; the reducing slag which has penetrated into the interior of the brick goes through the gaps between the particles and generates anorthite and hercynite, filling the gaps and hindering the reducing slag penetration.展开更多
The objective of this work was to develop a more and better understanding of the strength developing in clay-andesite fired brick. The purpose was to improve the quality of the clay bricks that are handmade in the sou...The objective of this work was to develop a more and better understanding of the strength developing in clay-andesite fired brick. The purpose was to improve the quality of the clay bricks that are handmade in the southern region of Ecuador to make them suitable for more widespread use in the local construction industry. To achieve our goal, we first physically, chemically, and mechanically characterized the “clayey” and “sandy” materials used in the fabrication of handmade bricks in the region. Second, the optimal mixture (OM): the optimal proportion between the amounts of “clayey” and “sandy” material was sought. Third, clay bricks were prepared using the OM, baked at 950°C, and characterized. In addition, bricks produced by regional artisans were characterized, and the results were compared with the results obtained for the bricks prepared using the OM. Our data reveal that the optimal mixture is 50% “clayey” material and 50% “sandy” material and that with this mixture, an average improvement in brick quality of 300% can be achieved;thus, the use of the OM makes it possible to expand the use of these bricks in the local construction industry and enables an environmentally friendly production process by reducing the intensive exploitation of regional clay deposits. This improvement is achieved by virtue of the anorthite enrichment that occurs in the solid solution, which results from the evolution of andesine. The anorthite contributes to the formation of a stronger matrix among the different grains of the material. Conditions are favorable for this enrichment process to occur when “sandy” materials with high contents of andesite, which is common in Ecuadorian soils, are used.展开更多
Plagioclase is the major rock-forming mineral constituting the Earth's crust,whereas anorthite(CaAl_(2)Si_(2)O_(8))is a common minerals in lunar highlands crust,meteorites,possibly in some comets and on Mercury.Be...Plagioclase is the major rock-forming mineral constituting the Earth's crust,whereas anorthite(CaAl_(2)Si_(2)O_(8))is a common minerals in lunar highlands crust,meteorites,possibly in some comets and on Mercury.Besides anorthite,two high-temperature polymorphs of CaAl_(2)Si_(2)O_(8)are known:dmisteinbergite and svyatoslavite,which are found in burnt coal dumps,meteorites and pseudotachylytes.Here we present the results of detailed studies(quenching experiments,elemental analysis,Raman spectroscopy and in situ high temperature single crystal X-ray diffraction(up to 1000℃))on naturally co-occurring CaAl_(2)Si_(2)O_(8)polymorphs(anorthite,dmisteinbergite and svyatoslavite)from a burnt coal dump in Kopeisk,Russia.New polymorphs were found in all natural samples and obtained upon heating of dmisteinbergite(unquenchableβ-dmisteinbergite and quenchable y-dmisteinbergite).It was shown that Ca coordination differs significantly in CaAl_(2)Si_(2)O_(8)polymorphs,resulting in a different capacity to host Ba and possibly other large ion lithophile elements.Combining our data on natural samples with the previously published data on natural and synthetic compounds,we propose a new scheme of CaAl_(2)Si_(2)O_(8)polymorphs stability.Our results indicate that CaAl_(2)Si_(2)O_(8)polymorphs could be used for temperature estimations for both Earth and planetary sciences.展开更多
The microstructural features of high-temperature sintered and CaO-MgO-Al_2O_3-SiO_2(CMAS) corroded air plasma sprayed Y_2O_3 stabilized ZrO_2(YSZ) thermal barrier coatings(TBCs) under the thermal gradient condition we...The microstructural features of high-temperature sintered and CaO-MgO-Al_2O_3-SiO_2(CMAS) corroded air plasma sprayed Y_2O_3 stabilized ZrO_2(YSZ) thermal barrier coatings(TBCs) under the thermal gradient condition were comparatively studied. As-sprayed YSZ has a lamellar structure and the lamellae are composed of closely aligned columnar crystals. The sintered and the CMAS corroded YSZ coatings maintain the t'-ZrO_2 phase as the as-sprayed YSZ coating. The sintered YSZ remains the lamellar structure with reduced interlamellar gaps and grains coarsening. After the CMAS corrosion, the top layer of the YSZ coating keeps its lamellar structure consisting of some columnar grains with the CMAS infiltration into the intergrain gaps and the formation of striped Zr_2Y_2 O_7. The typical lamellar structure transforms into more equiaxed grains in the middle and bottom layers of the ceramic coating along with significant infiltration of amorphous CMAS and anorthite formation in the bottom layer owing to the high contents of Ca and Al.展开更多
Anorthitic plagioclase refers to the plagioclase whose An content ranges from 85% to 100%, and is rarely seen on the earth. As J. S. Beard and M. Wilson pointed out, terrestrial anorthitic plagioclase mainly occurs ...Anorthitic plagioclase refers to the plagioclase whose An content ranges from 85% to 100%, and is rarely seen on the earth. As J. S. Beard and M. Wilson pointed out, terrestrial anorthitic plagioclase mainly occurs in the cumulate gabbros of the island arc or active continental margin (such as Lesser Antilles Island, Aleutians, Klamath Mts. of western America, etc.), and is not found展开更多
基金This work was supported by the National Natural Science Foundation of China(5180021223)Henan Provice Science&Technology Programs(232102231046 and 232102231051)Cultivation Programme for Yong Backbone Teachers in Henan University to Technology(2142121).
文摘To optimize their Al_(2)O_(3)-SiO_(2) raw materials,anorthite based insulation refractories were prepared by the in-situ sintering process combined with the foaming method after sintering at 1350℃for 3 h,using green and pollution-free kaolin,kyanite,andalusite and sillimanite as Al_(2)O_(3)-SiO_(2) raw materials,respectively,and industrial CaCO_(3) as the CaO source.Effects of Al_(2)O_(3)-SiO_(2) raw material types on the physical properties,phase composition and microstructure were investigated.The results are as follows.All samples prepared by different Al_(2)O_(3)-SiO_(2) raw materials have hexagonal flake anorthite and a small amount of mullite and corundum.Their bulk density and thermal conductivity decrease in the order of using kaolin,andalusite,kyanite and sillimanite as the Al_(2)O_(3)-SiO_(2) raw material,but their apparent porosity increases.Moreover,in the sample with kaolin,the bonding between anorthite crystals on the pore walls is closer than that of the other samples,which is conducive to increasing the cold crushing strength.The bonding between anorthite crystals on pore walls gradually decreases in the order of using kyanite,andalusite and sillimanite as the Al_(2)O_(3)-SiO_(2) raw material,thus their cold crushing strength decreases accordingly.In comprehensive consideration,the properties of the sample from kyanite are the optimal.Its apparent porosity,thermal conductivity and cold crushing strength are 84.6%,0.141 W·m^(-1)·K^(-1) and 1.89 MPa,respectively.
基金supported by the Program for New Century Excellent Talents(NCET-13-0408)
文摘Anorthite -diopside ceramics were prepared by sintering iron ore railings, calcium carbonate, and silicon dioxide. Rare-earth cerium nitrate was evaluated as a sintering additive for the ceramics, whose mass percentage was 3% , 5%, 7% , 9% , and 11% , respectively. The sinterability of anorthite - diopside ceramics during heat treatment was confirmed hy X-ray diffiaction, transmission^scanning electron micrascopy, thermogravi- metric analysis- differential thermal analysis, and hotstage microscopy, respectively. The obtained results show that the density of ceramics gradnally increases, while the sintering temperature and sintering activation energy of anorthite -diopside ceramics are notably decreased with the increasing cerium content. Rare-earth cerium not only is beneficial to the complete reaction of raw materials, but a/so can accelerate the mass transfer process through forming eutectic phase with aluminum.
基金supported by National Basic Research Program of China (Grant No. 2007CB815603)National Natural Science Foundation of China (Grant No. 40802015)Ph. D. Programs Foundation of Ministry of Education of China (Grant Nos. 20050284043,20050284044)
文摘Bacterial adhesion is crucial to the dissolution of minerals and rocks. By employing dialysis method, we designed comparative experiments to investigate the dissolution behavior of anorthite with the mediation of both adhered and non-adhered Paenibacillus polymyxa. The results show that during 10 experimental days, the dissolution of anorthite was promoted considerably by P. polymyxa and metabolites. Nanoscale precipitates were formed in contact experiment. Anorthite has a higher release of Ca and lower releases of Al and Si in dialysis experiment than in contact experiment. The difference implies that the release of Ca is controlled by mechanism of proton-exchange, whereas those of A1 and Si are controlled by ligand-complexation in which A1-O-Si bonds are destroyed first. Kinetically the release of Ca is controlled mainly by surface reaction and leached-layer diffusion. Both of them are restrained by adhered bacteria. The releases of AI and Si are controlled mainly by surface reaction, which is accelerated by adhered bacteria.
基金supported by the Fundamental Research Funds for the Central Universities from China Government (Grant No. A0920502051513-5)
文摘Dense CaAl2Si2O8 ceramics were prepared via a two-step sintering process at temperatures below 1000℃. First, pre-sintered CaAl2Si2O8 powders containing small amounts of other crystal phases were obtained by sintering a mixture of calcium hydroxide and kaolin powders at 950℃ for 6 h. Subsequently, the combination of the pre-sintered ceramic powders with MeO'2B203 (Me = Ca, Sr, Ba) flux agents enabled the low-temperature densification sintering of the CaAl2Si2O8 ceramics at 950℃. The sintering behavior and phase formation of the CaAl2Si2O8 ceramics were investigated in terms of the addition of the three MeO·2B2O3 flux agents. Furthermore, alumina and quartz were introduced into the three flux agents to investigate the sintering behaviors, phase evolvements, microstructures, and physical properties of the resulting CaA12Si208 ceramics. The results showed that, because of their low-melting characteristics, the MeO·2B2O3 (Me = Ca, Sr, Ba) flux agents facilitated the formation of the CaAl2Si2O8 ceramics with a dense microstructure via liquid-phase sintering. The addition of alumina and quartz to the flux agents also strongly affected the microstructures, phase formation, and physical properties of the CaA12Si208 ceramics.
基金the NRF and DSI(Coal Research Chair Grant Nos.86880,UID85643,and UID85632)Sasol,South Africa for their assistance in funding this project.
文摘The main objective of this work is to relate the coalescence of inherent minerals and the fragmentation of extraneous minerals to the slagging propensities of South African pulverised feed coals during combustion.By incorporating the behaviour of inherent mineral matter or extraneous mineral matter in these coals under combustion conditions into ash-deposition prediction methods,the heterogeneous nature of the ash properties,which were disregarded in previous conventional ash deposition predictions,is considered in the study.The mode of occurrence of mineral matter in feed coals plays a crucial role in the formation of high-temperature mineral phases under combustion conditions.The float and sink fractions of the three different coals evaluated in this distinctive alternative approach provide different chemical and mineralogical properties of the derived ashes when subjected to elevated temperatures under oxidising conditions.Formation of significant concentrations of high-temperature minerals(such as mullite and cristobalite)is mainly due to the transformation reactions of extraneous kaolinite and quartz which are not associated with the extraneous fluxing minerals at elevated temperatures.However,the formation of anorthite at elevated temperatures can be attributed to the interaction of either inherent or extraneous fluxing minerals(namely calcite,dolomite,pyrite,and siderite)that are associated with either inherent or extraneous kaolinite in the coal samples under the oxidising condition.Furthermore,the anorthite,mullite,and calcium/magnesium/iron/aluminosilicate and silica glasses in ashes are formed either via crystallisation during the cooling of the hightemperature molten solution or via the solid state reactions.These high-temperature minerals and their glasses present in ashes can therefore be used as the indicators of the slagging propensity of coals.The implementation of results from this unique case study,will be of great significance to other industrial combustion processes to minimise or control ash deposition,slagging,and equipment erosion problems by either blending the density-separated fractions of coals or coals from different mines based on the chemical and mineralogical properties to prepare suitable feed coals.Furthermore,this unique alternative approach can be followed to further evaluate other feed coals in the global power stations during combustion.
文摘Coal fly ash is an industrial by-product, produced from coal combustion in thermal power plants. It is the most complex anthropogenic materials, which consists of combination of minerals originated from different sources. Coal fly ash and its byproduct has become an environmental concern over the World. Therefore, there is a pressing and ongoing need to investigate the structures and some properties of coal fly ash and develop new recycling methods for it. The amount of silica, aluminum, calcium, potassium, magnesium, sodium, titanium and phosphorus oxides contained in power plant fly ash was determined by X-ray flouresecence (XRF) analysis. Concentration of heavy metals in fly ash was in sequence of Pb > Zn > Cu > Cr > Ni. As results of Scanning Electron Microscopy (SEM), except for porous and hollow particles, large and small microspheres were observed. These particles are classified as ferrospheres. X-ray diffraction (XRD) analysis show that fly ash consists of the following crystal phases: quartz, albite, anorthite and hematite.
文摘The paper aims at investigating whether corundum bricks can be used for the bottom, of the direct reduction furnace of high phosphorus oolitic hematite. The reducing materials including high phosphorus oolitic hematite, bitumite, Ca(OH) 2 and Na2CO3 at a mass ratio of 1:0. 15:0. 15:0. 03 were mixed and pressed into carbon containing cylindrical specimens with the size of Ф15 mm × 20 mm. The specimens were placed on the corundum bricks and reduced in a high temperature tube furnace at 1 200 ℃ for 40, 60, 80, 140 and 220 min, respective- ly. The corrosion and penetration resistance of corundum. bricks to high phosphorus oolitic hematite reducing materials were analyzed with XRD, SEM and EDS. It shows that the reducing slag formed in the reduction process corrodes the surface of corundum bricks to form a product layer of anorthite and hercynite, retarding the further corrosion of the reducing slag; the reducing slag which has penetrated into the interior of the brick goes through the gaps between the particles and generates anorthite and hercynite, filling the gaps and hindering the reducing slag penetration.
文摘The objective of this work was to develop a more and better understanding of the strength developing in clay-andesite fired brick. The purpose was to improve the quality of the clay bricks that are handmade in the southern region of Ecuador to make them suitable for more widespread use in the local construction industry. To achieve our goal, we first physically, chemically, and mechanically characterized the “clayey” and “sandy” materials used in the fabrication of handmade bricks in the region. Second, the optimal mixture (OM): the optimal proportion between the amounts of “clayey” and “sandy” material was sought. Third, clay bricks were prepared using the OM, baked at 950°C, and characterized. In addition, bricks produced by regional artisans were characterized, and the results were compared with the results obtained for the bricks prepared using the OM. Our data reveal that the optimal mixture is 50% “clayey” material and 50% “sandy” material and that with this mixture, an average improvement in brick quality of 300% can be achieved;thus, the use of the OM makes it possible to expand the use of these bricks in the local construction industry and enables an environmentally friendly production process by reducing the intensive exploitation of regional clay deposits. This improvement is achieved by virtue of the anorthite enrichment that occurs in the solid solution, which results from the evolution of andesine. The anorthite contributes to the formation of a stronger matrix among the different grains of the material. Conditions are favorable for this enrichment process to occur when “sandy” materials with high contents of andesite, which is common in Ecuadorian soils, are used.
基金the Grant of the President of Russian Federation(MK-2831.2021.1.5)
文摘Plagioclase is the major rock-forming mineral constituting the Earth's crust,whereas anorthite(CaAl_(2)Si_(2)O_(8))is a common minerals in lunar highlands crust,meteorites,possibly in some comets and on Mercury.Besides anorthite,two high-temperature polymorphs of CaAl_(2)Si_(2)O_(8)are known:dmisteinbergite and svyatoslavite,which are found in burnt coal dumps,meteorites and pseudotachylytes.Here we present the results of detailed studies(quenching experiments,elemental analysis,Raman spectroscopy and in situ high temperature single crystal X-ray diffraction(up to 1000℃))on naturally co-occurring CaAl_(2)Si_(2)O_(8)polymorphs(anorthite,dmisteinbergite and svyatoslavite)from a burnt coal dump in Kopeisk,Russia.New polymorphs were found in all natural samples and obtained upon heating of dmisteinbergite(unquenchableβ-dmisteinbergite and quenchable y-dmisteinbergite).It was shown that Ca coordination differs significantly in CaAl_(2)Si_(2)O_(8)polymorphs,resulting in a different capacity to host Ba and possibly other large ion lithophile elements.Combining our data on natural samples with the previously published data on natural and synthetic compounds,we propose a new scheme of CaAl_(2)Si_(2)O_(8)polymorphs stability.Our results indicate that CaAl_(2)Si_(2)O_(8)polymorphs could be used for temperature estimations for both Earth and planetary sciences.
基金supported financially by the National Natural Science Foundation of China (Nos. 51590891 and 11772288)the opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology, the opening project No. KFJJ15-05M)"Hundred Talents Program" of Hunan Province, China
文摘The microstructural features of high-temperature sintered and CaO-MgO-Al_2O_3-SiO_2(CMAS) corroded air plasma sprayed Y_2O_3 stabilized ZrO_2(YSZ) thermal barrier coatings(TBCs) under the thermal gradient condition were comparatively studied. As-sprayed YSZ has a lamellar structure and the lamellae are composed of closely aligned columnar crystals. The sintered and the CMAS corroded YSZ coatings maintain the t'-ZrO_2 phase as the as-sprayed YSZ coating. The sintered YSZ remains the lamellar structure with reduced interlamellar gaps and grains coarsening. After the CMAS corrosion, the top layer of the YSZ coating keeps its lamellar structure consisting of some columnar grains with the CMAS infiltration into the intergrain gaps and the formation of striped Zr_2Y_2 O_7. The typical lamellar structure transforms into more equiaxed grains in the middle and bottom layers of the ceramic coating along with significant infiltration of amorphous CMAS and anorthite formation in the bottom layer owing to the high contents of Ca and Al.
基金Project supported by the National Natural Science Foundation of Chinathe State Educational Committee.
文摘Anorthitic plagioclase refers to the plagioclase whose An content ranges from 85% to 100%, and is rarely seen on the earth. As J. S. Beard and M. Wilson pointed out, terrestrial anorthitic plagioclase mainly occurs in the cumulate gabbros of the island arc or active continental margin (such as Lesser Antilles Island, Aleutians, Klamath Mts. of western America, etc.), and is not found