This paper reports the effects of shear force on anoxic granular sludge in sequencing batch reactors (SBR). The study was carried out in two SBRs (SBR1 and SBR2) in which sodium acetate (200mg COD·L^-1) was...This paper reports the effects of shear force on anoxic granular sludge in sequencing batch reactors (SBR). The study was carried out in two SBRs (SBR1 and SBR2) in which sodium acetate (200mg COD·L^-1) was used as the sole substrate and sodium nitrate (40 mgNO3-N·L^-1) was employed as the electron acceptor. The preliminary objective of this study was to cultivate anoxic granules in the SBR in order to investigate the effects of shear force on the formation of anoxic granular sludge and to compare the properties of anoxic sludge in the SBR. This study reports new results for the values of average velocity gradient, a measure of the applied shear force, which was varied in the two SBRs (3.79 s^-1 and 9.76 s^-1 for SBR1 and SBR2 respectively). The important findings of this research highlight the dual effects of shear force on anoxic granules. A low shear force can produce large anoxic granules with high activity and poor settling ability, whereas higher shear forces produce smaller granules with better settling ability and lower activity. The results of this study show that the anoxic granulation is closely related to the strength of the shear force. For high shear force, this research demonstrated that: 1) granules with smaller diameters, high density and good settling ability were formed in the reactor, and 2) granular sludge formed faster than it did in the low shear force reactor (41days versus 76 days). Once a steady-state has been achieved, the nitrate and COD removal rates were found to be 98% and 80%, respectively. For low shear force, such as was applied in SBR1, this research demonstrated that: 1) the activity of anoxic granular sludge in low shear force was higher than that in high shear force, 2) higher amount of soluble microbial products (SMPs) were produced, and 3) large pores were observed inside the larger granules,which are beneficial for nitrogen gas diffusion. Electron microscopic examination of the anoxic granules in both reactors showed that the morphology of the granules was ellipsoidal with a clear outline. Coccus and rod-shaped bacteria were wrapped by filamentous bacteria on the surface of granule.展开更多
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 50838005) and National Water Pollution Control and Management Technology Major Projects of China (No. 2009ZX07317-009). The authors are grateful for much assistance with microsensor measurements from Xi'an University Architecture and Technol- ogy.
文摘This paper reports the effects of shear force on anoxic granular sludge in sequencing batch reactors (SBR). The study was carried out in two SBRs (SBR1 and SBR2) in which sodium acetate (200mg COD·L^-1) was used as the sole substrate and sodium nitrate (40 mgNO3-N·L^-1) was employed as the electron acceptor. The preliminary objective of this study was to cultivate anoxic granules in the SBR in order to investigate the effects of shear force on the formation of anoxic granular sludge and to compare the properties of anoxic sludge in the SBR. This study reports new results for the values of average velocity gradient, a measure of the applied shear force, which was varied in the two SBRs (3.79 s^-1 and 9.76 s^-1 for SBR1 and SBR2 respectively). The important findings of this research highlight the dual effects of shear force on anoxic granules. A low shear force can produce large anoxic granules with high activity and poor settling ability, whereas higher shear forces produce smaller granules with better settling ability and lower activity. The results of this study show that the anoxic granulation is closely related to the strength of the shear force. For high shear force, this research demonstrated that: 1) granules with smaller diameters, high density and good settling ability were formed in the reactor, and 2) granular sludge formed faster than it did in the low shear force reactor (41days versus 76 days). Once a steady-state has been achieved, the nitrate and COD removal rates were found to be 98% and 80%, respectively. For low shear force, such as was applied in SBR1, this research demonstrated that: 1) the activity of anoxic granular sludge in low shear force was higher than that in high shear force, 2) higher amount of soluble microbial products (SMPs) were produced, and 3) large pores were observed inside the larger granules,which are beneficial for nitrogen gas diffusion. Electron microscopic examination of the anoxic granules in both reactors showed that the morphology of the granules was ellipsoidal with a clear outline. Coccus and rod-shaped bacteria were wrapped by filamentous bacteria on the surface of granule.