[Objective] The aim of this study was to provide a fast, stable and efficient piggery wastewater processing technology. [Method] The start-up process was studied through the experiment of piggery anaerobic fermentatio...[Objective] The aim of this study was to provide a fast, stable and efficient piggery wastewater processing technology. [Method] The start-up process was studied through the experiment of piggery anaerobic fermentation slurry treated by Anoxic/Oxic (A/O) reactor. The process was divided into two stages: at the first stage, dominant micro flora were cultivated in Anoxic and Oxic reaction tanks respectively; at the second stage. Anoxic and Oxic reaction tanks were initiated jointly to gradually enhance water load and continued to cultivate and domesticate microorganisms, and finally the start-up process was completed. [ Result] The results showed that return mixture ratio and return sludge ratio was 2 and 1 respectively when the temperature reached 32 ±2 ℃. However. when aeration rate of Oxic reaction amounted to 0.5 m^3/h, the re- moval rate of COD and NH4^+ -H were 89.87% and 89.31% respectively through practical operation within 50 days, which indicated that the start- up process through A/O reactor was successful. Conclusion This study can provide a scientific basis and reference for innocuous technique of piggery anaerobic fermentation slurry treatment.展开更多
Microbial fuel cell (MFC) embedded in anaerobic-anoxic-oxic (A2/O) process has positive effects on wastewater treatment, which can enhance the efficiencies of pollutants’ removal, along with electricity production. B...Microbial fuel cell (MFC) embedded in anaerobic-anoxic-oxic (A2/O) process has positive effects on wastewater treatment, which can enhance the efficiencies of pollutants’ removal, along with electricity production. But the electricity generation performance and its optimization of MFC embedded in A2O process still needs to be further investigated. In this study, in order to optimize the contaminants removal and electricity production of the MFC-A2/O reactor, a lab-scale corridor-style MFC-A2/O reactor, which could simulate the practical A2/O biological reactor better, was designed and operated. The removal efficiencies of chemical oxygen demand, total nitrogen and total phosphorus were continuously monitored so as the electricity generation. In addition, the influences of the structural parameters’ changes of MFC on the output voltage, including electrode material, the directly connected area and the distance between electrodes, were also studied. The results elucidated that the effluent quality of A2/O reactor could be improved when MFC was embedded, and all the investigated structural factors were closely related to the electricity generation performance of MFC to some extent.展开更多
Fluid catalytic cracking (FCC) salty wastewaters, containing quaternary ammonium compounds (QACs), are very difficult to treat by biochemical process. Anoxic/oxic (A/O) biochemical system, based on nitrification and d...Fluid catalytic cracking (FCC) salty wastewaters, containing quaternary ammonium compounds (QACs), are very difficult to treat by biochemical process. Anoxic/oxic (A/O) biochemical system, based on nitrification and denitrification reactions, was used to assess their possible biodegradation. Because of the negative effects of high salt concentration (3%), heavy metals and toxic organic matter on microorganisms’ activities, some techniques consisting of dilution, coagulation and flocculation, and ozonation pretreatments, were gradually tested to evaluate chemical oxygen demand (COD), ammonia-nitrogen (ammonia-N) and total nitrogen (TN) removal rates. In this process of FCC wastewater, starting with university-domesticated sludge, the ammonia-N and TN removal rates were worst. However, when using domesticated SBR’s sludge and operating with five-fold daily diluted influent (thus reducing salt concentration), the ammonia-N removal reached about 57% while the TN removal rate was less than 37% meaning an amelioration of the nitrification process. However, by reducing the dilution factors, these results were inflected after some days of operation, with ammonia-N removal decreasing and TN barely removed meaning a poor nitrification. Even by reducing heavy metals concentration with coagulation/flocculation process, the results never changed. Thereafter, by using ozonation pre-treatment to degrade the detected organic matter of di-tert-butylphenol and certain isoparaffins, COD, ammonia-N and TN removal rates reached 92%, 62% and 61%, respectively. These results showed that the activities of the microorganisms were increased, thus indicating a net denitrification and nitrification reactions improvement.展开更多
提出用模糊控制的方法控制 A/O(anoxic/oxic)工艺中好氧区 DO,设计出了结构相对简单、具有良好可靠性与稳定性的恒 DO 和串级 DO 模糊控制器。试验表明可以根据出水氨氮浓度调节 DO 值,使处理系统在处理水质满足要求的前提下尽可能节省...提出用模糊控制的方法控制 A/O(anoxic/oxic)工艺中好氧区 DO,设计出了结构相对简单、具有良好可靠性与稳定性的恒 DO 和串级 DO 模糊控制器。试验表明可以根据出水氨氮浓度调节 DO 值,使处理系统在处理水质满足要求的前提下尽可能节省运行费用。展开更多
The full-scale application of Tx-1, a multifunctional microbial agent, was carried out for 8 months in an anoxic/oxic(A/O) municipal wastewater treatment process. The results show that the Tx-1 dosed system can obta...The full-scale application of Tx-1, a multifunctional microbial agent, was carried out for 8 months in an anoxic/oxic(A/O) municipal wastewater treatment process. The results show that the Tx-1 dosed system can obtain good effluent characteristics while minimizing sludge production and energy consumption. The total phosphorus(TP) is lower than0. 5 mg/L in effluent without any chemical regent added. The discharged dry sludge per 10 000 m^3 wastewater Dwat decreases from 1. 4 to 0. 5 t. For per cubic meter wastewater, the air supply decreases from 6. 0 to 5. 1 m^3 and the electricity consumption decreases from 0. 412- 0. 425 kW·h to 0. 331 kW·h. The addition of Tx-1 can improve the substrate removal constant and decrease the microorganism growth yield coefficient of activated sludge. At the same time,the structure of the microbial community changes and the biodiversity increases by adding Tx-1. The abundance of polyphosphate accumulating organisms(PAO), Comamonadaceae and Tetrasphaera, increased. Effective microbial agent is a potential way to combine in-situ sludge minimization with contaminants removal.展开更多
The anaerobic/anoxic/oxic(A2O) process is globally one of the widely used biological sewage treatment processes. This is the first report of a metagenomic analysis using Illumina sequencing of full-scale A2O sludge ...The anaerobic/anoxic/oxic(A2O) process is globally one of the widely used biological sewage treatment processes. This is the first report of a metagenomic analysis using Illumina sequencing of full-scale A2O sludge from a municipal sewage treatment plant.With more than 530,000 clean reads from different taxa and metabolic categories, the metagenome results allow us to gain insight into the functioning of the biological community of the A2O sludge. There are 51 phyla and nearly 900 genera identified from the A2O activated sludge ecosystem. Proteobacteria, Bacteroidetes, Nitrospirae and Chloroflexi are predominant phyla in the activated sludge, suggesting that these organisms play key roles in the biodegradation processes in the A2O sewage treatment system.Nitrospira, Thauera, Dechloromonas and Ignavibacterium, which have abilities to metabolize nitrogen and aromatic compounds, are most prevalent genera. The percent of nitrogen and phosphorus metabolism in the A2O sludge is 2.72% and 1.48%, respectively. In the current A2O sludge, the proportion of Candidatus Accumulibacter is 1.37%, which is several times more than that reported in a recent study of A2O sludge. Among the four processes of nitrogen metabolism, denitrification related genes had the highest number of sequences(76.74%), followed by ammonification(15.77%), nitrogen fixation(3.88%) and nitrification(3.61%). In phylum Planctomycetes, four genera(Planctomyces, Pirellula, Gemmata and Singulisphaera) are included in the top 30 abundant genera, suggesting the key role of ANAMMOX in nitrogen metabolism in the A2O sludge.展开更多
基金Supported by National Eleventh Five-Year Science and TechnologySupport Program(1-1-12-0661)~~
文摘[Objective] The aim of this study was to provide a fast, stable and efficient piggery wastewater processing technology. [Method] The start-up process was studied through the experiment of piggery anaerobic fermentation slurry treated by Anoxic/Oxic (A/O) reactor. The process was divided into two stages: at the first stage, dominant micro flora were cultivated in Anoxic and Oxic reaction tanks respectively; at the second stage. Anoxic and Oxic reaction tanks were initiated jointly to gradually enhance water load and continued to cultivate and domesticate microorganisms, and finally the start-up process was completed. [ Result] The results showed that return mixture ratio and return sludge ratio was 2 and 1 respectively when the temperature reached 32 ±2 ℃. However. when aeration rate of Oxic reaction amounted to 0.5 m^3/h, the re- moval rate of COD and NH4^+ -H were 89.87% and 89.31% respectively through practical operation within 50 days, which indicated that the start- up process through A/O reactor was successful. Conclusion This study can provide a scientific basis and reference for innocuous technique of piggery anaerobic fermentation slurry treatment.
文摘Microbial fuel cell (MFC) embedded in anaerobic-anoxic-oxic (A2/O) process has positive effects on wastewater treatment, which can enhance the efficiencies of pollutants’ removal, along with electricity production. But the electricity generation performance and its optimization of MFC embedded in A2O process still needs to be further investigated. In this study, in order to optimize the contaminants removal and electricity production of the MFC-A2/O reactor, a lab-scale corridor-style MFC-A2/O reactor, which could simulate the practical A2/O biological reactor better, was designed and operated. The removal efficiencies of chemical oxygen demand, total nitrogen and total phosphorus were continuously monitored so as the electricity generation. In addition, the influences of the structural parameters’ changes of MFC on the output voltage, including electrode material, the directly connected area and the distance between electrodes, were also studied. The results elucidated that the effluent quality of A2/O reactor could be improved when MFC was embedded, and all the investigated structural factors were closely related to the electricity generation performance of MFC to some extent.
文摘Fluid catalytic cracking (FCC) salty wastewaters, containing quaternary ammonium compounds (QACs), are very difficult to treat by biochemical process. Anoxic/oxic (A/O) biochemical system, based on nitrification and denitrification reactions, was used to assess their possible biodegradation. Because of the negative effects of high salt concentration (3%), heavy metals and toxic organic matter on microorganisms’ activities, some techniques consisting of dilution, coagulation and flocculation, and ozonation pretreatments, were gradually tested to evaluate chemical oxygen demand (COD), ammonia-nitrogen (ammonia-N) and total nitrogen (TN) removal rates. In this process of FCC wastewater, starting with university-domesticated sludge, the ammonia-N and TN removal rates were worst. However, when using domesticated SBR’s sludge and operating with five-fold daily diluted influent (thus reducing salt concentration), the ammonia-N removal reached about 57% while the TN removal rate was less than 37% meaning an amelioration of the nitrification process. However, by reducing the dilution factors, these results were inflected after some days of operation, with ammonia-N removal decreasing and TN barely removed meaning a poor nitrification. Even by reducing heavy metals concentration with coagulation/flocculation process, the results never changed. Thereafter, by using ozonation pre-treatment to degrade the detected organic matter of di-tert-butylphenol and certain isoparaffins, COD, ammonia-N and TN removal rates reached 92%, 62% and 61%, respectively. These results showed that the activities of the microorganisms were increased, thus indicating a net denitrification and nitrification reactions improvement.
基金The Natural Science Foundation of Jiangsu Province(No.BK20151485)
文摘The full-scale application of Tx-1, a multifunctional microbial agent, was carried out for 8 months in an anoxic/oxic(A/O) municipal wastewater treatment process. The results show that the Tx-1 dosed system can obtain good effluent characteristics while minimizing sludge production and energy consumption. The total phosphorus(TP) is lower than0. 5 mg/L in effluent without any chemical regent added. The discharged dry sludge per 10 000 m^3 wastewater Dwat decreases from 1. 4 to 0. 5 t. For per cubic meter wastewater, the air supply decreases from 6. 0 to 5. 1 m^3 and the electricity consumption decreases from 0. 412- 0. 425 kW·h to 0. 331 kW·h. The addition of Tx-1 can improve the substrate removal constant and decrease the microorganism growth yield coefficient of activated sludge. At the same time,the structure of the microbial community changes and the biodiversity increases by adding Tx-1. The abundance of polyphosphate accumulating organisms(PAO), Comamonadaceae and Tetrasphaera, increased. Effective microbial agent is a potential way to combine in-situ sludge minimization with contaminants removal.
基金supported by the National Natural Science Foundation of China (No. 41430643)
文摘The anaerobic/anoxic/oxic(A2O) process is globally one of the widely used biological sewage treatment processes. This is the first report of a metagenomic analysis using Illumina sequencing of full-scale A2O sludge from a municipal sewage treatment plant.With more than 530,000 clean reads from different taxa and metabolic categories, the metagenome results allow us to gain insight into the functioning of the biological community of the A2O sludge. There are 51 phyla and nearly 900 genera identified from the A2O activated sludge ecosystem. Proteobacteria, Bacteroidetes, Nitrospirae and Chloroflexi are predominant phyla in the activated sludge, suggesting that these organisms play key roles in the biodegradation processes in the A2O sewage treatment system.Nitrospira, Thauera, Dechloromonas and Ignavibacterium, which have abilities to metabolize nitrogen and aromatic compounds, are most prevalent genera. The percent of nitrogen and phosphorus metabolism in the A2O sludge is 2.72% and 1.48%, respectively. In the current A2O sludge, the proportion of Candidatus Accumulibacter is 1.37%, which is several times more than that reported in a recent study of A2O sludge. Among the four processes of nitrogen metabolism, denitrification related genes had the highest number of sequences(76.74%), followed by ammonification(15.77%), nitrogen fixation(3.88%) and nitrification(3.61%). In phylum Planctomycetes, four genera(Planctomyces, Pirellula, Gemmata and Singulisphaera) are included in the top 30 abundant genera, suggesting the key role of ANAMMOX in nitrogen metabolism in the A2O sludge.