Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is pr...Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved.展开更多
A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of componen...A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions.展开更多
In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which ...In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which was based on standard genetic algorithm and combined with positive feedback mechanism of ant colony algorithm. This method can obtain the precise mathematic model of continuous rotary motor which determines the order of servo system. Firstly, by constructing an appropriate fitness function, the problem of system parameters identification is converted into the problem of system parameter optimization. Secondly, in the given upper and lower bounds a set of optimal parameters are selected to meet the best approximation of the actual system. And the result shows that the identification output can trace the sampling output of actual system, and the error is very small. In addition, another set of experimental data are used to test the identification result. The result shows that the identification parameters can approach the actual system. The experimental results verify the feasibility of this method. And it is fit for the parameter identification of general complex system using the integration algorithm of GA-ACO.展开更多
In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding...In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding variables. Crane metal structure optimal design(CMSOD) belongs to a constrained nonlinear optimization problem with discrete variables. A novel algorithm combining ant colony algorithm with a mutation-based local search(ACAM) is developed and used for a real CMSOD for the first time. In the algorithm model, the encoded mode of continuous array elements is introduced. This not only avoids the need to round optimization design variables during mixed variable optimization, but also facilitates the construction of heuristic information, and the storage and update of the ant colony pheromone. Together with the proposed ACAM, a genetic algorithm(GA) and particle swarm optimization(PSO) are used to optimize the metal structure of a crane. The optimization results show that the convergence speed of ACAM is approximately 20% of that of the GA and around 11% of that of the PSO. The objective function value given by ACAM is 22.23% less than the practical design value, a reduction of 16.42% over the GA and 3.27% over the PSO. The developed ACAM is an effective intelligent method for CMSOD and superior to other methods.展开更多
文摘Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved.
基金project supported by the National High-Technology Research and Development Program of China(Grant No.8632005AA642010)
文摘A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions.
基金Project of China Postdoctoral Science Foundation,China (No. 2012M510982)Special Fund on the Science and Technology Innovation People of Harbin,China (No. 2011RFQXG002)+2 种基金Technology Item of Heilongjiang Provincial Education Committee,China (No.12511088)Postdoctoral Project of Heilongjiang,China (No. LBH-Z10117 )Youth Fund of Harbin University of Science and Technology,China (No. 2011YF030)
文摘In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which was based on standard genetic algorithm and combined with positive feedback mechanism of ant colony algorithm. This method can obtain the precise mathematic model of continuous rotary motor which determines the order of servo system. Firstly, by constructing an appropriate fitness function, the problem of system parameters identification is converted into the problem of system parameter optimization. Secondly, in the given upper and lower bounds a set of optimal parameters are selected to meet the best approximation of the actual system. And the result shows that the identification output can trace the sampling output of actual system, and the error is very small. In addition, another set of experimental data are used to test the identification result. The result shows that the identification parameters can approach the actual system. The experimental results verify the feasibility of this method. And it is fit for the parameter identification of general complex system using the integration algorithm of GA-ACO.
基金Supported by National Natural Science Foundation of China(Grant No.51275329)the Youth Fund Program of Taiyuan University of Science and Technology,China(Grant No.20113014)
文摘In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding variables. Crane metal structure optimal design(CMSOD) belongs to a constrained nonlinear optimization problem with discrete variables. A novel algorithm combining ant colony algorithm with a mutation-based local search(ACAM) is developed and used for a real CMSOD for the first time. In the algorithm model, the encoded mode of continuous array elements is introduced. This not only avoids the need to round optimization design variables during mixed variable optimization, but also facilitates the construction of heuristic information, and the storage and update of the ant colony pheromone. Together with the proposed ACAM, a genetic algorithm(GA) and particle swarm optimization(PSO) are used to optimize the metal structure of a crane. The optimization results show that the convergence speed of ACAM is approximately 20% of that of the GA and around 11% of that of the PSO. The objective function value given by ACAM is 22.23% less than the practical design value, a reduction of 16.42% over the GA and 3.27% over the PSO. The developed ACAM is an effective intelligent method for CMSOD and superior to other methods.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60674092)江苏省高技术研究项目(the High-Tech Research Program of Jiangsu Province of China under Grant NoBG2006010)