期刊文献+
共找到607篇文章
< 1 2 31 >
每页显示 20 50 100
Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing
1
作者 Shasha Zhao Huanwen Yan +3 位作者 Qifeng Lin Xiangnan Feng He Chen Dengyin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1135-1156,共22页
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall... Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental. 展开更多
关键词 Cloud computing distributed processing evolutionary artificial bee colony algorithm hierarchical particle swarm optimization load balancing
下载PDF
Optimization of Fairhurst-Cook Model for 2-D Wing Cracks Using Ant Colony Optimization (ACO), Particle Swarm Intelligence (PSO), and Genetic Algorithm (GA)
2
作者 Mohammad Najjarpour Hossein Jalalifar 《Journal of Applied Mathematics and Physics》 2018年第8期1581-1595,共15页
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid... The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack. 展开更多
关键词 WING Crack Fairhorst-Cook Model Sensitivity Analysis OPTIMIZATION particle swarm INTELLIGENCE (PSO) ant colony OPTIMIZATION (ACO) Genetic algorithm (GA)
下载PDF
Codebook design using improved particle swarm optimization based on selection probability of artificial bee colony algorithm 被引量:2
3
作者 浦灵敏 胡宏梅 《Journal of Chongqing University》 CAS 2014年第3期90-98,共9页
In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capabili... In the paper, a new selection probability inspired by artificial bee colony algorithm is introduced into standard particle swarm optimization by improving the global extremum updating condition to enhance the capability of its overall situation search. The experiment result shows that the new scheme is more valuable and effective than other schemes in the convergence of codebook design and the performance of codebook, and it can avoid the premature phenomenon of the particles. 展开更多
关键词 vector quantization codebook design particle swarm optimization artificial bee colony algorithm
下载PDF
A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems:Applications and Trends 被引量:39
4
作者 Jun Tang Gang Liu Qingtao Pan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第10期1627-1643,共17页
Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In th... Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In the past decades,numerous swarm intelligence algorithms have been developed,including ant colony optimization(ACO),particle swarm optimization(PSO),artificial fish swarm(AFS),bacterial foraging optimization(BFO),and artificial bee colony(ABC).This review tries to review the most representative swarm intelligence algorithms in chronological order by highlighting the functions and strengths from 127 research literatures.It provides an overview of the various swarm intelligence algorithms and their advanced developments,and briefly provides the description of their successful applications in optimization problems of engineering fields.Finally,opinions and perspectives on the trends and prospects in this relatively new research domain are represented to support future developments. 展开更多
关键词 ant colony optimization(ACO) artificial bee colony(ABC) artificial fish swarm(AFS) bacterial foraging optimization(BFO) optimization particle swarm optimization(PSO) swarm intelligence
下载PDF
Blackboard Mechanism Based Ant Colony Theory for Dynamic Deployment of Mobile Sensor Networks 被引量:5
5
作者 Guang-ping Qi Ping Song Ke-jie Li 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第3期197-203,共7页
A novel bionic swarm intelligence algorithm, called ant colony algorithm based on a blackboard mechanism, is proposed to solve the autonomy and dynamic deployment of mobiles sensor networks effectively. A blackboard m... A novel bionic swarm intelligence algorithm, called ant colony algorithm based on a blackboard mechanism, is proposed to solve the autonomy and dynamic deployment of mobiles sensor networks effectively. A blackboard mechanism is introduced into the system for making pheromone and completing the algorithm. Every node, which can be looked as an ant, makes one information zone in its memory for communicating with other nodes and leaves pheromone, which is created by ant itself in naalre. Then ant colony theory is used to find the optimization scheme for path planning and deployment of mobile Wireless Sensor Network (WSN). We test the algorithm in a dynamic and unconfigurable environment. The results indicate that the algorithm can reduce the power consumption by 13% averagely, enhance the efficiency of path planning and deployment of mobile WSN by 15% averagely. 展开更多
关键词 ant colony algorithm wireless sensor network blackboard mechanism bionic swarm intelligence algorithm
下载PDF
Traveling Salesman Problem Using an Enhanced Hybrid Swarm Optimization Algorithm 被引量:2
6
作者 郑建国 伍大清 周亮 《Journal of Donghua University(English Edition)》 EI CAS 2014年第3期362-367,共6页
The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was ... The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was presented for TSP.The DMPSO-ACO combined the exploration capabilities of the dynamic multi-swarm particle swarm optimizer( DMPSO) and the stochastic exploitation of the ant colony optimization( ACO) for solving the traveling salesman problem. In the proposed hybrid algorithm,firstly,the dynamic swarms,rapidity of the PSO was used to obtain a series of sub-optimal solutions through certain iterative times for adjusting the initial allocation of pheromone in ACO. Secondly,the positive feedback and high accuracy of the ACO were employed to solving whole problem. Finally,to verify the effectiveness and efficiency of the proposed hybrid algorithm,various scale benchmark problems were tested to demonstrate the potential of the proposed DMPSO-ACO algorithm. The results show that DMPSO-ACO is better in the search precision,convergence property and has strong ability to escape from the local sub-optima when compared with several other peer algorithms. 展开更多
关键词 particle swarm optimization(PSO) ant colony optimization(ACO) swarm intelligence TRAVELING SALESMAN problem(TSP) hybrid algorithm
下载PDF
Hybridization of Fuzzy and Hard Semi-Supervised Clustering Algorithms Tuned with Ant Lion Optimizer Applied to Higgs Boson Search 被引量:1
7
作者 Soukaina Mjahed Khadija Bouzaachane +2 位作者 Ahmad Taher Azar Salah El Hadaj Said Raghay 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期459-494,共36页
This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the“Higgs machine learning challenge 2014”data set.This unsupervised ... This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the“Higgs machine learning challenge 2014”data set.This unsupervised detection goes in this paper analysis through 4 steps:(1)selection of the most informative features from the considered data;(2)definition of the number of clusters based on the elbow criterion.The experimental results showed that the optimal number of clusters that group the considered data in an unsupervised manner corresponds to 2 clusters;(3)proposition of a new approach for hybridization of both hard and fuzzy clustering tuned with Ant Lion Optimization(ALO);(4)comparison with some existing metaheuristic optimizations such as Genetic Algorithm(GA)and Particle Swarm Optimization(PSO).By employing a multi-angle analysis based on the cluster validation indices,the confusion matrix,the efficiencies and purities rates,the average cost variation,the computational time and the Sammon mapping visualization,the results highlight the effectiveness of the improved Gustafson-Kessel algorithm optimized withALO(ALOGK)to validate the proposed approach.Even if the paper gives a complete clustering analysis,its novel contribution concerns only the Steps(1)and(3)considered above.The first contribution lies in the method used for Step(1)to select the most informative features and variables.We used the t-Statistic technique to rank them.Afterwards,a feature mapping is applied using Self-Organizing Map(SOM)to identify the level of correlation between them.Then,Particle Swarm Optimization(PSO),a metaheuristic optimization technique,is used to reduce the data set dimension.The second contribution of thiswork concern the third step,where each one of the clustering algorithms as K-means(KM),Global K-means(GlobalKM),Partitioning AroundMedoids(PAM),Fuzzy C-means(FCM),Gustafson-Kessel(GK)and Gath-Geva(GG)is optimized and tuned with ALO. 展开更多
关键词 ant lion optimization binary clustering clustering algorithms Higgs boson feature extraction dimensionality reduction elbow criterion genetic algorithm particle swarm optimization
下载PDF
CPAC: Energy-Efficient Algorithm for IoT Sensor Networks Based on Enhanced Hybrid Intelligent Swarm
8
作者 Qi Wang Wei Liu +3 位作者 Hualong Yu Shang Zheng Shang Gao Fabrizio Granelli 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第10期83-103,共21页
The wireless sensor network(WSN)is widely employed in the application scenarios of the Internet of Things(IoT)in recent years.Extending the lifetime of the entire system had become a significant challenge due to the e... The wireless sensor network(WSN)is widely employed in the application scenarios of the Internet of Things(IoT)in recent years.Extending the lifetime of the entire system had become a significant challenge due to the energy-constrained fundamental limits of sensor nodes on the perceptual layer of IoT.The clustering routing structures are currently the most popular solution,which can effectively reduce the energy consumption of the entire network and improve its reliability.This paper introduces an enhanced hybrid intelligential algorithm based on particle swarm optimization(PSO)and ant colony optimization(ACO)method.The enhanced PSO is deployed to select the optimal cluster heads for establishing the clustering architecture.An improved ACO is introduced to realize the data transmission from terminal sensor nodes to the base station.Our proposed algorithm can effectively reduce the entire energy consumption and extend the lifetime of IoT sensor networks.Compared with the traditional algorithms,the simulation results show that the presented novel algorithm in this paper has obvious optimization and improvement in network lifetime and energy utilization efficiency. 展开更多
关键词 Internet of THINGS wireless sensor network particle swarm OPTIMIZATION ant colony OPTIMIZATION energy efficiency
下载PDF
Measuring moisture content of dead fine fuels based on the fusion of spectrum meteorological data
9
作者 Bo Peng Jiawei Zhang +2 位作者 Jian Xing Jiuqing Liu Mingbao Li 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第5期1333-1346,共14页
Dead fine fuel moisture content(DFFMC)is a key factor affecting the spread of forest fires,which plays an important role in evaluation of forest fire risk.In order to achieve high-precision real-time measurement of DF... Dead fine fuel moisture content(DFFMC)is a key factor affecting the spread of forest fires,which plays an important role in evaluation of forest fire risk.In order to achieve high-precision real-time measurement of DFFMC,this study established a long short-term memory(LSTM)network based on particle swarm optimization(PSO)algorithm as a measurement model.A multi-point surface monitoring scheme combining near-infrared measurement method and meteorological measurement method is proposed.The near-infrared spectral information of dead fine fuels and the meteorological factors in the region are processed by data fusion technology to construct a spectral-meteorological data set.The surface fine dead fuel of Mongolian oak(Quercus mongolica Fisch.ex Ledeb.),white birch(Betula platyphylla Suk.),larch(Larix gmelinii(Rupr.)Kuzen.),and Manchurian walnut(Juglans mandshurica Maxim.)in the maoershan experimental forest farm of the Northeast Forestry University were investigated.We used the PSO-LSTM model for moisture content to compare the near-infrared spectroscopy,meteorological,and spectral meteorological fusion methods.The results show that the mean absolute error of the DFFMC of the four stands by spectral meteorological fusion method were 1.1%for Mongolian oak,1.3%for white birch,1.4%for larch,and 1.8%for Manchurian walnut,and these values were lower than those of the near-infrared method and the meteorological method.The spectral meteorological fusion method provides a new way for high-precision measurement of moisture content of fine dead fuel. 展开更多
关键词 Near infrared spectroscopy Meteorological factors Data fusion Long-term and short-term memory network particle swarm optimization algorithm
下载PDF
考虑电动汽车充电负荷及储能寿命的充电站储能容量配置优化
10
作者 马永翔 韩子悦 +2 位作者 闫群民 万佳鹏 淡文国 《电网与清洁能源》 CSCD 北大核心 2024年第4期92-101,共10页
提出了一种优化电动汽车充电站储能容量配置的方法。该方法考虑了季节性电动汽车充电负荷波动与光伏出力之间的关系,并且考虑了储能寿命。论文利用蒙特卡罗法考虑了不同类型电动汽车的多种影响因素,对整体负荷进行预测。以每日运行成本... 提出了一种优化电动汽车充电站储能容量配置的方法。该方法考虑了季节性电动汽车充电负荷波动与光伏出力之间的关系,并且考虑了储能寿命。论文利用蒙特卡罗法考虑了不同类型电动汽车的多种影响因素,对整体负荷进行预测。以每日运行成本最低为优化目标,在考虑四季光伏出力和储能寿命的影响下,采用了3种算法对目标函数进行优化,以得到最佳的光储充电站储能配置方案。研究以西北某地区为例。结果表明:冬季下综合成本为3.0432×10^(6)元,相比于其余3个季节综合成本最低;采用遗传算法时,在综合成本相差不多时,获得的储能配置最优,储能容量为22.82 MWh,储能功率为7.31MW,从而得到光储充电站最优的储能容量配置。 展开更多
关键词 光储充电站 电动汽车 储能寿命 储能容量优化 遗传算法 粒子群算法 蚁群算法
下载PDF
基于改进天牛须群落的卫星光网络路由算法
11
作者 刘治国 吕文强 潘成胜 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第6期188-194,共7页
针对当前卫星光网络路由算法波长利用率低,通信成功率低,导致路由效率低下的问题,提出一种改进天牛须群落的卫星光网络路由算法(BS-ACRWA)。该方法使用波长矩阵乘的形式生成与当前卫星节点相邻节点的波长冲突度,求得最大公有波长数,同... 针对当前卫星光网络路由算法波长利用率低,通信成功率低,导致路由效率低下的问题,提出一种改进天牛须群落的卫星光网络路由算法(BS-ACRWA)。该方法使用波长矩阵乘的形式生成与当前卫星节点相邻节点的波长冲突度,求得最大公有波长数,同时考虑时延和卫星节点负载状态构建约束优化模型,降低无效路由的次数。在路由阶段对天牛须群落算法进行改进,引入蚁群算法信息素机制,在搜索方向上充分考虑卫星之间链路有限的特性,对搜索方向进行更新,提高算法效率。仿真结果表明:与SARWA算法、CL-ACRWA算法和Dijkstra算法相比,BS-ACRWA算法将波长利用率提高了0.05、0.11、0.23,同时在平均时延、丢包率、阻塞率、路由成功率等方面具有更好的性能。 展开更多
关键词 卫星光网络 路由和波长分配算法 天牛须群落算法 蚁群算法 服务质量
下载PDF
基于改进A^(*)蚁群融合算法的路径规划研究
12
作者 王锋 李凯璇 +2 位作者 朱子文 朱磊 王海迪 《火力与指挥控制》 CSCD 北大核心 2024年第1期111-117,123,共8页
随着智能化技术的发展,无人车路径规划技术在未来无人战场上将发挥重要的作用。针对A^(*)算法易发生碰撞障碍物的问题,提出通过改进转弯机制进行避碰。针对路径较长和不够平滑的问题,提出一种改进A^(*)蚁群融合算法。仿真结果表明,使用... 随着智能化技术的发展,无人车路径规划技术在未来无人战场上将发挥重要的作用。针对A^(*)算法易发生碰撞障碍物的问题,提出通过改进转弯机制进行避碰。针对路径较长和不够平滑的问题,提出一种改进A^(*)蚁群融合算法。仿真结果表明,使用改进A^(*)蚁群融合算法得到的路径长度和平滑度更优,简单地图中路径长度减少2.34%,总转弯角度减小5.62%;复杂地图中路径长度减少2.62%,总转弯角度减小26.3%。因此,该算法在保证无人车避障的基础上,有利于其快速完成相应任务。 展开更多
关键词 无人车 路径规划 A^(*)蚁群融合算法 转弯机制
下载PDF
基于AIS轨迹和改进蚁群算法的船舶航线规划方法
13
作者 陈林春 郝永志 《武汉船舶职业技术学院学报》 2024年第1期87-92,共6页
在保证船舶航线安全的前提下,以最短航程为目标,提出基于AIS轨迹和改进蚁群算法的船舶航线规划方法。对船舶AIS数据进行预处理,去除船舶AIS数据中的冗余数据,完成船舶AIS数据提纯;采用基于粒子群与K均值混合聚类算法的核心转向点筛选与... 在保证船舶航线安全的前提下,以最短航程为目标,提出基于AIS轨迹和改进蚁群算法的船舶航线规划方法。对船舶AIS数据进行预处理,去除船舶AIS数据中的冗余数据,完成船舶AIS数据提纯;采用基于粒子群与K均值混合聚类算法的核心转向点筛选与识别方法,筛选并识别船舶AIS数据中船舶航线核心转向点数据;通过基于改进蚁群算法的航线规划方法,以核心转向点数据为基础,构建航线网络,在此网络中,通过人工势场法对蚁群算法进行改进,对船舶航线进行寻优,实现船舶航线规划。经实验验证,本文方法能够规划出安全合理的船舶航线。 展开更多
关键词 AIS轨迹 改进蚁群算法 航线规划 粒子群 人工势场法
下载PDF
陷阱标记联合懒蚂蚁的自适应粒子群优化算法
14
作者 张伟 蒋岳峰 《系统仿真学报》 CAS CSCD 北大核心 2024年第7期1631-1642,共12页
为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷... 为解决现有粒子群改进策略无法帮助已陷入局部最优和过早收敛的粒子恢复寻优性能的问题,提出一种陷阱标记联合懒蚂蚁的自适应粒子群优化(adaptive particle swarm optimization based on trap label and lazy ant, TLLA-APSO)算法。陷阱标记策略为粒子群提供动态速度增量,使其摆脱最优解的束缚。利用懒蚂蚁寻优策略多样化粒子速度,提升种群多样性。通过惯性认知策略在速度更新中引入历史位置,增加粒子的路径多样性和提升粒子的探索性能,使粒子更有效地避免陷入新的局部最优。理论证明了引入历史位置的粒子群算法的收敛性。仿真实验结果表明,所提算法不仅能有效解决粒子群已陷入局部最优和过早收敛的问题,且与其他算法相比,具有较快的收敛速度和较高的寻优精度。 展开更多
关键词 粒子群优化算法 懒蚂蚁 陷阱标记 局部最优 过早收敛
下载PDF
一种粒子群优化脉冲耦合神经网络的全色锐化算法
15
作者 赵志威 付昱凯 杨树文 《航天返回与遥感》 CSCD 北大核心 2024年第5期51-63,共13页
为了进一步降低多光谱与全色影像融合后的光谱和空间信息失真,提高融合质量,文章提出一种粒子群优化脉冲耦合神经网络的多光谱与全色影像融合算法。该算法基于主成分分析和非下采样剪切波搭建融合方法的基础融合框架,在低频系数融合过... 为了进一步降低多光谱与全色影像融合后的光谱和空间信息失真,提高融合质量,文章提出一种粒子群优化脉冲耦合神经网络的多光谱与全色影像融合算法。该算法基于主成分分析和非下采样剪切波搭建融合方法的基础融合框架,在低频系数融合过程中使用细节注射的融合方法,降低非必要的信息注射,从而提高光谱保持度。在融合高频系数时,采用参数自适应的简化脉冲耦合神经网络计算融合权重,并基于粒子群优化算法全局搜索能够获取最佳融合质量的对应参数,以提高空间信息的完整性和清晰度。文章通过三组实验验证提出算法的可行性,并与现有的、经典的融合算法进行对比,实验显示:文章提出的融合算法在三组实验中的光谱角映射均在0.1左右,通用图像质量指数在0.9以上。实验结果表明:该算法不仅能够有效提高全色与多光谱影像的融合质量,而且融合效果稳健,在对比实验中具有最佳的融合性能。 展开更多
关键词 全色与多光谱影像 遥感影像融合 脉冲耦合神经网络 粒子群优化算法
下载PDF
多传感器融合下船舶机电系统多发故障信号监测
16
作者 李烈熊 戴立庆 《舰船科学技术》 北大核心 2024年第5期149-152,共4页
为了提高船舶维护效率,提出一种多传感器融合下船舶机电系统多发故障信号监测方法。根据故障状态下的信号频率,使用小波变换法提取故障信号特征参数作为蚁群算法优化BP神经网络输入,实现多发故障诊断,并通过DS证据理论完成多传感器数据... 为了提高船舶维护效率,提出一种多传感器融合下船舶机电系统多发故障信号监测方法。根据故障状态下的信号频率,使用小波变换法提取故障信号特征参数作为蚁群算法优化BP神经网络输入,实现多发故障诊断,并通过DS证据理论完成多传感器数据融合,得出故障诊断结果。实验结果表明,该方法可通过多传感器融合判断出船舶机电系统故障类型,即使一种传感器出现故障也不影响诊断效果,诊断船舶机电系统多发故障平均准确率高达97.02%,能够实现较为精准的船舶机电系统多发故障监测。 展开更多
关键词 多传感器融合 船舶机电系统 故障监测 小波变换 蚁群算法 DS证据理论
下载PDF
基于改进PSO优化的RBF火灾预测系统
17
作者 孙立辉 周洁 徐金鸣 《智能计算机与应用》 2024年第7期216-221,共6页
针对系统预测火灾状态不准确,导致火情变大造成人民群众生命和财产损失的问题,本文提出了一种基于改进粒子群优化的径向基神经网络多传感器数据融合算法的火灾状态预测系统。以温度、烟雾浓度、一氧化碳浓度为输入,以无火、阴燃火、明... 针对系统预测火灾状态不准确,导致火情变大造成人民群众生命和财产损失的问题,本文提出了一种基于改进粒子群优化的径向基神经网络多传感器数据融合算法的火灾状态预测系统。以温度、烟雾浓度、一氧化碳浓度为输入,以无火、阴燃火、明火的概率为输出,为了避免输出产生偏差,模糊推理系统对神经网络系统的输出做补偿。由于粒子群算法存在容易陷入局部最优的缺陷,采用一种非线性动态自适应惯性权重的改进粒子群优化算法(IPSO)。仿真实验表明,改进后的系统,以明火为例的平均绝对百分比误差达到0.169、均方根误差达到0.0021、平均绝对误差达到0.031。 展开更多
关键词 改进粒子群优化算法 径向基神经网络 模糊推理系统 预测火灾状态 多传感器数据融合算法
下载PDF
三维环境中机器人路径规划算法改进 被引量:1
18
作者 杨小月 李宏伟 +2 位作者 秦雨露 姜懿芮 王步云 《计算机工程与设计》 北大核心 2024年第4期1039-1046,共8页
为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算... 为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算法进行改进优化。采用双向搜索策略,在起点和终点同时运行改进后的RRT算法和蚁群算法,相向而行,对路径长度和运行时间进行优化。针对生成路径不够平滑等问题,引入B样条曲线平滑策略优化路径。仿真结果表明,所提算法能够有效用于机器人三维路径规划。 展开更多
关键词 快速扩展随机树 蚁群算法 B样条曲线 算法融合 双向搜索 机器人路径规划 三维环境
下载PDF
IACO-GA-IPSO融合算法AUV三维全局路径规划
19
作者 刘新宇 赵俊涛 +1 位作者 佘莹莹 张英浩 《舰船科学技术》 北大核心 2024年第18期99-105,共7页
为了解决传统蚁群算法收敛速度慢,易陷入局部最优,传统粒子群算法搜索精度差,初始路径不规则等问题,提出一种融合了改进蚁群算法(IACO)、改进粒子群算法(IPSO)和遗传算法(GA)的IACO-GA-IPSO路径规划算法。首先定义三维海洋环境模型,将... 为了解决传统蚁群算法收敛速度慢,易陷入局部最优,传统粒子群算法搜索精度差,初始路径不规则等问题,提出一种融合了改进蚁群算法(IACO)、改进粒子群算法(IPSO)和遗传算法(GA)的IACO-GA-IPSO路径规划算法。首先定义三维海洋环境模型,将工作空间沿Z轴方向划分成水平的栅格平面;其次建立多标准的路径优劣评价模型;最后由融合算法规划路径:IACO算法生成次优种群,GA算法优化种群多样性,IPSO算法快速收敛到全局最优。实验结果表明,融合算法能充分发挥每种算法的优点,克服种群规模和收敛速度的矛盾,优化初始种群,提高全局搜索能力、局部搜索精度和算法运行效率,加快收敛速度并避免陷入局部最优路径。 展开更多
关键词 AUV三维路径规划 融合智能算法 改进蚁群算法 改进粒子群算法 遗传算法
下载PDF
Hybrid Particle Swarm-Ant Colony Algorithm to Describe the Phase Equilibrium of Systems Containing Supercritical Fluids with Ionic Liquids
20
作者 Juan A.Lazzus 《Communications in Computational Physics》 SCIE 2013年第6期107-125,共19页
Based on biologically inspired algorithms,a thermodynamic model to describe the vapor-liquid equilibrium of binary complex mixtures containing supercritical fluids and ionic liquids,is presented.The Peng-Robinson equa... Based on biologically inspired algorithms,a thermodynamic model to describe the vapor-liquid equilibrium of binary complex mixtures containing supercritical fluids and ionic liquids,is presented.The Peng-Robinson equation of state with the Wong-Sandler mixing rules are used to evaluate the fugacity coefficient on the systems.Then,a hybrid particle swarm-ant colony optimization was used to minimize the difference between calculated and experimental bubble pressure,and calculate the binary interaction parameters for the excess Gibbs free energy of all systems used.Simulations are carried out in nine systems with imidazolium-based ionic liquids.The results show that the bubble pressures were correlated with low deviations between experimental and calculated values.These deviations show that the proposed hybrid algorithm is the preferable method to describe the phase equilibrium of these complex mixtures,and can be used for other similar systems. 展开更多
关键词 particle swarm optimization ant colony optimization vapor-liquid equilibrium ionic liquids supercritical fluids Peng-Robinson equation of state
原文传递
上一页 1 2 31 下一页 到第
使用帮助 返回顶部