Anthocyanidin in plants, an important pigment, is of great interest to researchers, consumers, and commercial entities due to its physiological functions. Anthocyanin content and mRNA levels of anthocynin biosynthesis...Anthocyanidin in plants, an important pigment, is of great interest to researchers, consumers, and commercial entities due to its physiological functions. Anthocyanin content and mRNA levels of anthocynin biosynthesis genes were investigated in storage root of different purple-fleshed sweet potatoes (PFSP) genotypes to understand the regulation mechanism of anthocyanin under weak light conditions. Anthocyanin content, its amount of accumulation, and the expression of CHS, DFR, F3H, GT, and ANS genes in the PFSP storage root under weak light conditions were studied. The results demonstrated that the anthocyanin content of the treatments was decreased and was obviously lower than that of the control until 30 days after shading in Ayamurasaki, while it was lower than that of the control from the beginning of shading in Jishu 18. Their accumulation rates of both treatmeants were lower than its control before 10-20 d of shading in Jishu 18, while those of Ayamurasaki weren't in their treatments. This indicated that Jishul 8 is more sensitive to light as compared to Ayamuraska. Under the different weak light conditions, mRNA levels for ibCHS, ibF3H, ibDFR, and ibANS were obviously decreased, while the expression of ibGT was increased. These results indicated that anthocyanin content was regulated by light at the mRNA levels and the enzymatic level in sweet potato. Therefore, the development dynamic response to anthocyanin content varied in different genotypes of PFSP, and mRNA levels of anthocyanin biosynthesis were inhibited under the weak light condition.展开更多
In this study, we selected four different color fleshed sweet potatoes, purple- (Jizi 01), red- (Xinong 431), yellow- (Beijing 553) and white- (Shangshu 19) fleshed cultivars as test materials, analyzed nutrient compo...In this study, we selected four different color fleshed sweet potatoes, purple- (Jizi 01), red- (Xinong 431), yellow- (Beijing 553) and white- (Shangshu 19) fleshed cultivars as test materials, analyzed nutrient composition, dietary fiber content, anthocyanins quantification, and total phenolics content, and also measured their total antioxidant activity in four different types of sweet potato. In view of differences in flesh color, the nutrient contents of different cultivars appeared to be significantly different. Starch contents of Beijing 553 and Shangshu 19 were higher, but fat contents were lower than others. Protein content of Shangshu 19 was the highest followed by Jizi 01 and Xinong 431. In addition, our analysis results confirmed that purple fleshed sweet potato possesses much higher anthocyanins content than others, even up to 6.23 mg/g dry matter. Also, dietary fiber, total phenolics content, and total antioxidant capacity of Jizi 01 were significantly higher.展开更多
基金support by the NationalHigh-Tech R&D Program of China (863 Program,2006AA100107)the National Key Technologies R&DProgram of China (2006BAD01A06-2)+2 种基金the NationalSpecial Scientific Research Project for Public Industryof China (nyhyzx07-012-03)the Project of 948 from Ministry of Agriculture of China (2006-G21-02)the National System of Sweet Potato Industrial Tech-nology of China (nycytx-16-B-3)
文摘Anthocyanidin in plants, an important pigment, is of great interest to researchers, consumers, and commercial entities due to its physiological functions. Anthocyanin content and mRNA levels of anthocynin biosynthesis genes were investigated in storage root of different purple-fleshed sweet potatoes (PFSP) genotypes to understand the regulation mechanism of anthocyanin under weak light conditions. Anthocyanin content, its amount of accumulation, and the expression of CHS, DFR, F3H, GT, and ANS genes in the PFSP storage root under weak light conditions were studied. The results demonstrated that the anthocyanin content of the treatments was decreased and was obviously lower than that of the control until 30 days after shading in Ayamurasaki, while it was lower than that of the control from the beginning of shading in Jishu 18. Their accumulation rates of both treatmeants were lower than its control before 10-20 d of shading in Jishu 18, while those of Ayamurasaki weren't in their treatments. This indicated that Jishul 8 is more sensitive to light as compared to Ayamuraska. Under the different weak light conditions, mRNA levels for ibCHS, ibF3H, ibDFR, and ibANS were obviously decreased, while the expression of ibGT was increased. These results indicated that anthocyanin content was regulated by light at the mRNA levels and the enzymatic level in sweet potato. Therefore, the development dynamic response to anthocyanin content varied in different genotypes of PFSP, and mRNA levels of anthocyanin biosynthesis were inhibited under the weak light condition.
文摘In this study, we selected four different color fleshed sweet potatoes, purple- (Jizi 01), red- (Xinong 431), yellow- (Beijing 553) and white- (Shangshu 19) fleshed cultivars as test materials, analyzed nutrient composition, dietary fiber content, anthocyanins quantification, and total phenolics content, and also measured their total antioxidant activity in four different types of sweet potato. In view of differences in flesh color, the nutrient contents of different cultivars appeared to be significantly different. Starch contents of Beijing 553 and Shangshu 19 were higher, but fat contents were lower than others. Protein content of Shangshu 19 was the highest followed by Jizi 01 and Xinong 431. In addition, our analysis results confirmed that purple fleshed sweet potato possesses much higher anthocyanins content than others, even up to 6.23 mg/g dry matter. Also, dietary fiber, total phenolics content, and total antioxidant capacity of Jizi 01 were significantly higher.