YiwenAbstractThe aim of this study was to explore the mechanism of skin allergic reactions,and the role of skin allergic mediators in different types of allergic reactions.Further,we reviewed and classified anti-aller...YiwenAbstractThe aim of this study was to explore the mechanism of skin allergic reactions,and the role of skin allergic mediators in different types of allergic reactions.Further,we reviewed and classified anti-allergic safety evaluation models of cosmetics based on skin allergic media.In addition,the study explored in vitro experiments,cell experiments and animal experiments performed using anti-allergic safety evaluation model.The findings of this study provide information on the importance of anti-allergic safety evaluation models in cosmetics industry,and guides on selection of anti-allergic raw materials.Moreover,the findings of this study provide a basis for further research on development of mild cosmetics.展开更多
This study presents an order exponential model for estimating road traffic safety in city clusters.The proposed model introduces the traffic flow intrinsic properties and uses the characteristics and regular patterns ...This study presents an order exponential model for estimating road traffic safety in city clusters.The proposed model introduces the traffic flow intrinsic properties and uses the characteristics and regular patterns of traffic development to identify road traffic safety levels in city clusters.Additionally,an evaluation index system of city cluster road traffic safety was constructed based on the spatial and temporal distribution.Then Order Exponential Evaluation Model(OEEM),a comprehensive model using order exponent function for road traffic safety evaluation,was put forward,which considers the main characteristics and the generation process of traffic accidents.The model effectively controlled the unsafe behavior of the traffic system.It could define the levels of city cluster road traffic safety and dynamically detect road safety risk.The proposed model was verified with statistical data from three Chinese city clusters by comparing the common model for road traffic safety with an ideal model.The results indicate that the order exponent approach undertaken in this study can be extended and applied to other research topics and fields.展开更多
This paper describes a set of on-site earthquake safety evaluation systems for buildings, which were developed based on a network platform. The system embedded into the quantitative research results which were complet...This paper describes a set of on-site earthquake safety evaluation systems for buildings, which were developed based on a network platform. The system embedded into the quantitative research results which were completed in accordance with the provisions from Post-earthquake Field Works, Part 2: Safety Assessment of Buildings, GB18208.2 -2001, and was further developed into an easy-to-use software platform. The system is aimed at allowing engineering professionals, civil engineeing technicists or earthquake-affected victims on site to assess damaged buildings through a network after earthquakes. The authors studied the function structure, process design of the safety evaluation module, and hierarchical analysis algorithm module of the system in depth, and developed the general architecture design, development technology and database design of the system. Technologies such as hierarchical architecture design and Java EE were used in the system development, and MySQL5 was adopted in the database development. The result is a complete evaluation process of information collection, safety evaluation, and output of damage and safety degrees, as well as query and statistical analysis of identified buildings. The system can play a positive role in sharing expert post-earthquake experience and promoting safety evaluation of buildings on a seismic field.展开更多
Safety evaluation of toppling rock slopes developing in reservoir areas is crucial. To reduce the uncertainty of safety evaluation, this study developed a composite cloud model, which improved the combination weights ...Safety evaluation of toppling rock slopes developing in reservoir areas is crucial. To reduce the uncertainty of safety evaluation, this study developed a composite cloud model, which improved the combination weights of the decision-making trial and evaluation laboratory (DEMATEL) and criteria importance through intercriteria correlation (CRITIC) methods. A safety evaluation system was developed according to in situ monitoring data. The backward cloud generator was used to calculate the numerical characteristics of a cloud model of quantitative indices, and different virtual clouds were used to synthesize some clouds into a generalized one. The synthesized numerical characteristics were calculated to comprehensively evaluate the safety of toppling rock slopes. A case study of a toppling rock slope near the Huangdeng Hydropower Station in China was conducted using monitoring data collected since operation of the hydropower project began. The results indicated that the toppling rock slope was moderately safe with a low safety margin. The composite cloud model considers the fuzziness and randomness of safety evaluation and enables interchange between qualitative and quantitative knowledge. This study provides a new theoretical method for evaluating the safety of toppling rock slopes. It can aid in the predication, control, and even prevention of disasters.展开更多
Seismic safety evaluation is a basic work for determining the seismic resistance requirements of major construc-tion projects. The effect, especially the economic effect of the seismic safety evaluation has been gener...Seismic safety evaluation is a basic work for determining the seismic resistance requirements of major construc-tion projects. The effect, especially the economic effect of the seismic safety evaluation has been generally con-cerned. The paper gives a model for estimating the effect of seismic safety evaluation and calculates roughly the economic effect of seismic safety evaluation with some examples.展开更多
[Objective] This study aimed to evaluate tbe healthy risk of genetically modified ( GM ) soybeans by using a novel approach for functions and safety of food. [ Me^od] Different from traditional evaluation of substan...[Objective] This study aimed to evaluate tbe healthy risk of genetically modified ( GM ) soybeans by using a novel approach for functions and safety of food. [ Me^od] Different from traditional evaluation of substantial equivalence, three great innovations were performed in this study, involving in basic diet, evalu- ation approaches and principle, as well as the clarification of connotation differences between absolute and relative mass of organs. Hence a novel BDI-GS (Bendib Damage Index and General Score) evaluation approach was established and applied in comparative evaluation between RR GM and natural soybeans. Healthy male ICR mice during linear growth were selected; experimental mice were fed with 15% RR GM soybeans and 15% natural soybeans blending maize meal diets, and control mice were fed with single maize meal diet for 13 d; the mice were dissected after collecting blood samples and perfectly obtained nine organs or tissues to re- cord their masses and conduct statistical analyses. [Result] Plenty of matching information was obtained through simple design. The growth performance of treated mice was markedly of individual differences, some mice were thwarted due to regular intake of RR soybeans. Meanwhile, the functions and safety of RR soybeans were markedly lowered in overall nutritional and healthy effects than those of natural soybeans expressed in GS values, and presents some declines in nutrition and health of thymus, pancreas and spermary; especially, it can make thymus immune (P 〈0.05) in markedly lower level than that of natural soybeans. [ Conclusion] Therefore, major troubles and risks of RR soybeans intake are of personal risks in different degrees, in addition, it may increase sub-health and related chronic epi- demics risks, and herein it will presents certain safety issues. The creation of this novel evaluation system provides a simple and available evaluation approach for functions and potential risks revelation of food effects, and will yield far-reaching influences to safety evaluation and healthy development of GM foods, as well as public health.展开更多
Generally, mine roads are located in the mountain areas, as its complex topography, mostly along the river near the cliffs, steep bend anxious, the mine road design has to adopt lower technical standards relatively an...Generally, mine roads are located in the mountain areas, as its complex topography, mostly along the river near the cliffs, steep bend anxious, the mine road design has to adopt lower technical standards relatively and usually is lack of traffic safety facilities. Especially, there are mainly medium-sized vehicles on mine road, under the heavy traffic vehicles affect repeatedly, high frequency of traffic accidents more easily happen in mine road area and cause serious effects on life or property. Combining with the particularity of mine road safety environment, this paper studies the basic theory of safety evaluation, analyses the factors of traffic safety design and special mine terrain conditions, and then establishes mine road safety index system and evaluation model based on the principles such as systematicness, independent indexes, qualitative and quantitative analysis, feasibility, scientificity and reliability. At last, the paper successfully evaluates the safety of road in Huang Mailing phosphate rock area with fuzzy AHP method based on engineering project.展开更多
Copper metal is one important raw material of national economy, and its security is tightly linked with industrialization process. A comprehensive security evaluation index system, including three first class indicato...Copper metal is one important raw material of national economy, and its security is tightly linked with industrialization process. A comprehensive security evaluation index system, including three first class indicators, nine second class indicators and fourteen third class indicators, was constructed based on the pressure-state-response (PSR) model. And efficacy coeff^cient method was adopted in dimensionless treatment and entropy method was used to obtain the weight. Then, the data of China's copper from 1992 to 2011 were studied and collected. By processing these data, a comprehensive safety index of China's copper was got. The results showed that the comprehensive safety index of China's copper rose from its low point. The safety pressure state of China's copper was improved. The safety state of China's copper continued to be tight. The response state continued to rise. The overall situation of China's copper safety was improving, but still not optimistic.展开更多
With the rapid expansion of hydropower projects, Construction safety problem has become one of the bottlenecks for the development of hydropower industry. Combined with the construction of the diversion channel projec...With the rapid expansion of hydropower projects, Construction safety problem has become one of the bottlenecks for the development of hydropower industry. Combined with the construction of the diversion channel project of Guan Yinyan hydropower station, from the point of view of construction traffic safety, based on the result of the FAHP model, factors which influence the construction safety of the diversion channel project of Guan Yinyan hydropower station have been found, relative measures focuses on the approach to eliminate hazards and guarantee construction safety have been elaborated.展开更多
The damage and even failure of hard brittle rocks has been the most important challenge facing the safety of construction of deep engineering works,so the key to solving this problem is the recognition of the strength...The damage and even failure of hard brittle rocks has been the most important challenge facing the safety of construction of deep engineering works,so the key to solving this problem is the recognition of the strength characteristics and description of the mechanical behavior of hard brittle rocks.Therefore,in view of this problem,in this study,we first analyzed the strength and mechanical response characteristics revealed in tests of,and site excavation in,hard brittle rocks.Second,by analyzing rock-strength envelopes on meridional and deviatoric planes,the generalized polyaxial strain energy(GPSE)strength criterion was applied.This allows description of the effects of the minimum principal stress,intermediate principal stress,hydrostatic pressure,and Lode’s angle of stress on the strength of hard rocks.By establishing evolutionary relationships of strength parameters and dilation parameters with plastic volumetric strain in rock failure,we established an elasto-plastic mechanical constitutive model for hard brittle rocks based on the GPSE criterion.In addition,through use of the failure approach index theory and the dilatancy safety factor,an evaluation index for degree of damage considering dilatant effects of rocks was proposed.Finally,the constitutive model established in this study and the proposed evaluation index were integrated into the numerical simulation method to simulate triaxial tests on rocks and numerical simulation of deformation and fracture of the rocks surrounding the deep-buried auxiliary tunnels in China’s Jinping II Hydropower Station.In this way,the reasonableness of the model and the index was verified.The strength theory and the constitutive model established in this research are applicable to the analysis of high-stress deformation and fracture of hard brittle rock masses,which supports the theoretical work related to deep engineering operations.展开更多
The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspens...The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder.展开更多
文摘YiwenAbstractThe aim of this study was to explore the mechanism of skin allergic reactions,and the role of skin allergic mediators in different types of allergic reactions.Further,we reviewed and classified anti-allergic safety evaluation models of cosmetics based on skin allergic media.In addition,the study explored in vitro experiments,cell experiments and animal experiments performed using anti-allergic safety evaluation model.The findings of this study provide information on the importance of anti-allergic safety evaluation models in cosmetics industry,and guides on selection of anti-allergic raw materials.Moreover,the findings of this study provide a basis for further research on development of mild cosmetics.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51178157)the High-level Project of the Top Six Talents in Jiangsu Province(Grant No.JXQC-021)+1 种基金the Key Science and Technology Program in Henan Province(Grant No.182102310004)the Humanities and Social Science Research Programs Foundation of Ministry of Education of China(Grant No.18YJAZH028).
文摘This study presents an order exponential model for estimating road traffic safety in city clusters.The proposed model introduces the traffic flow intrinsic properties and uses the characteristics and regular patterns of traffic development to identify road traffic safety levels in city clusters.Additionally,an evaluation index system of city cluster road traffic safety was constructed based on the spatial and temporal distribution.Then Order Exponential Evaluation Model(OEEM),a comprehensive model using order exponent function for road traffic safety evaluation,was put forward,which considers the main characteristics and the generation process of traffic accidents.The model effectively controlled the unsafe behavior of the traffic system.It could define the levels of city cluster road traffic safety and dynamically detect road safety risk.The proposed model was verified with statistical data from three Chinese city clusters by comparing the common model for road traffic safety with an ideal model.The results indicate that the order exponent approach undertaken in this study can be extended and applied to other research topics and fields.
基金Major Research Plan of the National Natural Science Foundation of China under Grant No.91315301-10Project of Earthquake Code Compilation and Revising:Postearthquake Field Works-Part 2:Safety Assessment of Buildings under Grant No.14410024701Basic Scientific Research Special Project of IEM,CEA under Grant No.2009A01
文摘This paper describes a set of on-site earthquake safety evaluation systems for buildings, which were developed based on a network platform. The system embedded into the quantitative research results which were completed in accordance with the provisions from Post-earthquake Field Works, Part 2: Safety Assessment of Buildings, GB18208.2 -2001, and was further developed into an easy-to-use software platform. The system is aimed at allowing engineering professionals, civil engineeing technicists or earthquake-affected victims on site to assess damaged buildings through a network after earthquakes. The authors studied the function structure, process design of the safety evaluation module, and hierarchical analysis algorithm module of the system in depth, and developed the general architecture design, development technology and database design of the system. Technologies such as hierarchical architecture design and Java EE were used in the system development, and MySQL5 was adopted in the database development. The result is a complete evaluation process of information collection, safety evaluation, and output of damage and safety degrees, as well as query and statistical analysis of identified buildings. The system can play a positive role in sharing expert post-earthquake experience and promoting safety evaluation of buildings on a seismic field.
基金supported by the Natural Science Foundation of China(Grant No.51939004)the Fundamental Research Funds for the Central Universities(Grant No.B210204009)the China Huaneng Group Science and Technology Project(Grant No.HNKJ18-H24).
文摘Safety evaluation of toppling rock slopes developing in reservoir areas is crucial. To reduce the uncertainty of safety evaluation, this study developed a composite cloud model, which improved the combination weights of the decision-making trial and evaluation laboratory (DEMATEL) and criteria importance through intercriteria correlation (CRITIC) methods. A safety evaluation system was developed according to in situ monitoring data. The backward cloud generator was used to calculate the numerical characteristics of a cloud model of quantitative indices, and different virtual clouds were used to synthesize some clouds into a generalized one. The synthesized numerical characteristics were calculated to comprehensively evaluate the safety of toppling rock slopes. A case study of a toppling rock slope near the Huangdeng Hydropower Station in China was conducted using monitoring data collected since operation of the hydropower project began. The results indicated that the toppling rock slope was moderately safe with a low safety margin. The composite cloud model considers the fuzziness and randomness of safety evaluation and enables interchange between qualitative and quantitative knowledge. This study provides a new theoretical method for evaluating the safety of toppling rock slopes. It can aid in the predication, control, and even prevention of disasters.
文摘Seismic safety evaluation is a basic work for determining the seismic resistance requirements of major construc-tion projects. The effect, especially the economic effect of the seismic safety evaluation has been generally con-cerned. The paper gives a model for estimating the effect of seismic safety evaluation and calculates roughly the economic effect of seismic safety evaluation with some examples.
基金Supported by Development Fund of the Institute of Radiation Medicine(No.SF1227)Research Fund for Youth Scholars of Union Medical College(No.2012D03)Research Fund for the Doctoral Program of Higher Education of China(No.20121106120042)
文摘[Objective] This study aimed to evaluate tbe healthy risk of genetically modified ( GM ) soybeans by using a novel approach for functions and safety of food. [ Me^od] Different from traditional evaluation of substantial equivalence, three great innovations were performed in this study, involving in basic diet, evalu- ation approaches and principle, as well as the clarification of connotation differences between absolute and relative mass of organs. Hence a novel BDI-GS (Bendib Damage Index and General Score) evaluation approach was established and applied in comparative evaluation between RR GM and natural soybeans. Healthy male ICR mice during linear growth were selected; experimental mice were fed with 15% RR GM soybeans and 15% natural soybeans blending maize meal diets, and control mice were fed with single maize meal diet for 13 d; the mice were dissected after collecting blood samples and perfectly obtained nine organs or tissues to re- cord their masses and conduct statistical analyses. [Result] Plenty of matching information was obtained through simple design. The growth performance of treated mice was markedly of individual differences, some mice were thwarted due to regular intake of RR soybeans. Meanwhile, the functions and safety of RR soybeans were markedly lowered in overall nutritional and healthy effects than those of natural soybeans expressed in GS values, and presents some declines in nutrition and health of thymus, pancreas and spermary; especially, it can make thymus immune (P 〈0.05) in markedly lower level than that of natural soybeans. [ Conclusion] Therefore, major troubles and risks of RR soybeans intake are of personal risks in different degrees, in addition, it may increase sub-health and related chronic epi- demics risks, and herein it will presents certain safety issues. The creation of this novel evaluation system provides a simple and available evaluation approach for functions and potential risks revelation of food effects, and will yield far-reaching influences to safety evaluation and healthy development of GM foods, as well as public health.
文摘Generally, mine roads are located in the mountain areas, as its complex topography, mostly along the river near the cliffs, steep bend anxious, the mine road design has to adopt lower technical standards relatively and usually is lack of traffic safety facilities. Especially, there are mainly medium-sized vehicles on mine road, under the heavy traffic vehicles affect repeatedly, high frequency of traffic accidents more easily happen in mine road area and cause serious effects on life or property. Combining with the particularity of mine road safety environment, this paper studies the basic theory of safety evaluation, analyses the factors of traffic safety design and special mine terrain conditions, and then establishes mine road safety index system and evaluation model based on the principles such as systematicness, independent indexes, qualitative and quantitative analysis, feasibility, scientificity and reliability. At last, the paper successfully evaluates the safety of road in Huang Mailing phosphate rock area with fuzzy AHP method based on engineering project.
基金Projects(13BGL105,13&ZD024) supported by the National Social Science Foundation of ChinaProject(2013ZK2003) supported by the Major Soft Program of Hunan Province,China
文摘Copper metal is one important raw material of national economy, and its security is tightly linked with industrialization process. A comprehensive security evaluation index system, including three first class indicators, nine second class indicators and fourteen third class indicators, was constructed based on the pressure-state-response (PSR) model. And efficacy coeff^cient method was adopted in dimensionless treatment and entropy method was used to obtain the weight. Then, the data of China's copper from 1992 to 2011 were studied and collected. By processing these data, a comprehensive safety index of China's copper was got. The results showed that the comprehensive safety index of China's copper rose from its low point. The safety pressure state of China's copper was improved. The safety state of China's copper continued to be tight. The response state continued to rise. The overall situation of China's copper safety was improving, but still not optimistic.
文摘With the rapid expansion of hydropower projects, Construction safety problem has become one of the bottlenecks for the development of hydropower industry. Combined with the construction of the diversion channel project of Guan Yinyan hydropower station, from the point of view of construction traffic safety, based on the result of the FAHP model, factors which influence the construction safety of the diversion channel project of Guan Yinyan hydropower station have been found, relative measures focuses on the approach to eliminate hazards and guarantee construction safety have been elaborated.
基金The work was supported by the National Key Research and Development Project of China(Grant No.2016 YFC 0401804)the Key projects of the Yalong River Joint Fund of the National Natural Science Foundation of China(Grant No.U1865203)+1 种基金the National Natural Science Foundation of China(Grant Nos.51539002 and 51779018)It was also supported by the Basic Research Fund for Central Research Institutes of Public Causes(CKSF 2017054/YT).
文摘The damage and even failure of hard brittle rocks has been the most important challenge facing the safety of construction of deep engineering works,so the key to solving this problem is the recognition of the strength characteristics and description of the mechanical behavior of hard brittle rocks.Therefore,in view of this problem,in this study,we first analyzed the strength and mechanical response characteristics revealed in tests of,and site excavation in,hard brittle rocks.Second,by analyzing rock-strength envelopes on meridional and deviatoric planes,the generalized polyaxial strain energy(GPSE)strength criterion was applied.This allows description of the effects of the minimum principal stress,intermediate principal stress,hydrostatic pressure,and Lode’s angle of stress on the strength of hard rocks.By establishing evolutionary relationships of strength parameters and dilation parameters with plastic volumetric strain in rock failure,we established an elasto-plastic mechanical constitutive model for hard brittle rocks based on the GPSE criterion.In addition,through use of the failure approach index theory and the dilatancy safety factor,an evaluation index for degree of damage considering dilatant effects of rocks was proposed.Finally,the constitutive model established in this study and the proposed evaluation index were integrated into the numerical simulation method to simulate triaxial tests on rocks and numerical simulation of deformation and fracture of the rocks surrounding the deep-buried auxiliary tunnels in China’s Jinping II Hydropower Station.In this way,the reasonableness of the model and the index was verified.The strength theory and the constitutive model established in this research are applicable to the analysis of high-stress deformation and fracture of hard brittle rock masses,which supports the theoretical work related to deep engineering operations.
基金Project(201606090050)supported by China Scholarship CouncilProject(51278104)supported by the National Natural Science Foundation of China+2 种基金Project(2011Y03)supported by Jiangsu Province Transportation Scientific Research Programs,ChinaProject(20133204120015)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003)supported by Jiangsu Province Universities Natural Science Foundation,China
文摘The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder.