Artificial architected metamaterials equipped with unique mechanical and physical properties that are naturally inaccessible can be obtained by rational design.In this work,the innovative three-dimensional(3D)chiral a...Artificial architected metamaterials equipped with unique mechanical and physical properties that are naturally inaccessible can be obtained by rational design.In this work,the innovative three-dimensional(3D)chiral and anti-chiral metamaterials are developed referring to the face-rotating polyhedral(FRP)structure present in the virus.Through assembling planar triangular units into the regular octahedron cells,several typical forms of chiral and anti-chiral metamaterials can be obtained by different assembly methods.By changing the topology parameters,the Poisson’s ratio can be adjusted between[0,2.8].The metamaterials are fabricated by 3D printing utilizing shape memory polymer,and the mechanical properties are analyzed via Finite Element Analysis(FEA)and experiments,including Young’s modulus,Poisson’s ratio,and tension-twist coupling behavior.In addition,target metamaterial with specific local deformation behavior is obtained by programmatic calculations and distributions to meet special requirements or achieve unique applications.The shape memory property endows the mechanical metamaterials with more potential applications.展开更多
基金the National Natural Science Foundation of China[Grant No.12072094 and 12172106]Heilongjiang Touyan Innovation Team Program and the Fundamental Research Funds for the Central Universities[No.IR2021106 and IR2021232]。
文摘Artificial architected metamaterials equipped with unique mechanical and physical properties that are naturally inaccessible can be obtained by rational design.In this work,the innovative three-dimensional(3D)chiral and anti-chiral metamaterials are developed referring to the face-rotating polyhedral(FRP)structure present in the virus.Through assembling planar triangular units into the regular octahedron cells,several typical forms of chiral and anti-chiral metamaterials can be obtained by different assembly methods.By changing the topology parameters,the Poisson’s ratio can be adjusted between[0,2.8].The metamaterials are fabricated by 3D printing utilizing shape memory polymer,and the mechanical properties are analyzed via Finite Element Analysis(FEA)and experiments,including Young’s modulus,Poisson’s ratio,and tension-twist coupling behavior.In addition,target metamaterial with specific local deformation behavior is obtained by programmatic calculations and distributions to meet special requirements or achieve unique applications.The shape memory property endows the mechanical metamaterials with more potential applications.