A delayed predator-prey Gompertz model is investigated. The stability is analyzed. Anti-control of Hopf bifurcation for the model is presented. Numerical simulations are performed to confirm that the new feedback cont...A delayed predator-prey Gompertz model is investigated. The stability is analyzed. Anti-control of Hopf bifurcation for the model is presented. Numerical simulations are performed to confirm that the new feedback controller using time delay is efficient in creating Hopf bifurcation. Finally, main conclusions are included.展开更多
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
The DDE-Biftool software is applied to solve the dynamical stability and bifurcation problem of the neutrophil cells model. Based on Hopf point finding with the stability property of the equilibrium solution loss, the...The DDE-Biftool software is applied to solve the dynamical stability and bifurcation problem of the neutrophil cells model. Based on Hopf point finding with the stability property of the equilibrium solution loss, the continuation of the bifurcating periodical solution starting from Hopf point is exploited. The generalized Hopf point is tracked by seeking for the critical value of free parameter of the switching phenomena of the open loop, which describes the lineup of bifurcating periodical solutions from Hopf point. The normal form near the generalized Hopf point is computed by Lyapunov-Schimdt reduction scheme combined with the center manifold analytical technique. The near dynamics is classified by geometrically different topological phase portraits.展开更多
In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems ...In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems and designing control schemes for unstable pivots can alleviate the traffic congestion problem from a new perspective. In this work, the full-speed differential model considering the vehicle network environment is improved in order to adjust the traffic flow from the perspective of bifurcation control, the existence conditions of Hopf bifurcation and saddle-node bifurcation in the model are proved theoretically, and the stability mutation point for the stability of the transportation system is found. For the unstable bifurcation point, a nonlinear system feedback controller is designed by using Chebyshev polynomial approximation and stochastic feedback control method. The advancement, postponement, and elimination of Hopf bifurcation are achieved without changing the system equilibrium point, and the mutation behavior of the transportation system is controlled so as to alleviate the traffic congestion. The changes in the stability of complex traffic systems are explained through the bifurcation analysis, which can better capture the characteristics of the traffic flow. By adjusting the control parameters in the feedback controllers, the influence of the boundary conditions on the stability of the traffic system is adequately described, and the effects of the unstable focuses and saddle points on the system are suppressed to slow down the traffic flow. In addition, the unstable bifurcation points can be eliminated and the Hopf bifurcation can be controlled to advance, delay, and disappear,so as to realize the control of the stability behavior of the traffic system, which can help to alleviate the traffic congestion and describe the actual traffic phenomena as well.展开更多
In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term....In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term. Firstly, for ODE model, the local stability of equilibrium point is given. And by using bifurcation theory and selecting suitable bifurcation parameters, we find many kinds of bifurcation phenomena, including Transcritical bifurcation and Hopf bifurcation. For the reaction-diffusion model, we find that Turing instability occurs. Besides, it is proved that Hopf bifurcation exists in the model. Finally, numerical simulations are presented to verify and illustrate the theoretical results.展开更多
A memristor-coupled heterogenous neural network consisting of two-dimensional(2D)FitzHugh–Nagumo(FHN)and Hindmarsh–Rose(HR)neurons with two time delays is established.Taking the time delays as the control parameters...A memristor-coupled heterogenous neural network consisting of two-dimensional(2D)FitzHugh–Nagumo(FHN)and Hindmarsh–Rose(HR)neurons with two time delays is established.Taking the time delays as the control parameters,the existence of Hopf bifurcation near the stable equilibrium point in four cases is derived theoretically,and the validity of the Hopf bifurcation condition is verified by numerical analysis.The results show that the two time delays can make the stable equilibrium point unstable,thus leading to periodic oscillations induced by Hopf bifurcation.Furthermore,the time delays in FHN and HR neurons have different effects on the firing activity of neural network.Complex firing patterns,such as quiescent state,chaotic spiking,and periodic spiking can be induced by the time delay in FHN neuron,while the neural network only exhibits quiescent state and periodic spiking with the change of the time delay in HR neuron.Especially,phase synchronization between the heterogeneous neurons is explored,and the results show that the time delay in HR neurons has a greater effect on blocking the synchronization than the time delay in FHN neuron.Finally,the theoretical analysis is verified by circuit simulations.展开更多
The article mainly explores the Hopf bifurcation of a kind of nonlinear system with Gaussian white noise excitation and bounded random parameter.Firstly,the nonlinear system with multisource stochastic fac-tors is red...The article mainly explores the Hopf bifurcation of a kind of nonlinear system with Gaussian white noise excitation and bounded random parameter.Firstly,the nonlinear system with multisource stochastic fac-tors is reduced to an equivalent deterministic nonlinear system by the sequential orthogonal decomposi-tion method and the Karhunen-Loeve(K-L)decomposition theory.Secondly,the critical conditions about the Hopf bifurcation of the equivalent deterministic system are obtained.At the same time the influence of multisource stochastic factors on the Hopf bifurcation for the proposed system is explored.Finally,the theorical results are verified by the numerical simulations.展开更多
In this paper, a system of Lorenz-type ordinary differential equations is considered and, under some assumptions about the parameter space, the presence of the supercritical non-degenerate Hopf bifurcation is demonstr...In this paper, a system of Lorenz-type ordinary differential equations is considered and, under some assumptions about the parameter space, the presence of the supercritical non-degenerate Hopf bifurcation is demonstrated. The technical tool used consists of the Central Manifold theorem, a well-known formula to calculate the Lyapunov coefficient and Hopf’s Theorem. For particular values of the parameters in the parameter space established in the main result of this work, a graph is presented that describes the evolution of the trajectories, obtained by means of numerical simulation.展开更多
This paper constructed and studied a nonresident computer virus model with age structure and two delays effects. The non-negativity and boundedness of the solution of the model have been discussed, and then gave the b...This paper constructed and studied a nonresident computer virus model with age structure and two delays effects. The non-negativity and boundedness of the solution of the model have been discussed, and then gave the basic regeneration number, and obtained the conditions for the existence and the stability of the virus-free equilibrium and the computer virus equilibrium. Theoretical analysis shows the conditions under which the model undergoes Hopf bifurcation in three different cases. The numerical examples are provided to demonstrate the theoretical results.展开更多
Due to the increasing use of passive absorbers to control unwanted vibrations,many studies have been done on energy absorbers ideally,but the lack of studies of real environmental conditions on these absorbers is felt...Due to the increasing use of passive absorbers to control unwanted vibrations,many studies have been done on energy absorbers ideally,but the lack of studies of real environmental conditions on these absorbers is felt.The present work investigates the effect of viscoelasticity on the stability and bifurcations of a system attached to a nonlinear energy sink(NES).In this paper,the Burgers model is assumed for the viscoelasticity in an NES,and a linear oscillator system is considered for investigating the instabilities and bifurcations.The equations of motion of the coupled system are solved by using the harmonic balance and pseudo-arc-length continuation methods.The results show that the viscoelasticity affects the frequency intervals of the Hopf and saddle-node branches,and by increasing the stiffness parameters of the viscoelasticity,the conditions of these branches occur in larger ranges of the external force amplitudes,and also reduce the frequency range of the branches.In addition,increasing the viscoelastic damping parameter has the potential to completely eliminate the instability of the system and gradually reduce the amplitude of the jump phenomenon.展开更多
This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms,and with linear delayed velocity feedback.The analysis indicates that for a sufficiently large velocity feedback gain,th...This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms,and with linear delayed velocity feedback.The analysis indicates that for a sufficiently large velocity feedback gain,the equilibrium of the system may undergo a number of stability switches with an increase of time delay,and then becomes unstable forever.At each critical value of time delay for which the system changes its stability,a generic Hopf bifurcation occurs and a periodic motion emerges in a one-sided neighbourhood of the critical time delay.The method of Fredholm alternative is applied to determine the bifurcating periodic motions and their stability.It stresses on the effect of the system parameters on the stable regions and the amplitudes of the bifurcating periodic solutions.展开更多
In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter va...In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter varies. The system has rich and complex dynamical behaviors, and it is investigated in terms of Lyapunov exponents, bifurcation diagrams, Poincare maps, frequency spectrum, and numerical simulations. In addition, the theoretical analysis shows that the system undergoes a Hopf bifurcation as one parameter varies, which is illustrated by the numerical simulation. Finally, an analog circuit is designed to implement this hyper-chaotic system.展开更多
This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support.The nonlinear equation of motion is derived by forces equilibrium on microelement ...This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support.The nonlinear equation of motion is derived by forces equilibrium on microelement of the system under consideration.The spatial coordinate of the system is discretized by the differential quadrature method and then the dynamic equation is solved by the Newton-Raphson method.The numerical solutions show that the inner fluid velocity of the Hopf bifurcation point of the curved pipe varies with different values of the parameter, nonlinear spring stiffness.Based on this,the cycle and divergent motions are both found to exist at specific fluid flow velocities with a given value of the nonlinear spring stiffness.The results are useful for further study of the nonlinear dynamic mechanism of the curved fluid conveying pipe.展开更多
The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates...The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the Composite laminated piezoelectric plate are obtained.展开更多
The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of t...The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of the electromechanical coupling transmission system is deduced and a time delay feedback is introduced to control the dynamic behaviors of the system. The characteristic roots and the stable regions of time delay are determined by the direct method, and the relationship between the feedback gain and the length summation of stable regions is analyzed. Choosing the time delay as a bifurcation parameter, we find that the Hopf bifurcation occurs when the time delay passes through a critical value.A formula for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is given by using the normal form method and the center manifold theorem. Numerical simulations are also performed, which confirm the analytical results.展开更多
The Hopfbifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE) model are investigated by using the Hopf bifurcation theorem. The stabil...The Hopfbifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE) model are investigated by using the Hopf bifurcation theorem. The stability of the Hopf bifurcation periodic solution is discussed by applying the normal form theory and the center manifold theorem. When parameters satisfy some conditions, the spatial homogenous equilibrium solution and the spatial homogenous periodic solution become unstable. Our results show that if parameters are properly chosen, Hopf bifurcation does not occur for the ODE system, but occurs for the PDE system.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China(l1261010) Supported by the Soft Science and Technology Program of Guizhou Province(2011LKC2030)+3 种基金 Suppored by the Natural Science and Technology Foundation of Guizhou Province(J[2012]2100) Suppored by the Governor Foundation of Guizhou Province([2012]53) Suppored by the Doctoral Foundation of Guizhou University of Finance and Economics(2010) Suppored by the Science and Technology Program of Hunan Province(2010FJ6021)
文摘A delayed predator-prey Gompertz model is investigated. The stability is analyzed. Anti-control of Hopf bifurcation for the model is presented. Numerical simulations are performed to confirm that the new feedback controller using time delay is efficient in creating Hopf bifurcation. Finally, main conclusions are included.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
文摘The DDE-Biftool software is applied to solve the dynamical stability and bifurcation problem of the neutrophil cells model. Based on Hopf point finding with the stability property of the equilibrium solution loss, the continuation of the bifurcating periodical solution starting from Hopf point is exploited. The generalized Hopf point is tracked by seeking for the critical value of free parameter of the switching phenomena of the open loop, which describes the lineup of bifurcating periodical solutions from Hopf point. The normal form near the generalized Hopf point is computed by Lyapunov-Schimdt reduction scheme combined with the center manifold analytical technique. The near dynamics is classified by geometrically different topological phase portraits.
基金Project supported by the National Natural Science Foundation of China(Grant No.72361031)the Gansu Province University Youth Doctoral Support Project(Grant No.2023QB-049)。
文摘In recent years, the traffic congestion problem has become more and more serious, and the research on traffic system control has become a new hot spot. Studying the bifurcation characteristics of traffic flow systems and designing control schemes for unstable pivots can alleviate the traffic congestion problem from a new perspective. In this work, the full-speed differential model considering the vehicle network environment is improved in order to adjust the traffic flow from the perspective of bifurcation control, the existence conditions of Hopf bifurcation and saddle-node bifurcation in the model are proved theoretically, and the stability mutation point for the stability of the transportation system is found. For the unstable bifurcation point, a nonlinear system feedback controller is designed by using Chebyshev polynomial approximation and stochastic feedback control method. The advancement, postponement, and elimination of Hopf bifurcation are achieved without changing the system equilibrium point, and the mutation behavior of the transportation system is controlled so as to alleviate the traffic congestion. The changes in the stability of complex traffic systems are explained through the bifurcation analysis, which can better capture the characteristics of the traffic flow. By adjusting the control parameters in the feedback controllers, the influence of the boundary conditions on the stability of the traffic system is adequately described, and the effects of the unstable focuses and saddle points on the system are suppressed to slow down the traffic flow. In addition, the unstable bifurcation points can be eliminated and the Hopf bifurcation can be controlled to advance, delay, and disappear,so as to realize the control of the stability behavior of the traffic system, which can help to alleviate the traffic congestion and describe the actual traffic phenomena as well.
文摘In this paper, we study a modified Leslie-Gower predator-prey model with Smith growth subject to homogeneous Neumann boundary condition, in which the functional response is the Crowley-Martin functional response term. Firstly, for ODE model, the local stability of equilibrium point is given. And by using bifurcation theory and selecting suitable bifurcation parameters, we find many kinds of bifurcation phenomena, including Transcritical bifurcation and Hopf bifurcation. For the reaction-diffusion model, we find that Turing instability occurs. Besides, it is proved that Hopf bifurcation exists in the model. Finally, numerical simulations are presented to verify and illustrate the theoretical results.
基金the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).
文摘A memristor-coupled heterogenous neural network consisting of two-dimensional(2D)FitzHugh–Nagumo(FHN)and Hindmarsh–Rose(HR)neurons with two time delays is established.Taking the time delays as the control parameters,the existence of Hopf bifurcation near the stable equilibrium point in four cases is derived theoretically,and the validity of the Hopf bifurcation condition is verified by numerical analysis.The results show that the two time delays can make the stable equilibrium point unstable,thus leading to periodic oscillations induced by Hopf bifurcation.Furthermore,the time delays in FHN and HR neurons have different effects on the firing activity of neural network.Complex firing patterns,such as quiescent state,chaotic spiking,and periodic spiking can be induced by the time delay in FHN neuron,while the neural network only exhibits quiescent state and periodic spiking with the change of the time delay in HR neuron.Especially,phase synchronization between the heterogeneous neurons is explored,and the results show that the time delay in HR neurons has a greater effect on blocking the synchronization than the time delay in FHN neuron.Finally,the theoretical analysis is verified by circuit simulations.
基金This work was supported by the grants from the National Nat-ural Science Foundation of China(No.11772002)Ningxia higher education first-class discipline construction funding project(No.NXYLXK2017B09)+2 种基金Major Special project of North Minzu University(No.ZDZX201902)Open project of The Key Laboratory of In-telligent Information and Big Data Processing of NingXia Province(No.2019KLBD008)Postgraduate Innovation Project of North Minzu University(No.YCX22099).
文摘The article mainly explores the Hopf bifurcation of a kind of nonlinear system with Gaussian white noise excitation and bounded random parameter.Firstly,the nonlinear system with multisource stochastic fac-tors is reduced to an equivalent deterministic nonlinear system by the sequential orthogonal decomposi-tion method and the Karhunen-Loeve(K-L)decomposition theory.Secondly,the critical conditions about the Hopf bifurcation of the equivalent deterministic system are obtained.At the same time the influence of multisource stochastic factors on the Hopf bifurcation for the proposed system is explored.Finally,the theorical results are verified by the numerical simulations.
文摘In this paper, a system of Lorenz-type ordinary differential equations is considered and, under some assumptions about the parameter space, the presence of the supercritical non-degenerate Hopf bifurcation is demonstrated. The technical tool used consists of the Central Manifold theorem, a well-known formula to calculate the Lyapunov coefficient and Hopf’s Theorem. For particular values of the parameters in the parameter space established in the main result of this work, a graph is presented that describes the evolution of the trajectories, obtained by means of numerical simulation.
文摘This paper constructed and studied a nonresident computer virus model with age structure and two delays effects. The non-negativity and boundedness of the solution of the model have been discussed, and then gave the basic regeneration number, and obtained the conditions for the existence and the stability of the virus-free equilibrium and the computer virus equilibrium. Theoretical analysis shows the conditions under which the model undergoes Hopf bifurcation in three different cases. The numerical examples are provided to demonstrate the theoretical results.
基金financial support from K.N.Toosi University of Technology,Tehran,Iran。
文摘Due to the increasing use of passive absorbers to control unwanted vibrations,many studies have been done on energy absorbers ideally,but the lack of studies of real environmental conditions on these absorbers is felt.The present work investigates the effect of viscoelasticity on the stability and bifurcations of a system attached to a nonlinear energy sink(NES).In this paper,the Burgers model is assumed for the viscoelasticity in an NES,and a linear oscillator system is considered for investigating the instabilities and bifurcations.The equations of motion of the coupled system are solved by using the harmonic balance and pseudo-arc-length continuation methods.The results show that the viscoelasticity affects the frequency intervals of the Hopf and saddle-node branches,and by increasing the stiffness parameters of the viscoelasticity,the conditions of these branches occur in larger ranges of the external force amplitudes,and also reduce the frequency range of the branches.In addition,increasing the viscoelastic damping parameter has the potential to completely eliminate the instability of the system and gradually reduce the amplitude of the jump phenomenon.
基金The project supported by the National Natural Science Foundation of China (19972025)
文摘This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms,and with linear delayed velocity feedback.The analysis indicates that for a sufficiently large velocity feedback gain,the equilibrium of the system may undergo a number of stability switches with an increase of time delay,and then becomes unstable forever.At each critical value of time delay for which the system changes its stability,a generic Hopf bifurcation occurs and a periodic motion emerges in a one-sided neighbourhood of the critical time delay.The method of Fredholm alternative is applied to determine the bifurcating periodic motions and their stability.It stresses on the effect of the system parameters on the stable regions and the amplitudes of the bifurcating periodic solutions.
基金supported by the National Natural Science Foundation of China(Grant Nos.10772135 and 60874028)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11202148)+2 种基金the Incentive Funding of the National Research Foundation of South Africa(GrantNo.IFR2009090800049)the Eskom Tertiary Education Support Programme of South Africathe Research Foundation of Tianjin University of Science and Technology
文摘In the paper, a novel four-wing hyper-chaotic system is proposed and analyzed. A rare dynamic phenomenon is found that this new system with one equilibrium generates a four-wing-hyper-chaotic attractor as parameter varies. The system has rich and complex dynamical behaviors, and it is investigated in terms of Lyapunov exponents, bifurcation diagrams, Poincare maps, frequency spectrum, and numerical simulations. In addition, the theoretical analysis shows that the system undergoes a Hopf bifurcation as one parameter varies, which is illustrated by the numerical simulation. Finally, an analog circuit is designed to implement this hyper-chaotic system.
基金Project supported by the National Natural Science Foundation of China(No.10272051).
文摘This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support.The nonlinear equation of motion is derived by forces equilibrium on microelement of the system under consideration.The spatial coordinate of the system is discretized by the differential quadrature method and then the dynamic equation is solved by the Newton-Raphson method.The numerical solutions show that the inner fluid velocity of the Hopf bifurcation point of the curved pipe varies with different values of the parameter, nonlinear spring stiffness.Based on this,the cycle and divergent motions are both found to exist at specific fluid flow velocities with a given value of the nonlinear spring stiffness.The results are useful for further study of the nonlinear dynamic mechanism of the curved fluid conveying pipe.
基金Project supported by the National Natural Science Foundation of China(Nos.11402127,11290152 and 11072008)
文摘The double Hopf bifurcation of a composite laminated piezoelectric plate with combined external and internal excitations is studied. Using a multiple scale method, the average equations are obtained in two coordinates. The bifurcation response equations of the composite laminated piezoelectric plate with the primary parameter resonance, i.e., 1:3 internal resonance, are achieved. Then, the bifurcation feature of bifurcation equations is considered using the singularity theory. A bifurcation diagram is obtained on the parameter plane. Different steady state solutions of the average equations are analyzed. By numerical simulation, periodic vibration and quasi-periodic vibration responses of the Composite laminated piezoelectric plate are obtained.
基金Project supported by the National Natural Science Foundation of China(Grant No.61104040)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203090)the University Innovation Team of Hebei Province Leading Talent Cultivation Project,China(Grant No.LJRC013)
文摘The stability and the Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback are studied. By considering the energy in the air-gap field of the AC motor, the dynamical equation of the electromechanical coupling transmission system is deduced and a time delay feedback is introduced to control the dynamic behaviors of the system. The characteristic roots and the stable regions of time delay are determined by the direct method, and the relationship between the feedback gain and the length summation of stable regions is analyzed. Choosing the time delay as a bifurcation parameter, we find that the Hopf bifurcation occurs when the time delay passes through a critical value.A formula for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is given by using the normal form method and the center manifold theorem. Numerical simulations are also performed, which confirm the analytical results.
基金Project supported by the National Natural Science Foundation of China (No.10771032)the Natural Science Foundation of Jiangsu Province (BK2006088)
文摘The Hopfbifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE) model are investigated by using the Hopf bifurcation theorem. The stability of the Hopf bifurcation periodic solution is discussed by applying the normal form theory and the center manifold theorem. When parameters satisfy some conditions, the spatial homogenous equilibrium solution and the spatial homogenous periodic solution become unstable. Our results show that if parameters are properly chosen, Hopf bifurcation does not occur for the ODE system, but occurs for the PDE system.