The biological activity of plant polysaccharides can be enhanced by sulfated modification.In this study,the immunomodulatory effect of sulfated Cyclocarya paliurus polysaccharides(SCP3)on macrophages RAW264.7 and its ...The biological activity of plant polysaccharides can be enhanced by sulfated modification.In this study,the immunomodulatory effect of sulfated Cyclocarya paliurus polysaccharides(SCP3)on macrophages RAW264.7 and its potential molecular mechanism were investigated.Results showed that SCP3 at 25-100μg/m L increased viability and improved phagocytosis of RAW264.7 cells.Meanwhile,SCP3 could activate mitogen-activated protein kinase(MAPK)and nuclear factor kappa B(NF-κB)signaling pathways,which increased the phosphorylation of Erk1/2,JNK,p38 and NF-κB p65,promoting secretion of cytokines tumor necrosis factorα(TNF-α),interleukin 6(IL-6)and nitric oxide(NO)as well as the production of reactive oxygen species(ROS).In addition,Toll-like receptor 4(TLR4)receptor inhibitors were able to block the production of NO and TNF-αby SCP3-stimulated macrophages.Based on Western blot analysis and validation using specific inhibitors against MAPK and NF-κB signaling pathways,the results demonstrated that SCP3 induced macrophages activation and enhanced TNF-αand NO production via TLR4-mediated MAPK and NF-κB pathways.In summary,SCP3 has significant immunomodulatory potential.The underlying molecular mechanism was that SCP3 activates macrophages via TLR4 receptors to promote ROS production,which in turn activates the downstream MAPK/NF-κB signaling pathway and then increases the secretion levels of cytokines and NO.展开更多
Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffe...Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffer from slow reaction kinetics,poor stability,and low solar absorptance.Here,we successfully realized high power density and highly stable solar thermochemical energy storage/release by synergistically accelerating energy storage/release via binary sulfate and promoting cycle stability,mechanical strength,and solar absorptance via Al–Mn–Fe oxides.The energy storage density of proposed CaCO_(3)pellets is still as high as 1455 kJ kg^(-1)with only a slight decay rate of 4.91%over 100 cycles,which is higher than that of state-of-the-art pellets in the literature,in stark contrast to 69.9%of pure CaCO_(3)pellets over 35 cycles.Compared with pure CaCO_(3),the energy storage power density or decomposition rate is improved by 120%due to lower activation energy and promotion of Ca^(2+)diffusion by binary sulfate.The energy release or carbonation rate rises by 10%because of high O^(2-)transport ability of molten binary sulfate.Benefiting from fast energy storage/release rate and high solar absorptance,thermochemical energy storage efficiency is enhanced by more than 50%under direct solar irradiation.This work paves the way for application of direct solar thermochemical energy storage techniques via achieving fast energy storage/release rate,high energy density,good cyclic stability,and high solar absorptance simultaneously.展开更多
BACKGROUND Multidrug-resistant Gram-negative bacteria,exacerbated by excessive use of antimicrobials and immunosuppressants,are a major health threat.AIM To study the clinical efficacy and safety of colistin sulfate i...BACKGROUND Multidrug-resistant Gram-negative bacteria,exacerbated by excessive use of antimicrobials and immunosuppressants,are a major health threat.AIM To study the clinical efficacy and safety of colistin sulfate in the treatment of carbapenem-resistant Gram-negative bacilli-induced pneumonia,and to provide theoretical reference for clinical diagnosis and treatment.METHODS This retrospective analysis involved 54 patients with Gram-negative bacilli pneumonia admitted to intensive care unit of The General Hospital of the Northern Theater Command of the People's Liberation Army of China from August 2020 to June 2022.After bacteriological culture,the patients'airway secretions were collected to confirm the presence of Gram-negative bacilli.The patients were divided into the experimental and control groups according to the medication used.The research group consisted of 28 patients who received polymyxin sulfate combined with other drugs through intravenous,nebulization,or intravenous combined with nebulization,with a daily dosage of 1.5–3.0 million units.The control group consisted of 26 patients who received standard dosages of other antibiotics(including sulbactam sodium for injection,cefoperazone sodium sulbactam for injection,tigecycline,meropenem,or vaborbactam).RESULTS Of the 28 patients included in the research group,26 patients showed improvement,treatment was ineffective for two patients,and one patient died,with the treatment efficacy rate of 92.82%.Of the 26 patients in the control group,18 patients improved,treatment was ineffective for eight patients,and two patients died,with the treatment efficacy rate of 54.9%;significant difference was observed between the two groups(P<0.05).The levels of white blood cell(WBC),procalcitonin(PCT),and C-reactive protein(CRP)in both groups were significantly lower after treatment than before treatment(P<0.05),and the levels of WBC,PCT,and CRP in the research group were significantly lower than those in the control group(P<0.05).Compared with before treatment,there were no significant changes in aspartate aminotransferase,creatinine,and glomerular filtration rate in both groups,while total bilirubin and alanine aminotransferase decreased after treatment(P<0.05)with no difference between the groups.In patients with good clinical outcomes,the sequential organ failure assessment(SOFA)score was low when treated with inhaled polymyxin sulfate,and specific antibiotic treatment did not improve the outcome.Sepsis and septic shock as well as a low SOFA score were independent factors associated with good clinical outcomes.CONCLUSION Polymyxin sulfate has a significant effect on the treatment of patients with multiple drug-resistant Gram-negative bacilli pneumonia and other infections in the lungs and is safe and reliable.Moreover,the administration route of low-dose intravenous injection combined with nebulization shows better therapeutic effects and lower adverse reactions,providing new ideas for clinical administration.展开更多
Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment.The cellular deposition of dense extracellular matrix proteins ...Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment.The cellular deposition of dense extracellular matrix proteins such as chondroitin sulfate proteoglycans inside and around the glial scar is known to affect axonal growth and be a major obstacle to autogenous repair.These proteins are thus candidate targets for spinal cord injury therapy.Our previous studies demonstrated that 810 nm photo biomodulation inhibited the formation of chondroitin sulfate proteoglycans after spinal cord injury and greatly improved motor function in model animals.However,the specific mechanism and potential targets involved remain to be clarified.In this study,to investigate the therapeutic effect of photo biomodulation,we established a mouse model of spinal cord injury by T9 clamping and irradiated the injury site at a power density of 50 mW/cm~2 for 50 minutes once a day for 7 consecutive days.We found that photobiomodulation greatly restored motor function in mice and down regulated chondroitin sulfate proteoglycan expression in the injured spinal cord.Bioinformatics analysis revealed that photobiomodulation inhibited the expression of proteoglycan-related genes induced by spinal cord injury,and versican,a type of proteoglycan,was one of the most markedly changed molecules.Immunofluorescence staining showed that after spinal cord injury,versican was present in astrocytes in spinal cord tissue.The expression of versican in primary astrocytes cultured in vitro increased after inflammation induction,whereas photobiomodulation inhibited the expression of ve rsican.Furthermore,we found that the increased levels of p-Smad3,p-P38 and p-Erk in inflammatory astrocytes were reduced after photobiomodulation treatment and after delivery of inhibitors including FR 180204,(E)-SIS3,and SB 202190.This suggests that Sma d 3/Sox9 and MAP K/Sox9 pathways may be involved in the effects of photobiomodulation.In summary,our findings show that photobiomodulation modulates the expression of chondroitin sulfate proteoglycans,and versican is one of the key target molecules of photo biomodulation.MAPK/Sox9 and Smad3/Sox9 pathways may play a role in the effects of photo biomodulation on chondroitin sulfate proteoglycan accumulation after spinal cord injury.展开更多
Superhydrophobic materials have shown tremendous potential in various fields.However,the adhesion,wetting,and pinning of low-surface-tension liquids greatly limit their multifunctional applications.Therefore,the creat...Superhydrophobic materials have shown tremendous potential in various fields.However,the adhesion,wetting,and pinning of low-surface-tension liquids greatly limit their multifunctional applications.Therefore,the creation of superamphiphobic coatings that combine superhydrophobic and superoleophobic properties through a simple preparation strategy is desirable.In this study,we successfully developed an organic-inorganic hybrid superamphiphobic coating on Q235 carbon steel using aluminum oxide nanopar-ticles,organosilanes,and waterborne epoxy resin via a versatile spray-coating technique.The coating ex-hibited high contact angles(>151°)and low sliding angles(<7°)for water and oil liquids,demonstrating excellent superamphiphobic characteristics.Electrochemical tests demonstrated significant improvements in charge transfer resistance and low-frequency modulus for the superamphiphobic coating.The corro-sion potential shifted positively by 590 mV,and the corrosion current density decreased by four orders of magnitude.Additionally,the coating endured 480 h of salt spray and 2400 h of outdoor atmospheric exposure,showcasing superior anti-corrosion capacity.Freezing tests of water droplets at-10°C and-15°C confirmed that the coating significantly prolonged the freezing time with reduced ice adhesion strength.We believe that the designed superamphiphobic coating with integrated functionalities of selfcleaning,anti-corrosion,anti-icing,and anti-liquid-adhesion can provide important solutions for extending the lifespan of materials in marine and industrial environments.展开更多
Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect ...Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect othermaterials from factors including acid and alkali,water vapor,bacteria.Therefore,it is necessary to summarize theresearch progress of polymer materials in the field of pollution and corrosion prevention in recent years.This articlesummarizes four types of polymer materials with good weather resistance:polyurethane(PU),polydimethylsiloxane(PDMS),polyvinylidene fluoride(PVDF),and polyvinylidene chloride(PVDC).These four polymer materials aresuitable for making polymer anti-corrosion or anti-fouling materials and each has its own characteristics.PU can firmlyadhere to various substrates,effectively protecting and extending their lifespan,but the environmentally friendly varietiescurrently used,namely water-borne polyurethanes(WPU),generally have poor mechanical properties.PDMS is nontoxicand has excellent hydrophobicity,but its static anti-fouling ability is insufficient when applied in the field of antifouling.PVDF has good chemical resistance and high mechanical properties,good UV resistance making it suitable foroutdoor use like in the marine environment.However,PVDF lacks flexibility after molding and its manufacturing cost isrelatively high.PVDC has excellent water vapor barrier properties,but poor adhesion to metal material surfaces.Therefore,researchers need to modify these four polymers when using them to solve the problem of corrosion orbiofouling.The article will review the research progress of four types of polymers in recent years from the perspectivesof anti-corrosion,anti-fouling,and a strategy named as self-healing that is beneficial for protecting polymer surfacesfrom mechanical damage,and summarize the modification methods adopted by researchers when applying thesematerials.Finally,a summary of the application and the prospects of these polymer materials are presented.展开更多
Marine corrosion and biofouling are challenges that affect marine industrial equipment,and protecting equipment with functional coatings is a simple and effective approach.However,it is extremely difficult to combine ...Marine corrosion and biofouling are challenges that affect marine industrial equipment,and protecting equipment with functional coatings is a simple and effective approach.However,it is extremely difficult to combine anti-corrosion and anti-fouling properties in a single coating.In this work,we combine reduced graphene oxide(rGO)/silver nanoparticles(AgNPs)with a hydrophilic polymer in a bio-based silicone-epoxy resin to create a coating with both anti-fouling and anti-corrosion properties.The excel-lent anti-fouling performance of the coating results from a ternary synergistic mechanism involving foul-ing release,contact inhibition,and a hydration effect,while the outstanding anti-corrosion performance is provided by a ternary synergistic anti-corrosion mechanism that includes a dense interpenetrating net-work(IPN)structure,a barrier effect,and passivation.The results show that the obtained coating pos-sesses superior anti-fouling activity against protein,bacteria,algae,and other marine organisms,as well as excellent anti-corrosion and certain self-healing properties due to its dynamic cross-linked net-work of rGO/AgNPs and the hydrophilic polymer.This work provides an anti-corrosion and anti-fouling integrated coating for marine industrial equipment.展开更多
This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon redu...This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed.展开更多
With the improvement of consumers’scientific skin care consciousness,skin problems-oriented efficacy skin care and precise skin care methods have become the future development trend.Glycosaminoglycans are long,linear...With the improvement of consumers’scientific skin care consciousness,skin problems-oriented efficacy skin care and precise skin care methods have become the future development trend.Glycosaminoglycans are long,linear polysaccharides comprised of repeated disaccharide units,which are highly expressed endogenously in the skin.They are commonly present in skin cells,cell surface and extracellular matrix,with pleiotropic biological function.In addition to hyaluronic acid,the sulfated glycosaminoglycans heparin,heparan sulfate,dermatan sulfate and chondroitin sulfate play an important role in anti-wrinkle,firming,soothing,and improving microvascular circulation,but are still in the research and development stage in cosmetics.This paper summarizes the skincare mechanism of sulfated glycosaminoglycans,and demonstrates the potential of sulfated glycosaminoglycans as functional raw materials in cosmetics.展开更多
Sulfated polysaccharides extracted from seaweeds,including Carrageenan,Fucoidan and Ulvan,are crucial bioactive compounds known for their diverse beneficial properties,such as anti-inflammatory,antitumor,immunomodulat...Sulfated polysaccharides extracted from seaweeds,including Carrageenan,Fucoidan and Ulvan,are crucial bioactive compounds known for their diverse beneficial properties,such as anti-inflammatory,antitumor,immunomodulatory,antiviral,and anticoagulant effects.These polysaccharides form hydrogels hold immense promise in biomedicine,particularly in tissue engineering,drug delivery systems and wound healing.This review comprehensively explores the sources and structural characteristics of the three important sulfated polysaccharides extracted from different algae species.It elucidates the gelation mechanisms of these polysaccharides into hydrogels.Furthermore,the biomedical applications of these three sulfated polysaccharide hydrogels in wound healing,drug delivery,and tissue engineering are discussed,highlighting their potential in the biomedicine.展开更多
Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate ...Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions.展开更多
As a cornerstone of the national economy,the iron and steel industry generates a significant amount of sintering dust containing both valuable lead resources and deleterious elements.Flotation is a promising technique...As a cornerstone of the national economy,the iron and steel industry generates a significant amount of sintering dust containing both valuable lead resources and deleterious elements.Flotation is a promising technique for lead recovery from sintering dust,but efficient separation from Fe_(2)O_(3) is still challenging.This study investigated the cooperative effect of sodium lauryl sulfate(SLS,C_(12)H_(25)SO_(4)Na)and sodium pyrophosphate(SPP,Na_(4)P_(2)O_(7))on the selective flotation of lead oxide minerals(PbOHCl and PbSO_(4))from hematite(Fe_(2)O_(3)).Optimal flotation conditions were first identified,resulting in high recovery of lead oxide minerals while inhibiting Fe_(2)O_(3) flotation.Zeta potential measurements,Fourier transform infrared spectroscopy(FT-IR)analysis,adsorption capacity analysis,and X-ray photoelectron spectroscopy(XPS)studies offer insights into the adsorption behaviors of the reagents on mineral surfaces,revealing strong adsorption of SLS on PbOHCl and PbSO_(4) surfaces and remarkable adsorption of SPP on Fe_(2)O_(3).The proposed model of reagent adsorption on mineral surfaces illustrates the selective adsorption behavior,highlighting the pivotal role of reagent adsorption in the separation process.These findings contribute to the efficient and environmentally friendly utilization of iron ore sintering dust for lead recovery,paving the way for sustainable resource management in the iron and steel industry.展开更多
Inflammatory bowel disease(IBD)is a complex relapsing inflammatory disease in the gut and is driven by complicated host-gut microbiome interactions.Gut commensals have shown different functions in IBD prevention and t...Inflammatory bowel disease(IBD)is a complex relapsing inflammatory disease in the gut and is driven by complicated host-gut microbiome interactions.Gut commensals have shown different functions in IBD prevention and treatment.To gain a mechanistic understanding of how different commensals affect intestinal inflammation,we compared the protective effects of 6 probiotics(belonging to the genera Akkermansia,Bifidobacterium,Clostridium,and Enterococcus)on dextran sulfate sodium(DSS)-induced colitis in mice with or without gut microbiota.Anti-inflammatory properties(ratio of interleukin(IL)-10 and IL-12)of these strains were also evaluated in an in vitro mesenteric lymph nodes(MLN)co-culture system.Results showed that 4 probiotics(belonging to the species Bifidobacterium breve,Bifidobacterium bifidum,and Enterococcus faecalis)can alleviate colitis in normal mice.The probiotic strains differed in regulating the intestinal microbiota,cytokines(IL-10,IL-1βand interferon(IFN)-γ),and tight junction function(Zonulin-1 and Occludin).By constrast,Akkermansia muciniphila AH39 and Clostridium butyricum FHuNHHMY49T1 were not protective.Interestingly,B.breve JSNJJNM2 with high anti-inflammatory potential in the MLN model could relieve colitis symptoms in antibiotic cocktail(Abx)-treated mice.Meanwhile,E.faecalis FJSWX25M1induced low levels of cytokines in vitro and showed no beneficial effects.Therefore,we provided insight into the clinical application of probiotics in IBD treatment.展开更多
The rail transit in sulfate-rich areas faces the combined effects of stray current and salt corrosion;however,the sulfate ion transport and concrete degradation mechanisms under such conditions are still unclear.To ad...The rail transit in sulfate-rich areas faces the combined effects of stray current and salt corrosion;however,the sulfate ion transport and concrete degradation mechanisms under such conditions are still unclear.To address this issue,novel sulfate transport and mesoscale splitting tests were designed,with a focus on considering the differences between the interfacial transition zone(ITZ)and cement matrix.Under the influence of stray current,the ITZ played a pivotal role in regulating the transport and mechanical failure processes of sulfate attack,while the tortuous and blocking effects of aggregates almost disappeared.This phenomenon was termed the“stray current-induced ITZ effect.”The experimental data revealed that the difference in sulfate ion transport attributed to the ITZ ranged from 1.90 to 2.31 times,while the difference in splitting strength ranged from 1.56 to 1.64 times.Through the real-time synchronization of splitting experiments and microsecond-responsive particle image velocimetry(PIV)technology,the mechanical properties were exposed to the consequences of the stray currentinduced ITZ effect.The number of splitting cracks in the concrete increased,rather than along the central axis,which was significantly different from the conditions without stray current and the ideal Brazilian disk test.Furthermore,a sulfate ion mass transfer model that incorporates reactivity and electrodiffusion was meticulously constructed.The embedded finite element calculation exhibited excellent agreement with the experimental results,indicating its reliability and accuracy.Additionally,the stress field was determined utilizing analytical methods,and the mechanism underlying crack propagation was successfully obtained.Compared to the cement matrix,a stray current led to more sulfates,more microstructure degradation,and greater increases in thickness and porosity in the ITZ,which was considered to be the essence of the stray current-induced ITZ effect.展开更多
This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction pro...This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction process has been successfully developed to synthesize well-crystallized and single-phase Li_(2)S powder by investigating the melting,sintering and reduction behavior of the mixtures of Li_(2)SO_(4)-Li_(2)S.High purity alumina was found to be the most suitable crucible material for producing high purity Li_(2)S,because it was not attacked by the Li_(2)SO_(4)-Li_(2)S melt during heating,as compared with other materials,such as carbon,mullite,quartz,boron nitride and stainless steel.The use of synthesized LizS resulted in higher purity and substantially higher room temperature ionic conductivity(2.77 mS·cm^(-1))for the argyrodite sulfide electrolyte Li_(6)PS_(5)Cl than commercial Li_(2)S(1.12 mS·cm^(-1)).This novel method offers a great opportunity to produce battery grade Li_(2)S for sulfide solid electrolyte applications.展开更多
BACKGROUND Cold-dampness-type knee osteoarthritis is a common middle-aged and elderly disease,but its pathogenesis is not fully understood,and its clinical treatment has limitations.Glucosamine sulfate capsules are co...BACKGROUND Cold-dampness-type knee osteoarthritis is a common middle-aged and elderly disease,but its pathogenesis is not fully understood,and its clinical treatment has limitations.Glucosamine sulfate capsules are commonly used for treating arthritis,and San Bi Tang is a classic formula of traditional Chinese medicine(TCM)that has the effects of warming yang,dispelling dampness,relaxing muscles,and activating collaterals.This research hypothesized that the combination of modified San Bi Tang and glucosamine sulfate capsules could enhance the clinical efficacy of treating cold-dampness-type knee osteoarthritis through complementary effects.AIM To analyze the clinical efficacy of San Bi Tang combined with glucosamine sulfate capsules when treating cold-dampness-type knee osteoarthritis.METHODS A total of 110 patients with cold-dampness-type knee osteoarthritis were selected as research subjects and randomly divided into a control group and an experimental group of 55 cases each.The control group received only treatment with glucosamine sulfate capsules,while the experimental group received additional treatment with modified San Bi Tang for a duration of 5 wk.The patients’knee joint functions,liver and kidney function indicators,adverse reactions,and vital signs were evaluated and analyzed using SPSS 26.0 software.RESULTS Before treatment,the two groups’genders,ages,and scores were not significantly different,indicating comparability.Both groups’scores improved after treatment,which could indicate pain and knee joint function improvement,but the test group had better scores.The TCM-specific symptoms and the clinical efficacy of the treatment in the test group were higher.Before and after treatment,there were no abnormalities in the patients’liver and kidney function indicators.CONCLUSION The combination of modified San Bi Tang and glucosamine sulfate capsules is superior to treatment with sulfated glucosamine alone and has high safety.展开更多
The sulfate radical-based photocatalytic process is supposed to be the most promising way to degrade organic pollutants.However,the development of a suitable and efficient photocatalyst is very challenging.The 40LaFeO...The sulfate radical-based photocatalytic process is supposed to be the most promising way to degrade organic pollutants.However,the development of a suitable and efficient photocatalyst is very challenging.The 40LaFeO_(3)-CuFe_(2)O_(4)(40LFO-CFO)nanocomposite was constructed and its catalytic performance was studied using Rhodamine B(RhB)as the target pollutant.40LFO-CFO exhibited excellent RhB degradation by the persulfate(PS)-assisted photocatalytic process compared to the pristine LFO and CFO.The degradation rate constant for RhB by 40LFO-CFO in the Vis/PS system was 2.22h^(-1)which is 3.04 times and 5.05 times higher than the pristine LFO(0.73 h^(-1))and CFO(0.44h^(-1)),respectively.Furthermore,the trapping experiments and EPR spectra proved that h^(+) plays a leading role in the bleaching of RhB for the 40LFO-CFO/PS/Vis system.The enhanced photocatalytic oxidation activity of 40LFO-CFO could be attributed to the unique charge carriers flow in 40LFO-CFO due to the Z-scheme and the cooperation effect between photocatalysis and PS activation.The recycle tests confessed the stability of 40LFO-CFO.Additionally,the intermediates and products of RhB are detected by liquid chromatographymass spectrometry(LC-MS),and the photocatalytic degradation routes of RhB for the 40LFO-CFO/Vis/PS system were proposed.Moreover,the 40LFO-CFO nanocomposite has a superior catalytic performance for other organics,suggesting that it is a promising heterocatalyst because of its high catalytic activity and stability for the PS-assisted photocatalytic process.展开更多
BACKGROUND Ulcerative colitis is a chronic inflammatory disease of the colon with an unknown etiology.Alkaline sphingomyelinase(alk-SMase)is specifically expressed by intestinal epithelial cells,and has been reported ...BACKGROUND Ulcerative colitis is a chronic inflammatory disease of the colon with an unknown etiology.Alkaline sphingomyelinase(alk-SMase)is specifically expressed by intestinal epithelial cells,and has been reported to play an anti-inflammatory role.However,the underlying mechanism is still unclear.AIM To explore the mechanism of alk-SMase anti-inflammatory effects on intestinal barrier function and oxidative stress in dextran sulfate sodium(DSS)-induced colitis.METHODS Mice were administered 3%DSS drinking water,and disease activity index was determined to evaluate the status of colitis.Intestinal permeability was evaluated by gavage administration of fluorescein isothiocyanate dextran,and bacterial translocation was evaluated by measuring serum lipopolysaccharide.Intestinal epithelial cell ultrastructure was observed by electron microscopy.Western blotting and quantitative real-time reverse transcription-polymerase chain reaction were used to detect the expression of intestinal barrier proteins and mRNA,respectively.Serum oxidant and antioxidant marker levels were analyzed using commercial kits to assess oxidative stress levels.RESULTS Compared to wild-type(WT)mice,inflammation and intestinal permeability in alk-SMase knockout(KO)mice were more severe beginning 4 d after DSS induction.The mRNA and protein levels of intestinal barrier proteins,including zonula occludens-1,occludin,claudin-3,claudin-5,claudin-8,mucin 2,and secretory immunoglobulin A,were significantly reduced on 4 d after DSS treatment.Ultrastructural observations revealed progressive damage to the tight junctions of intestinal epithelial cells.Furthermore,by day 4,mitochondria appeared swollen and degenerated.Additionally,compared to WT mice,serum malondialdehyde levels in KO mice were higher,and the antioxidant capacity was significantly lower.The expression of the transcription factor nuclear factor erythroid 2-related factor 2(Nrf2)in the colonic mucosal tissue of KO mice was significantly decreased after DSS treatment.mRNA levels of Nrf2-regulated downstream antioxidant enzymes were also decreased.Finally,colitis in KO mice could be effectively relieved by the injection of tertiary butylhydroquinone,which is an Nrf2 activator.CONCLUSION Alk-SMase regulates the stability of the intestinal mucosal barrier and enhances antioxidant activity through the Nrf2 signaling pathway.展开更多
Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechani...Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechanism of foam stability reduction in the presence of asphaltene was analyzed by scanning electron microscope(SEM),UV adsorption spectrophotometric concentration measurement and Zeta potential measurement.When the mass ratio of synthetic oil to foam-formation suspension was 1:9 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 751 s to 239 s,and the half-life of SDS/silica-stabilized foams decreased from 912 s to 298 s.When the mass ratio of synthetic oil to foam-formation suspension was 2:8 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 526 s to 171 s,and the half-life of SDS/silica-stabilized foams decreased from 660 s to 205 s.In addition,due to asphaltene-SDS/silica interaction in the aqueous phase,the absolute value of Zeta potential decreases,and the surface charges of particles reduce,leading to the reduction of repulsive forces between two interfaces of thin liquid film,which in turn,damages the foam stability.展开更多
The damage processes of ordinary concrete and high strength concrete, attacked by solutions of 2. 5%, 5. 0% and 10% Na2SO4(mass fraction)are studied. And the effects of flexural loads with stress ratios of 25% and 5...The damage processes of ordinary concrete and high strength concrete, attacked by solutions of 2. 5%, 5. 0% and 10% Na2SO4(mass fraction)are studied. And the effects of flexural loads with stress ratios of 25% and 50% of the initial flexural strength on the damage process of concrete are also investigated. The results show that the damage process of concrete attacked by sulfate salt exhibits an initial damaged stage, a performance improving stage and a performance worsening stage. When the concentration of Na2SO4 in a solution increases from 2. 5% to 5.0%, the service time of the concrete decreases approximately 25%. Furthermore, it decreases to even 40% with an increase in a Na2SO4 concentration up to 10%. And the flexural load accelerates the deterioration rate of the concrete in the latter period. The stress ratio increases from 0 to 25%, the failure time of the concrete decreases 15% ; and the failure time decreases between 25% and 35% when the stress ratio increases from 25% to 50%. In addition, sulfate corrosion products of concrete are studied by SEM (scanning electron microscopy), EDS (energy disperse spectroscopy) and XRD(X-ray diffraction).展开更多
基金the financial supports by the National Natural Science Foundation of China(82060594)the Natural Science Foundation of Jiangxi Province,China(20202BAB205006)。
文摘The biological activity of plant polysaccharides can be enhanced by sulfated modification.In this study,the immunomodulatory effect of sulfated Cyclocarya paliurus polysaccharides(SCP3)on macrophages RAW264.7 and its potential molecular mechanism were investigated.Results showed that SCP3 at 25-100μg/m L increased viability and improved phagocytosis of RAW264.7 cells.Meanwhile,SCP3 could activate mitogen-activated protein kinase(MAPK)and nuclear factor kappa B(NF-κB)signaling pathways,which increased the phosphorylation of Erk1/2,JNK,p38 and NF-κB p65,promoting secretion of cytokines tumor necrosis factorα(TNF-α),interleukin 6(IL-6)and nitric oxide(NO)as well as the production of reactive oxygen species(ROS).In addition,Toll-like receptor 4(TLR4)receptor inhibitors were able to block the production of NO and TNF-αby SCP3-stimulated macrophages.Based on Western blot analysis and validation using specific inhibitors against MAPK and NF-κB signaling pathways,the results demonstrated that SCP3 induced macrophages activation and enhanced TNF-αand NO production via TLR4-mediated MAPK and NF-κB pathways.In summary,SCP3 has significant immunomodulatory potential.The underlying molecular mechanism was that SCP3 activates macrophages via TLR4 receptors to promote ROS production,which in turn activates the downstream MAPK/NF-κB signaling pathway and then increases the secretion levels of cytokines and NO.
基金supported by the National Natural Science Foundation of China[No.51820105010 and 51888103]support from Jiangsu Province(No.BK20202008,BE2022024,BE2022602,BK20220001,BK20220009,and BK20220077).
文摘Solar thermochemical energy storage based on calcium looping(CaL)process is a promising technology for next-generation concentrated solar power(CSP)systems.However,conventional calcium carbonate(CaCO_(3))pellets suffer from slow reaction kinetics,poor stability,and low solar absorptance.Here,we successfully realized high power density and highly stable solar thermochemical energy storage/release by synergistically accelerating energy storage/release via binary sulfate and promoting cycle stability,mechanical strength,and solar absorptance via Al–Mn–Fe oxides.The energy storage density of proposed CaCO_(3)pellets is still as high as 1455 kJ kg^(-1)with only a slight decay rate of 4.91%over 100 cycles,which is higher than that of state-of-the-art pellets in the literature,in stark contrast to 69.9%of pure CaCO_(3)pellets over 35 cycles.Compared with pure CaCO_(3),the energy storage power density or decomposition rate is improved by 120%due to lower activation energy and promotion of Ca^(2+)diffusion by binary sulfate.The energy release or carbonation rate rises by 10%because of high O^(2-)transport ability of molten binary sulfate.Benefiting from fast energy storage/release rate and high solar absorptance,thermochemical energy storage efficiency is enhanced by more than 50%under direct solar irradiation.This work paves the way for application of direct solar thermochemical energy storage techniques via achieving fast energy storage/release rate,high energy density,good cyclic stability,and high solar absorptance simultaneously.
文摘BACKGROUND Multidrug-resistant Gram-negative bacteria,exacerbated by excessive use of antimicrobials and immunosuppressants,are a major health threat.AIM To study the clinical efficacy and safety of colistin sulfate in the treatment of carbapenem-resistant Gram-negative bacilli-induced pneumonia,and to provide theoretical reference for clinical diagnosis and treatment.METHODS This retrospective analysis involved 54 patients with Gram-negative bacilli pneumonia admitted to intensive care unit of The General Hospital of the Northern Theater Command of the People's Liberation Army of China from August 2020 to June 2022.After bacteriological culture,the patients'airway secretions were collected to confirm the presence of Gram-negative bacilli.The patients were divided into the experimental and control groups according to the medication used.The research group consisted of 28 patients who received polymyxin sulfate combined with other drugs through intravenous,nebulization,or intravenous combined with nebulization,with a daily dosage of 1.5–3.0 million units.The control group consisted of 26 patients who received standard dosages of other antibiotics(including sulbactam sodium for injection,cefoperazone sodium sulbactam for injection,tigecycline,meropenem,or vaborbactam).RESULTS Of the 28 patients included in the research group,26 patients showed improvement,treatment was ineffective for two patients,and one patient died,with the treatment efficacy rate of 92.82%.Of the 26 patients in the control group,18 patients improved,treatment was ineffective for eight patients,and two patients died,with the treatment efficacy rate of 54.9%;significant difference was observed between the two groups(P<0.05).The levels of white blood cell(WBC),procalcitonin(PCT),and C-reactive protein(CRP)in both groups were significantly lower after treatment than before treatment(P<0.05),and the levels of WBC,PCT,and CRP in the research group were significantly lower than those in the control group(P<0.05).Compared with before treatment,there were no significant changes in aspartate aminotransferase,creatinine,and glomerular filtration rate in both groups,while total bilirubin and alanine aminotransferase decreased after treatment(P<0.05)with no difference between the groups.In patients with good clinical outcomes,the sequential organ failure assessment(SOFA)score was low when treated with inhaled polymyxin sulfate,and specific antibiotic treatment did not improve the outcome.Sepsis and septic shock as well as a low SOFA score were independent factors associated with good clinical outcomes.CONCLUSION Polymyxin sulfate has a significant effect on the treatment of patients with multiple drug-resistant Gram-negative bacilli pneumonia and other infections in the lungs and is safe and reliable.Moreover,the administration route of low-dose intravenous injection combined with nebulization shows better therapeutic effects and lower adverse reactions,providing new ideas for clinical administration.
基金supported by the National Natural Science Foundation of China,Nos.81070996(to ZW),81572151(to XH)Shaanxi Provincial Key R&D Program,Nos.2020ZDLSF02-05(to ZW),2021ZDLSF02-10(to XH)+1 种基金Everest Project of Military Medicine of Air Force Medical University,No.2018RCFC02(to XH)Boosting Project of the First Affiliated Hospital of Air Force Medical University,No.XJZT19Z22(to ZW)。
文摘Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment.The cellular deposition of dense extracellular matrix proteins such as chondroitin sulfate proteoglycans inside and around the glial scar is known to affect axonal growth and be a major obstacle to autogenous repair.These proteins are thus candidate targets for spinal cord injury therapy.Our previous studies demonstrated that 810 nm photo biomodulation inhibited the formation of chondroitin sulfate proteoglycans after spinal cord injury and greatly improved motor function in model animals.However,the specific mechanism and potential targets involved remain to be clarified.In this study,to investigate the therapeutic effect of photo biomodulation,we established a mouse model of spinal cord injury by T9 clamping and irradiated the injury site at a power density of 50 mW/cm~2 for 50 minutes once a day for 7 consecutive days.We found that photobiomodulation greatly restored motor function in mice and down regulated chondroitin sulfate proteoglycan expression in the injured spinal cord.Bioinformatics analysis revealed that photobiomodulation inhibited the expression of proteoglycan-related genes induced by spinal cord injury,and versican,a type of proteoglycan,was one of the most markedly changed molecules.Immunofluorescence staining showed that after spinal cord injury,versican was present in astrocytes in spinal cord tissue.The expression of versican in primary astrocytes cultured in vitro increased after inflammation induction,whereas photobiomodulation inhibited the expression of ve rsican.Furthermore,we found that the increased levels of p-Smad3,p-P38 and p-Erk in inflammatory astrocytes were reduced after photobiomodulation treatment and after delivery of inhibitors including FR 180204,(E)-SIS3,and SB 202190.This suggests that Sma d 3/Sox9 and MAP K/Sox9 pathways may be involved in the effects of photobiomodulation.In summary,our findings show that photobiomodulation modulates the expression of chondroitin sulfate proteoglycans,and versican is one of the key target molecules of photo biomodulation.MAPK/Sox9 and Smad3/Sox9 pathways may play a role in the effects of photo biomodulation on chondroitin sulfate proteoglycan accumulation after spinal cord injury.
基金the financial support of the Shandong Provincial Natural Science Foundation(Nos.ZR2022YQ35 and ZR2021LFG004)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2021207).
文摘Superhydrophobic materials have shown tremendous potential in various fields.However,the adhesion,wetting,and pinning of low-surface-tension liquids greatly limit their multifunctional applications.Therefore,the creation of superamphiphobic coatings that combine superhydrophobic and superoleophobic properties through a simple preparation strategy is desirable.In this study,we successfully developed an organic-inorganic hybrid superamphiphobic coating on Q235 carbon steel using aluminum oxide nanopar-ticles,organosilanes,and waterborne epoxy resin via a versatile spray-coating technique.The coating ex-hibited high contact angles(>151°)and low sliding angles(<7°)for water and oil liquids,demonstrating excellent superamphiphobic characteristics.Electrochemical tests demonstrated significant improvements in charge transfer resistance and low-frequency modulus for the superamphiphobic coating.The corro-sion potential shifted positively by 590 mV,and the corrosion current density decreased by four orders of magnitude.Additionally,the coating endured 480 h of salt spray and 2400 h of outdoor atmospheric exposure,showcasing superior anti-corrosion capacity.Freezing tests of water droplets at-10°C and-15°C confirmed that the coating significantly prolonged the freezing time with reduced ice adhesion strength.We believe that the designed superamphiphobic coating with integrated functionalities of selfcleaning,anti-corrosion,anti-icing,and anti-liquid-adhesion can provide important solutions for extending the lifespan of materials in marine and industrial environments.
基金Project(ZR2022QD001)supported by the Shandong Provincial Natural Science Youth Fund Project,ChinaProject(42306228)supported by the National Natural Science Foundation of ChinaProject(2022CXPT027)supported by the Key R&D Program of Shandong Province,China。
文摘Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect othermaterials from factors including acid and alkali,water vapor,bacteria.Therefore,it is necessary to summarize theresearch progress of polymer materials in the field of pollution and corrosion prevention in recent years.This articlesummarizes four types of polymer materials with good weather resistance:polyurethane(PU),polydimethylsiloxane(PDMS),polyvinylidene fluoride(PVDF),and polyvinylidene chloride(PVDC).These four polymer materials aresuitable for making polymer anti-corrosion or anti-fouling materials and each has its own characteristics.PU can firmlyadhere to various substrates,effectively protecting and extending their lifespan,but the environmentally friendly varietiescurrently used,namely water-borne polyurethanes(WPU),generally have poor mechanical properties.PDMS is nontoxicand has excellent hydrophobicity,but its static anti-fouling ability is insufficient when applied in the field of antifouling.PVDF has good chemical resistance and high mechanical properties,good UV resistance making it suitable foroutdoor use like in the marine environment.However,PVDF lacks flexibility after molding and its manufacturing cost isrelatively high.PVDC has excellent water vapor barrier properties,but poor adhesion to metal material surfaces.Therefore,researchers need to modify these four polymers when using them to solve the problem of corrosion orbiofouling.The article will review the research progress of four types of polymers in recent years from the perspectivesof anti-corrosion,anti-fouling,and a strategy named as self-healing that is beneficial for protecting polymer surfacesfrom mechanical damage,and summarize the modification methods adopted by researchers when applying thesematerials.Finally,a summary of the application and the prospects of these polymer materials are presented.
基金supported by the Major Project of Ningbo Science and Technology Innovation 2025(2021Z092)the Defense Industrial Technology Development Program(JCKY2021513B001).
文摘Marine corrosion and biofouling are challenges that affect marine industrial equipment,and protecting equipment with functional coatings is a simple and effective approach.However,it is extremely difficult to combine anti-corrosion and anti-fouling properties in a single coating.In this work,we combine reduced graphene oxide(rGO)/silver nanoparticles(AgNPs)with a hydrophilic polymer in a bio-based silicone-epoxy resin to create a coating with both anti-fouling and anti-corrosion properties.The excel-lent anti-fouling performance of the coating results from a ternary synergistic mechanism involving foul-ing release,contact inhibition,and a hydration effect,while the outstanding anti-corrosion performance is provided by a ternary synergistic anti-corrosion mechanism that includes a dense interpenetrating net-work(IPN)structure,a barrier effect,and passivation.The results show that the obtained coating pos-sesses superior anti-fouling activity against protein,bacteria,algae,and other marine organisms,as well as excellent anti-corrosion and certain self-healing properties due to its dynamic cross-linked net-work of rGO/AgNPs and the hydrophilic polymer.This work provides an anti-corrosion and anti-fouling integrated coating for marine industrial equipment.
文摘This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed.
文摘With the improvement of consumers’scientific skin care consciousness,skin problems-oriented efficacy skin care and precise skin care methods have become the future development trend.Glycosaminoglycans are long,linear polysaccharides comprised of repeated disaccharide units,which are highly expressed endogenously in the skin.They are commonly present in skin cells,cell surface and extracellular matrix,with pleiotropic biological function.In addition to hyaluronic acid,the sulfated glycosaminoglycans heparin,heparan sulfate,dermatan sulfate and chondroitin sulfate play an important role in anti-wrinkle,firming,soothing,and improving microvascular circulation,but are still in the research and development stage in cosmetics.This paper summarizes the skincare mechanism of sulfated glycosaminoglycans,and demonstrates the potential of sulfated glycosaminoglycans as functional raw materials in cosmetics.
基金funded by the Shandong Provincial Key Research and Development Program(No.2019GSF107031).
文摘Sulfated polysaccharides extracted from seaweeds,including Carrageenan,Fucoidan and Ulvan,are crucial bioactive compounds known for their diverse beneficial properties,such as anti-inflammatory,antitumor,immunomodulatory,antiviral,and anticoagulant effects.These polysaccharides form hydrogels hold immense promise in biomedicine,particularly in tissue engineering,drug delivery systems and wound healing.This review comprehensively explores the sources and structural characteristics of the three important sulfated polysaccharides extracted from different algae species.It elucidates the gelation mechanisms of these polysaccharides into hydrogels.Furthermore,the biomedical applications of these three sulfated polysaccharide hydrogels in wound healing,drug delivery,and tissue engineering are discussed,highlighting their potential in the biomedicine.
基金supported by CNPC-CZU Innovation Alliancethe Research Start-Up Fund of Changzhou University.
文摘Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions.
基金supported by the National Natural Science Foundation of China(Nos.52004335 and 52204298)the National Natural Science Foundation of Hunan Province,China(No.2023JJ20071)the Science and Technology Innovation Program of Hunan Province,China(No.2023RC3067).
文摘As a cornerstone of the national economy,the iron and steel industry generates a significant amount of sintering dust containing both valuable lead resources and deleterious elements.Flotation is a promising technique for lead recovery from sintering dust,but efficient separation from Fe_(2)O_(3) is still challenging.This study investigated the cooperative effect of sodium lauryl sulfate(SLS,C_(12)H_(25)SO_(4)Na)and sodium pyrophosphate(SPP,Na_(4)P_(2)O_(7))on the selective flotation of lead oxide minerals(PbOHCl and PbSO_(4))from hematite(Fe_(2)O_(3)).Optimal flotation conditions were first identified,resulting in high recovery of lead oxide minerals while inhibiting Fe_(2)O_(3) flotation.Zeta potential measurements,Fourier transform infrared spectroscopy(FT-IR)analysis,adsorption capacity analysis,and X-ray photoelectron spectroscopy(XPS)studies offer insights into the adsorption behaviors of the reagents on mineral surfaces,revealing strong adsorption of SLS on PbOHCl and PbSO_(4) surfaces and remarkable adsorption of SPP on Fe_(2)O_(3).The proposed model of reagent adsorption on mineral surfaces illustrates the selective adsorption behavior,highlighting the pivotal role of reagent adsorption in the separation process.These findings contribute to the efficient and environmentally friendly utilization of iron ore sintering dust for lead recovery,paving the way for sustainable resource management in the iron and steel industry.
基金supported by the Natural Science Foundation of Jiangsu Province (BK20200084)The National Natural Science Foundation of China (U1903205 and 31972971)Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province。
文摘Inflammatory bowel disease(IBD)is a complex relapsing inflammatory disease in the gut and is driven by complicated host-gut microbiome interactions.Gut commensals have shown different functions in IBD prevention and treatment.To gain a mechanistic understanding of how different commensals affect intestinal inflammation,we compared the protective effects of 6 probiotics(belonging to the genera Akkermansia,Bifidobacterium,Clostridium,and Enterococcus)on dextran sulfate sodium(DSS)-induced colitis in mice with or without gut microbiota.Anti-inflammatory properties(ratio of interleukin(IL)-10 and IL-12)of these strains were also evaluated in an in vitro mesenteric lymph nodes(MLN)co-culture system.Results showed that 4 probiotics(belonging to the species Bifidobacterium breve,Bifidobacterium bifidum,and Enterococcus faecalis)can alleviate colitis in normal mice.The probiotic strains differed in regulating the intestinal microbiota,cytokines(IL-10,IL-1βand interferon(IFN)-γ),and tight junction function(Zonulin-1 and Occludin).By constrast,Akkermansia muciniphila AH39 and Clostridium butyricum FHuNHHMY49T1 were not protective.Interestingly,B.breve JSNJJNM2 with high anti-inflammatory potential in the MLN model could relieve colitis symptoms in antibiotic cocktail(Abx)-treated mice.Meanwhile,E.faecalis FJSWX25M1induced low levels of cytokines in vitro and showed no beneficial effects.Therefore,we provided insight into the clinical application of probiotics in IBD treatment.
基金supported by the State Major Program of National Natural Science Foundation of China(52090082)the National Key Research and Development Program of China(2022YFB2602200)the National Natural Science Foundation of China(52178423 and 52378398).
文摘The rail transit in sulfate-rich areas faces the combined effects of stray current and salt corrosion;however,the sulfate ion transport and concrete degradation mechanisms under such conditions are still unclear.To address this issue,novel sulfate transport and mesoscale splitting tests were designed,with a focus on considering the differences between the interfacial transition zone(ITZ)and cement matrix.Under the influence of stray current,the ITZ played a pivotal role in regulating the transport and mechanical failure processes of sulfate attack,while the tortuous and blocking effects of aggregates almost disappeared.This phenomenon was termed the“stray current-induced ITZ effect.”The experimental data revealed that the difference in sulfate ion transport attributed to the ITZ ranged from 1.90 to 2.31 times,while the difference in splitting strength ranged from 1.56 to 1.64 times.Through the real-time synchronization of splitting experiments and microsecond-responsive particle image velocimetry(PIV)technology,the mechanical properties were exposed to the consequences of the stray currentinduced ITZ effect.The number of splitting cracks in the concrete increased,rather than along the central axis,which was significantly different from the conditions without stray current and the ideal Brazilian disk test.Furthermore,a sulfate ion mass transfer model that incorporates reactivity and electrodiffusion was meticulously constructed.The embedded finite element calculation exhibited excellent agreement with the experimental results,indicating its reliability and accuracy.Additionally,the stress field was determined utilizing analytical methods,and the mechanism underlying crack propagation was successfully obtained.Compared to the cement matrix,a stray current led to more sulfates,more microstructure degradation,and greater increases in thickness and porosity in the ITZ,which was considered to be the essence of the stray current-induced ITZ effect.
基金Fiscal Year 2023-2024 High-Level and Growth Research and Development Subsidy for supporting the research and development activities for small and medium-size enterprise(SMEs),which is administered by Chiba Industry Advancement Center(Grant No.2066 and 2027)。
文摘This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction process has been successfully developed to synthesize well-crystallized and single-phase Li_(2)S powder by investigating the melting,sintering and reduction behavior of the mixtures of Li_(2)SO_(4)-Li_(2)S.High purity alumina was found to be the most suitable crucible material for producing high purity Li_(2)S,because it was not attacked by the Li_(2)SO_(4)-Li_(2)S melt during heating,as compared with other materials,such as carbon,mullite,quartz,boron nitride and stainless steel.The use of synthesized LizS resulted in higher purity and substantially higher room temperature ionic conductivity(2.77 mS·cm^(-1))for the argyrodite sulfide electrolyte Li_(6)PS_(5)Cl than commercial Li_(2)S(1.12 mS·cm^(-1)).This novel method offers a great opportunity to produce battery grade Li_(2)S for sulfide solid electrolyte applications.
文摘BACKGROUND Cold-dampness-type knee osteoarthritis is a common middle-aged and elderly disease,but its pathogenesis is not fully understood,and its clinical treatment has limitations.Glucosamine sulfate capsules are commonly used for treating arthritis,and San Bi Tang is a classic formula of traditional Chinese medicine(TCM)that has the effects of warming yang,dispelling dampness,relaxing muscles,and activating collaterals.This research hypothesized that the combination of modified San Bi Tang and glucosamine sulfate capsules could enhance the clinical efficacy of treating cold-dampness-type knee osteoarthritis through complementary effects.AIM To analyze the clinical efficacy of San Bi Tang combined with glucosamine sulfate capsules when treating cold-dampness-type knee osteoarthritis.METHODS A total of 110 patients with cold-dampness-type knee osteoarthritis were selected as research subjects and randomly divided into a control group and an experimental group of 55 cases each.The control group received only treatment with glucosamine sulfate capsules,while the experimental group received additional treatment with modified San Bi Tang for a duration of 5 wk.The patients’knee joint functions,liver and kidney function indicators,adverse reactions,and vital signs were evaluated and analyzed using SPSS 26.0 software.RESULTS Before treatment,the two groups’genders,ages,and scores were not significantly different,indicating comparability.Both groups’scores improved after treatment,which could indicate pain and knee joint function improvement,but the test group had better scores.The TCM-specific symptoms and the clinical efficacy of the treatment in the test group were higher.Before and after treatment,there were no abnormalities in the patients’liver and kidney function indicators.CONCLUSION The combination of modified San Bi Tang and glucosamine sulfate capsules is superior to treatment with sulfated glucosamine alone and has high safety.
基金funded by the National Natural Science Foundation of China(52062047)the Innovation Capacity Support Plan of Shaanxi Province(2020TD-032)+2 种基金Yulin Science and Technology Plan(2019-81-1,CXY-2021-101-02 and 2023-CXY-154)Joint Fund of Clean Energy Innovation Institute of Chinese Academy of Sciences and Yulin University(YLUDNL202202)Yulin University Science and Technology Plan(2020TZRC01).
文摘The sulfate radical-based photocatalytic process is supposed to be the most promising way to degrade organic pollutants.However,the development of a suitable and efficient photocatalyst is very challenging.The 40LaFeO_(3)-CuFe_(2)O_(4)(40LFO-CFO)nanocomposite was constructed and its catalytic performance was studied using Rhodamine B(RhB)as the target pollutant.40LFO-CFO exhibited excellent RhB degradation by the persulfate(PS)-assisted photocatalytic process compared to the pristine LFO and CFO.The degradation rate constant for RhB by 40LFO-CFO in the Vis/PS system was 2.22h^(-1)which is 3.04 times and 5.05 times higher than the pristine LFO(0.73 h^(-1))and CFO(0.44h^(-1)),respectively.Furthermore,the trapping experiments and EPR spectra proved that h^(+) plays a leading role in the bleaching of RhB for the 40LFO-CFO/PS/Vis system.The enhanced photocatalytic oxidation activity of 40LFO-CFO could be attributed to the unique charge carriers flow in 40LFO-CFO due to the Z-scheme and the cooperation effect between photocatalysis and PS activation.The recycle tests confessed the stability of 40LFO-CFO.Additionally,the intermediates and products of RhB are detected by liquid chromatographymass spectrometry(LC-MS),and the photocatalytic degradation routes of RhB for the 40LFO-CFO/Vis/PS system were proposed.Moreover,the 40LFO-CFO nanocomposite has a superior catalytic performance for other organics,suggesting that it is a promising heterocatalyst because of its high catalytic activity and stability for the PS-assisted photocatalytic process.
基金the Natural Science Foundation of Hainan Province,No.823MS046the Talent Program of Hainan Medical University,No.XRC2022007.
文摘BACKGROUND Ulcerative colitis is a chronic inflammatory disease of the colon with an unknown etiology.Alkaline sphingomyelinase(alk-SMase)is specifically expressed by intestinal epithelial cells,and has been reported to play an anti-inflammatory role.However,the underlying mechanism is still unclear.AIM To explore the mechanism of alk-SMase anti-inflammatory effects on intestinal barrier function and oxidative stress in dextran sulfate sodium(DSS)-induced colitis.METHODS Mice were administered 3%DSS drinking water,and disease activity index was determined to evaluate the status of colitis.Intestinal permeability was evaluated by gavage administration of fluorescein isothiocyanate dextran,and bacterial translocation was evaluated by measuring serum lipopolysaccharide.Intestinal epithelial cell ultrastructure was observed by electron microscopy.Western blotting and quantitative real-time reverse transcription-polymerase chain reaction were used to detect the expression of intestinal barrier proteins and mRNA,respectively.Serum oxidant and antioxidant marker levels were analyzed using commercial kits to assess oxidative stress levels.RESULTS Compared to wild-type(WT)mice,inflammation and intestinal permeability in alk-SMase knockout(KO)mice were more severe beginning 4 d after DSS induction.The mRNA and protein levels of intestinal barrier proteins,including zonula occludens-1,occludin,claudin-3,claudin-5,claudin-8,mucin 2,and secretory immunoglobulin A,were significantly reduced on 4 d after DSS treatment.Ultrastructural observations revealed progressive damage to the tight junctions of intestinal epithelial cells.Furthermore,by day 4,mitochondria appeared swollen and degenerated.Additionally,compared to WT mice,serum malondialdehyde levels in KO mice were higher,and the antioxidant capacity was significantly lower.The expression of the transcription factor nuclear factor erythroid 2-related factor 2(Nrf2)in the colonic mucosal tissue of KO mice was significantly decreased after DSS treatment.mRNA levels of Nrf2-regulated downstream antioxidant enzymes were also decreased.Finally,colitis in KO mice could be effectively relieved by the injection of tertiary butylhydroquinone,which is an Nrf2 activator.CONCLUSION Alk-SMase regulates the stability of the intestinal mucosal barrier and enhances antioxidant activity through the Nrf2 signaling pathway.
文摘Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechanism of foam stability reduction in the presence of asphaltene was analyzed by scanning electron microscope(SEM),UV adsorption spectrophotometric concentration measurement and Zeta potential measurement.When the mass ratio of synthetic oil to foam-formation suspension was 1:9 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 751 s to 239 s,and the half-life of SDS/silica-stabilized foams decreased from 912 s to 298 s.When the mass ratio of synthetic oil to foam-formation suspension was 2:8 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 526 s to 171 s,and the half-life of SDS/silica-stabilized foams decreased from 660 s to 205 s.In addition,due to asphaltene-SDS/silica interaction in the aqueous phase,the absolute value of Zeta potential decreases,and the surface charges of particles reduce,leading to the reduction of repulsive forces between two interfaces of thin liquid film,which in turn,damages the foam stability.
基金The National High Technology Research and Develop-ment Program of China(863 Program)(No.2003AA33X100)the NationalNatural Science Foundation of China(No.50708046,50739001).
文摘The damage processes of ordinary concrete and high strength concrete, attacked by solutions of 2. 5%, 5. 0% and 10% Na2SO4(mass fraction)are studied. And the effects of flexural loads with stress ratios of 25% and 50% of the initial flexural strength on the damage process of concrete are also investigated. The results show that the damage process of concrete attacked by sulfate salt exhibits an initial damaged stage, a performance improving stage and a performance worsening stage. When the concentration of Na2SO4 in a solution increases from 2. 5% to 5.0%, the service time of the concrete decreases approximately 25%. Furthermore, it decreases to even 40% with an increase in a Na2SO4 concentration up to 10%. And the flexural load accelerates the deterioration rate of the concrete in the latter period. The stress ratio increases from 0 to 25%, the failure time of the concrete decreases 15% ; and the failure time decreases between 25% and 35% when the stress ratio increases from 25% to 50%. In addition, sulfate corrosion products of concrete are studied by SEM (scanning electron microscopy), EDS (energy disperse spectroscopy) and XRD(X-ray diffraction).