期刊文献+
共找到278,978篇文章
< 1 2 250 >
每页显示 20 50 100
Investigation of anti-corrosion property of hybrid coatings fabricated by combining PEC with MAO on pure magnesium 被引量:1
1
作者 Le Sun Ying Ma +2 位作者 Binfeng Fan Sheng Wang Zhanying Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第10期2875-2888,共14页
Novel hybrid coatings on pure magnesium were prepared by combining plasma electrolytic carburizing(PEC)with micro-arc oxidation(MAO)to further enhance the anti-corrosion property in this paper.Scanning electron micros... Novel hybrid coatings on pure magnesium were prepared by combining plasma electrolytic carburizing(PEC)with micro-arc oxidation(MAO)to further enhance the anti-corrosion property in this paper.Scanning electron microscopy(SEM)was used to observe the microstructure of the coatings,meanwhile,energy dispersive spectrometry(EDS)and X-ray diffraction(XRD)were separately used to investigate the elemental as well as phase compositions of the coatings.The anti-corrosion property of the coatings was evaluated by potentiodynamic polarization curves as well as electrochemical impedance spectroscopy(EIS).The results show that PEC process is closely related with the effects of adsorption as well as diffusion of the activated carbon atoms,and it can provide a favorable pretreatment surface with predesigned chemical composition to obtain a new kind of phase,namely Si C with superior corrosion resistance and chemical stability,in the following PEC+MAO hybrid coatings.Meanwhile,PEC preprocessing also can afford an excellent micro-structure to increase the coating thickness as well as to improve the compactness of the PEC+MAO hybrid coatings.During the fabrication process of the PEC+MAO hybrid coatings,an overlapping phenomenon in regard to coating thickness can be observed instead of heaping up layer by layer.Compared with both single PEC surface modification layers as well as single MAO coatings,the PEC+MAO hybrid coatings exhibit more superior anti-corrosion property.Especially,the EIS data reveal that the PEC+MAO hybrid coatings can act as an effective protection system to provide relatively excellent long-range anti-corrosion protection.Note also that employing same MAO technique for both single MAO treatment as well as PEC+MAO combining procedure is the key to this research. 展开更多
关键词 Pure magnesium Plasma electrolytic carburizing Micro-arc oxidation Surface modification layers Hybrid coatings anti-corrosion property
下载PDF
Insight into microstructure evolution on anti-corrosion property of Al_(x)CoCrFeNiC_(0.01) high-entropy alloys using scanning vibration electrode technique
2
作者 Bo-Kai Liao Zhan-Xiang Liang +6 位作者 Zhi-Gang Luo Yue Liu Hao-Wei Deng Tao Zhang Xing-Peng Guo Qi-Sen Ren Hong-En Ge 《Rare Metals》 SCIE EI CAS CSCD 2023年第10期3455-3467,共13页
The effect of micro structure on the corrosion resistance of Al_(x)CoCrFeNiC_(0.01)(x=0.2,0.7,and 1.2)high-entropy alloys(HEAs) was systematically studied in this work.The microstructure evolution by regulating the Al... The effect of micro structure on the corrosion resistance of Al_(x)CoCrFeNiC_(0.01)(x=0.2,0.7,and 1.2)high-entropy alloys(HEAs) was systematically studied in this work.The microstructure evolution by regulating the Al content was analyzed in detail.Corrosion behavior was in situ monitored using the scanning vibration electrode technique,as well as some traditional electrochemical measurements.It is interesting to find that the compositions of body-centered cubic(bcc) and face-centered cubic(fcc)phases changed with the rising Al content,while the corresponding electrochemical responses for both phases were discriminated using the scanning Kelvin probe force microscopy method.Cr element was mainly distributed in the bcc phase for Al0.2(x=0.2) alloy,while its distribution changed to the fcc phase for the A10.7 and Al1.2alloys.The micro-galvanic corrosion cells formed between Cr-depleted and Cr-rich phases,resulting in the localized corrosion behaviors for the Al_(x)CoCrFeNiC_(0.01) HEAs,and the order for anti-corrosion property was Al0.2>Al1.2> Al0.7 HEAs. 展开更多
关键词 High-entropy alloy Corrosion Mechanical property Scanning vibration electrode technique
原文传递
Atomic-Scale Layer-by-Layer Deposition of Fe SiAl@ZnO@Al_(2)O_(3) Hybrid with Threshold Anti-Corrosion and Ultra-High Microwave Absorption Properties in Low-Frequency Bands 被引量:6
3
作者 Wei Tian Jinyao Li +5 位作者 Yifan Liu Rashad Ali Yang Guo Longjiang Deng Nasir Mahmood Xian Jian 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第10期308-321,共14页
Developing highly efficient magnetic microwave absorb-ers(MAs)is crucial,and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments.Herein,a dual-oxide shell of ZnO/Al_(2)... Developing highly efficient magnetic microwave absorb-ers(MAs)is crucial,and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments.Herein,a dual-oxide shell of ZnO/Al_(2)O_(3) as a robust barrier to FeSiAl core is introduced to mitigate corrosion resistance.The FeSiAl@ZnO@Al_(2)O_(3) layer by layer hybrid structure is realized with atomic-scale precision through the atomic layer deposition technique.Owing to the unique hybrid structure,the FeSiAl@ZnO@Al_(2)O_(3) exhibits record-high micro-wave absorbing performance in low-frequency bands covering L and S bands with a minimum reflection loss(RLmin)of-50.6 dB at 3.4 GHz.Compared with pure FeSiAl(RLmin of-13.5 dB,a bandwidth of 0.5 GHz),the RLmin value and effective bandwidth of this designed novel absorber increased up to~3.7 and~3 times,respectively.Fur-thermore,the inert ceramic dual-shells have improved 9.0 times the anti-corrosion property of FeSiAl core by multistage barriers towards corrosive medium and obstruction of the electric circuit.This is attributed to the large charge transfer resistance,increased impedance modulus|Z|0.01 Hz,and frequency time constant of FeSiAl@ZnO@Al_(2)O_(3).The research demonstrates a promising platform toward the design of next-generation MAs with improved anti-corrosion properties. 展开更多
关键词 Atomic layer deposition Magnetic alloy Dual-oxide-shells Microwave absorption anti-corrosion
下载PDF
Anti-Corrosion and Reconstruction of Surface Crystal Plane for Zn Anodes by an Advanced Metal Passivation Technique
4
作者 Si Liu Hongxin Lin +2 位作者 Qianqian Song Jian Zhu Changbao Zhu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期166-172,共7页
For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatme... For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries. 展开更多
关键词 anti-corrosion aqueous zinc ion battery interfacial protective layer metal passivation technique reconstruction of surface crystal plane
下载PDF
Robustα-Fe_(2)O_(3)/Epoxy Resin Superhydrophobic Coatings for Anti-icing Property
5
作者 乔燕明 TAO Xuan +2 位作者 LI Lei 阮敏 鲁礼林 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期621-626,共6页
α-Fe_(2)O_(3)/epoxy resin composite superhydrophobic coating was prepared withα-Fe_(2)O_(3) nanoparticles and epoxy resin by spin coating method.The coating without epoxy resin has higher contact angle(CA)and lower ... α-Fe_(2)O_(3)/epoxy resin composite superhydrophobic coating was prepared withα-Fe_(2)O_(3) nanoparticles and epoxy resin by spin coating method.The coating without epoxy resin has higher contact angle(CA)and lower ice adhesion strength(IAS),but the mechanical properties are poor.Theα-Fe_(2)O_(3)/epoxy resin composite superhydrophobic coating exhibits good mechanical durability.In addition,compared with the bare aluminum substrate,the Ecorr of the composite coating is positive and the Jcorr is lower.The inhibition efficiency of the composite coating is as high as 99.98%in 3.5 wt%NaCl solution.The difference in the microstructure caused by the two preparation methods leads to the changes in mechanical properties and corrosion resistance of composite superhydrophobic coating. 展开更多
关键词 SUPERHYDROPHOBIC anti-corrosion ANTI-ICING ROBUST
下载PDF
Hydration Behavior and Cementitious Properties of Calcium Carbonate-aluminate Minerals Composite
6
作者 王冲 周帅 +2 位作者 ZOU Luyao LIU Jiawen ZHENG Yalin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期126-133,共8页
The purpose of this research is to investigate the hydration behavior and cementitious properties of the mixture of calcium carbonate and aluminate, and to explore whether it can be adopted as a new low-carbon cementi... The purpose of this research is to investigate the hydration behavior and cementitious properties of the mixture of calcium carbonate and aluminate, and to explore whether it can be adopted as a new low-carbon cementitious material. The composite system of calcium carbonate and aluminate minerals is studied by measuring the component of hydration products, the hydration heat, setting time and compressive strength.The results prove that the composite system has certain cementitious properties and is feasible to prepare new low-carbon cement. 展开更多
关键词 LIMESTONE hydrated calcium carboaluminate cementitious properties mechanical properties
下载PDF
Impact of scandium and terbium on the mechanical properties,corrosion behavior,and biocompatibility of biodegradable Mg-Zn-Zr-Mn alloys
7
作者 Khurram Munir Jixing Lin +3 位作者 Xian Tong Arne Biesiekierski Yuncang Li Cuie Wen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期546-572,共27页
Magnesium(Mg)-based bone implants degrade rapidly in the physiological environment of the human body which affects their structural integrity and biocompatibility before adequate bone repair.Rare earth elements(REEs)h... Magnesium(Mg)-based bone implants degrade rapidly in the physiological environment of the human body which affects their structural integrity and biocompatibility before adequate bone repair.Rare earth elements(REEs)have demonstrated their effectiveness in tailoring the corrosion and mechanical behavior of Mg alloys.This study methodically investigated the impacts of scandium(Sc)and terbium(Tb)in tailoring the corrosion resistance,mechanical properties,and biocompatibility of Mg–0.5Zn–0.35Zr–0.15Mn(MZZM)alloys fabricated via casting and hot extrusion.Results indicate that addition of Sc and Tb improved the strength of MZZM alloys via grain size reduction and solid solution strengthening mechanisms.The extruded MZZM–(1–2)Sc–(1–2)Tb(wt.%)alloys exhibit compressive strengths within the range of 336–405 MPa,surpassing the minimum required strength of 200 MPa for bone implants by a significant margin.Potentiodynamic polarization tests revealed low corrosion rates of as–cast MZZM(0.25 mm/y),MZZM–2Tb(0.45 mm/y),MZZM–1Sc–1Tb(0.18 mm/y),and MZZM–1Sc–2Tb(0.64 mm/y),and extruded MZZM(0.17 mm/y),MZZM–1Sc(0.15 mm/y),MZZM-2Sc(0.45 mm/y),MZZM-1Tb(0.17 mm/y),MZZM-2Tb(0.10 mm/y),MZZM–1Sc-1Tb(0.14 mm/y),MZZM-1Sc-2Tb(0.40 mm/y),and MZZM–2Sc–2Tb(0.51 mm/y)alloys,which were found lower compared to corrosion rate of high-purity Mg(~1.0 mm/y)reported in the literature.Furthermore,addition of Sc,or Tb,or Sc and Tb to MZZM alloys did not adversely affect the viability of SaOS2 cells,but enhanced their initial cell attachment,proliferation,and spreading shown via polygonal shapes and filipodia.This study emphasizes the benefits of incorporating Sc and Tb elements in MZZM alloys,as they effectively enhance corrosion resistance,mechanical properties,and biocompatibility simultaneously. 展开更多
关键词 Corrosion property In vitro cytotoxicity Magnesium alloys Mechanical property Rare earth elements
下载PDF
Soil Physico-Chemical Properties and Different Altitudes Affect Arbuscular Mycorrhizal Fungi Abundance and Colonization in Cacao Plantations of Cameroon
8
作者 Franklin Tounkam Ketchiemo Beaulys Fotso +4 位作者 Astride Stéphanie Mouafi Djabou Victor Jos Eyamo Evina Japhet Youri Essambita Franck Maxime Ewane Tang Nicolas Niemenak 《American Journal of Plant Sciences》 CAS 2024年第2期57-82,共26页
This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-... This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-ecological zones. Soil samples were also used to evaluate directly the AMF abundance following the various altitudes and after trapping by sorghum plant. The results showed that soil properties, AMF spore abundances and colonization fluctuated significantly at different altitudes. The most represented texture was sandy loam. The bimodal zone presented a homogeneous texture (sandy loam) in all its localities. Cacao soil chemical characteristics showed that, the highest nitrogen rate (0.47%;p 0.05, Scott-Knott test) was recorded at Melong in a monomodal zone while Tonga in the Western highlands displayed the lowest rate (0.13%). Soil P concentration was significantly high in monomodal zones (Mbanga and Melong). Soil pH level indicated that the soil from Tonga in the Western highlands was neutral (pH = 6.67), and soils of other localities under study were acidic with the lowest (4.75) pH level recorded at Melong in a monomodal zone. In soil samples, the highest spore density (1.03 spores/g soil) was observed at Ntui in Bimodal zone, while the lowest spore density (0.26 spores/g soil) was observed at Bafang in the Western highlands. Root colonization showed that the sample from Bokito in a bimodal zone displayed the best frequency of mycorrhization (86.11%) while the sample from Bafang in the Western highlands recorded the lowest (27.11%). The PCA analysis highlighted that available phosphorus, pH and altitude all strongly correlated with AMF root colonization ability and can be used as a predictor of AMF colonization ability in cacao rhizosphere. 展开更多
关键词 Agroecological Zone Altitude Variations Arbuscular Mycorrhizal Fungi Soil Properties Theobroma cacao
下载PDF
Synergistic enhancement on mechanical properties and corrosion resistance of biodegradable Mg-Zn-Y alloy via V-microalloying
9
作者 Jiaxin Zhang Xin Ding +3 位作者 Ruirun Chen Wenchao Cao Jinshan Zhang Rui Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期530-545,共16页
For the sake of improving the mechanical properties and corrosion resistance of biodegradable Mg alloy synergistically,various content of element V(0,0.05,0.10,0.15,0.20 wt.%)are introduced into an Mg-Zn-Y alloy with ... For the sake of improving the mechanical properties and corrosion resistance of biodegradable Mg alloy synergistically,various content of element V(0,0.05,0.10,0.15,0.20 wt.%)are introduced into an Mg-Zn-Y alloy with long-period stacking ordered(LPSO)structure,and the effects of V on its microstructure,mechanical properties and corrosion resistance are investigated systematically.The results indicate that the grains are effectively refined by V addition,and the primaryα-Mg in Mg-Zn-Y-V0.1 alloy is most significantly refined,with grain size being decreased by 62%.The amount of 18R LPSO structure is increased owing to the V addition.The growth mode of the second phase(W-phase and 18R LPSO structure)is transformed to divorced growth pattern,which ascribes to the thermodynamic drive force of V to promote the nucleation of LPSO phase.Thus,18R LPSO structure presents a continuous distribution.Due to grains refinement and modification of second phase,the tensile strength and strain of alloys are both enhanced effectively.Especially,the ultimate tensile strength and the elongation of V0.1 alloy are 254 MPa and 15.26%,which are 41%and 61%higher than those of V-free alloy,respectively.Owing to the continuously distributed 18R LPSO structure with refined grains and stable product film,the weight loss and hydrogen evolution corrosion rates of V0.1 alloy are 7.1 and 6.2 mmy^(-1),respectively,which are 42.6%and 45.4%lower than those of V-free alloy. 展开更多
关键词 Corrosion Mechanical property V-microalloying LPSO SKPFM
下载PDF
Microstructures,corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni)alloys for plugging tool applications
10
作者 Baosheng Liu Jiali Wei +4 位作者 Shaohua Zhang Yuezhong Zhang Pengpeng Wu Daqing Fang Guorui Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期697-711,共15页
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t... Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications. 展开更多
关键词 magnesium alloys microstructure micro-galvanic corrosion mechanical properties
下载PDF
Effects of BN on the Mechanical and Thermal Properties of PP/BN Composites
11
作者 陈厚振 王艳芝 +4 位作者 NAN Yu WANG Xu YUE Xianyang ZHANG Yifei FAN Huiling 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期345-352,共8页
In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moul... In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moulding and compression moulding.The composites were filled with BN particles of 5 and 20 μm respectively,and their mass fractions in composites were considered.Percentage of BN was varied from 0 to 25wt% in steps of 5wt%.The effects of BN filler on mechanical properties of the composites were evaluated.The thermal behaviors were studied using DSC and TGA,and the thermal conductivity was also investigated by Laser Flash Device and the Model of 3D Heat Conduction respectively.The experimental results show that impact strength of PP/BN can be enhanced with the addition of BN,but that composites exhibit lower breaking elongation & tensile strength when compared to unfilled ones.It is found that mass fraction of BN influenced the final thermal stability and degree of crystallization of PP matrix,the degree of crystallization of PP with 15wt% of 20 μm BN can be improved by 25% than neat PP.Meanwhile,crystallization temperatures of PP composites are elevated by about 10 ℃.The thermal conductivity results demonstrate that the maximum value of the thermal conductivity is achieved from PP/BN with 20wt% of 20 μm BN,higher than that of pure PP by 95.65%,close to the simulation one. 展开更多
关键词 thermal properties POLYPROPYLENE COMPOSITES hexagonal boron nitride
下载PDF
Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
12
作者 范凤国 段林彤 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期589-595,共7页
The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biom... The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biomedical devices.This article presents the elucidation of the properties of nanoparticle films.Here,a flexible film is fabricated based on polyethylene terephthalate(PET)and magnetic iron oxide at the nanoscale using layer-by-layer technology.The 2D thin flexible film material can be bent at different angles from 0°to 360°.With an increase in elastic deformation angles,the magnetocaloric effect of the film gradually increases in the alternating magnetic field.The test results from a vibrating sample magnetometer and a low-frequency impedance analyzer demonstrate that the film has a good magnetic response and anisotropy.The magnetocaloric effect and magnetic induction effect are controlled by deformation,providing a new idea for the application of elastic films.It combines the flexibility of the nanoparticle PET substrate and,in the future,it may be used for skin adhesion for administration and magnetic stimulation control. 展开更多
关键词 nanoparticle film deformation magnetic properties flexible substrates
下载PDF
Microstructures and Properties of Biomedical Mg-Zn-Sn-Zr Rolled Alloys
13
作者 周生刚 ZHANG Daxin +5 位作者 XU Yang DUAN Jihao LI Tao LIU Junfeng WANG Peng 曹勇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期766-773,共8页
The as-cast Mg-2.0Zn-1.5Sn-xZr(x=0,0.4,0.6,0.8,1.0 wt%)alloy was rolled with the pressure less than 5%each time.The microstructure,mechanical properties,corrosion properties and biocompatibility of the alloy were inve... The as-cast Mg-2.0Zn-1.5Sn-xZr(x=0,0.4,0.6,0.8,1.0 wt%)alloy was rolled with the pressure less than 5%each time.The microstructure,mechanical properties,corrosion properties and biocompatibility of the alloy were investigated.The microstructure of the alloy was observed and analyzed by scanning electron microscope,and the tensile test was carried out by universal tensile machine.The corrosion resistance of the alloy in Hank's solution was studied by hydrogen evolution experiment and electrochemical test,and the biocompatibility of the alloy was tested by L929 cells.The results show that Mg-2Zn-1.5Sn-xZr alloy has excellent mechanical properties.The elongation of Mg-2Zn-1.5Sn-xZr alloy decreases with the increase of Zr content,but the tensile strength first increases and then decreases with the increase of Zr concentration.When the Zr content is 0.8 wt%,the maximum tensile strength of the alloy is 235 MPa.The results of hydrogen evolution experiment and electrochemical analysis show that the corrosion resistance of the alloy is the best when the Zr content is 0.8 wt%,and all the five alloys have high biocompatibility.In conclusion,the rolled alloy has good properties and has broad application prospects in the field of biomaterials. 展开更多
关键词 magnesium alloy corrosion performance mechanical properties BIOCOMPATIBILITY
下载PDF
Structural Transformations and Multiferroic Properties of Bi_(1-x)Eu_(x)Fe_(0.95)Co_(0.05)O_(3)(x=0.05,0.10,0.15,and 0.20)
14
作者 梁修乾 李永涛 +3 位作者 LIU Liqing GUO Aiqian LI Jianda ZHANG Hongguang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期315-319,共5页
Bi_(1-x)Eu_(x)Fe_(0.95)Co_(0.05)O_(3 )(x=0.05,0.10,0.15,and 0.20) nanoparticles were prepared through the sol-gel technique.Its structure,local electronic structure,magnetic and electric properties were systematically... Bi_(1-x)Eu_(x)Fe_(0.95)Co_(0.05)O_(3 )(x=0.05,0.10,0.15,and 0.20) nanoparticles were prepared through the sol-gel technique.Its structure,local electronic structure,magnetic and electric properties were systematically investigated.X-ray diffraction data show(104),(110) bimodal alignment and high angular migration,indicating that with the increase of Eu substitution at Bi site,the structure of BFO undergoes a continuous change in crystal structure.The hysteresis loop and the FC/ZFC curve show how magnetism varies with the size of the field and temperature.Finally,the causes of magnetic changes were analyzed by studying SXAS and hysteresis loops. 展开更多
关键词 magnetic materials XAS electric structure magnetic property
下载PDF
Effect of In doping on the evolution of microstructure,magnetic properties and corrosion resistance of NdFeB magnets
15
作者 李豫豪 范晓东 +8 位作者 贾智 范璐 丁广飞 刘新才 郭帅 郑波 曹帅 陈仁杰 闫阿儒 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期623-629,共7页
The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investiga... The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets. 展开更多
关键词 In-doping NdFeB magnets magnetic properties corrosion resistance
下载PDF
Peat properties of a tropical forest reserve adjacent to a fire-break canal
16
作者 Dayang Nur Sakinah Musa Mohd Zahirasri Mohd Tohir +3 位作者 Xinyan Huang Luqman Chuah Abdullah Mohamad Syazaruddin Md Said Muhammad Firdaus Sulaiman 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期155-167,共13页
Tropical peat comprises decomposed dead plant material and acts like a sponge to absorb water,making it fully saturated.However,drought periods dry it readily and increases its vulnerability to fire.Peat fires emit gr... Tropical peat comprises decomposed dead plant material and acts like a sponge to absorb water,making it fully saturated.However,drought periods dry it readily and increases its vulnerability to fire.Peat fires emit greenhouse gases and particles contributing to haze,and prevention by constructing fire-break canals to reduce fire spread into forest reserves is crucial.This paper aims to determine peat physical and chemical properties near a fire-break canal at different fire frequency areas.Peat sampling was conducted at two forest reserves in Malaysia which represent low fire frequency and high fire frequency areas.The results show that peat properties were not affected by the construction of a fire-break canal,however lignin and cellulose content increased significantly from the distance of the canal in both areas.The study concluded that fire frequency did not significantly influence peat properties except for porosity.The higher fibre content in the high frequency area did not influence moisture content nor the ability to regain moisture.Thus,fire frequency might contribute differently to changes in physical and chemical properties,hence management efforts to construct fire-break canals and restoration efforts should protect peatlands from further degradation.These findings will benefit future management and planning for forest reserves. 展开更多
关键词 Peat fire Peat properties Fire-break canals Forest reserves
下载PDF
Investigation of Microstructure, Microhardness and Thermal Properties of Ag-In Intermetallic Alloys Prepared by Vacuum Arc Meltings
17
作者 ÇELİK Erçevik ATA ESENER Pınar +1 位作者 ÖZTÜRK Esra AKSÖZ Sezen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期182-187,共6页
Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical com... Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical composition of the phases respectively. Microhardness values of Ag-In intermetallics were calculated with Vickers hardness measurement method. According to the experimental results, Ag-34 wt%In intermetallic system generated the best results of energy saving and storage compared to other intermetallic systems. Also from the microhardness results, it was observed that intermetallic alloys were harder than pure silver and Ag-26 wt%In system had the highest microhardness value with 143.45 kg/mm^(2). 展开更多
关键词 thermal properties microstructure characterization MICROHARDNESS ALLOYS material characterization
下载PDF
Changes in Leaf Stomatal Properties in Rice with the Growing Season
18
作者 Jiana Chen Fangbo Cao Min Huang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第4期807-817,共11页
Transplanting rice varieties grown in different seasons can lead to different yields due to different dry matterproduction. Early-season rice varieties transplanted in the late season can obtain high yields with short... Transplanting rice varieties grown in different seasons can lead to different yields due to different dry matterproduction. Early-season rice varieties transplanted in the late season can obtain high yields with short-growthduration and higher yields driven by higher dry matter production. To make clear the variations in dry matterproduction across seasons, four early-season rice varieties were chosen for late-season transplantation. The grainyield, dry matter accumulation, leaf photosynthetic, and leaf stomatal properties were studied. It was observedthat the average yields of these four varieties in the late season were 33% greater, despite a reduced growth periodof 13 days in comparison with the early season. Furthermore, there was a notable increase in both total and postheadingdry matter production during the late season. The leaf net photosynthetic rate, stomatal area, stomatalwidth, and stomatal length were higher in the late season. Despite no significant difference in stomatal densitybetween seasons, strong positive linear relationships were observed between net photosynthetic rate and stomatalconductance, and between stomatal conductance and area. These relationships demonstrate that the increase ofthe stomatal width and length of the leaves in the late season leads to an increase in the stomatal area, therebyincreasing the stomatal conductance and enhancing the photosynthesis of the leaves. Consequently, this leads togreater dry matter production and a higher yield compared to the early season. Therefore, when breeding newhigh-yielding and short-growing varieties, the large stomatal area can be used as a reference index. 展开更多
关键词 PHOTOSYNTHESIS RICE stomatal properties SEASON yield
下载PDF
Structure,electronic,and nonlinear optical properties of superalkaline M_(3)O(M=Li,Na)doped cyclo[18]carbon
19
作者 刘晓东 卢其亮 罗其全 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期311-317,共7页
Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an ef... Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs.In this paper,the geometry,bonding properties,electronic structure,absorption spectrum,and nonlinear optical(NLO)properties of superalkaline M_(3)O(M=Li,Na)-doped cyclo[18]carbon were studied by using density functional theory.M_(3)O and the C_(18) rings are not coplanar.The C_(18) ring still exhibits alternating long and short bonds.The charge transfer between M_(3)O and C_(18) forms stable[M_(3)O]+[C_(18)]-ionic complexes.C_(18)M_(3)O(M=Li,Na)shows striking optical nonlinearity,i.e.,their first-and second-order hyperpolarizability(βvec andγ||)increase considerably atλ=1907 nm and 1460 nm. 展开更多
关键词 superalkaline doped carbon structure and electronic properties nonlinear optical properties density functional theory(DFT)
下载PDF
Structural and magnetic properties of micropolycrystalline cobalt thin films fabricated by direct current magnetron sputtering
20
作者 Kerui Song Zhou Li +2 位作者 Mei Fang Zhu Xiao Qian Lei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期384-394,共11页
Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As... Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As the sputtering power increases from 15 to 60 W,the Co thin films transition from an amorphous to a polycrystalline state,accompanied by an increase in the intercrystal pore width.Simultaneously,the resistivity decreases from 276 to 99μΩ·cm,coercivity increases from 162 to 293 Oe,and in-plane magnetic aniso-tropy disappears.As the sputtering pressure decreases from 1.6 to 0.2 Pa,grain size significantly increases,resistivity significantly de-creases,and the coercivity significantly increases(from 67 to 280 Oe),which can be attributed to the increase in defect width.Corres-pondingly,a quantitative model for the coercivity of Co thin films was formulated.The polycrystalline films sputtered under pressures of 0.2 and 0.4 Pa exhibit significant in-plane magnetic anisotropy,which is primarily attributable to increased microstress. 展开更多
关键词 cobalt thin film magnetron sputtering MICROSTRUCTURE electromagnetic properties
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部