For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatme...For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.展开更多
CdS/ZnS core-shell microparticles were prepared by a simple two-step method combining ultrasonic spray pyrolysis and chemical bath deposition.The core-shell structures showed enhanced photocatalytic properties compare...CdS/ZnS core-shell microparticles were prepared by a simple two-step method combining ultrasonic spray pyrolysis and chemical bath deposition.The core-shell structures showed enhanced photocatalytic properties compared with those of CdS or ZnS spherical particles.CdS/ZnS photocatalysts with different amount of ZnS loaded as shells were prepared by adjusting the concentrations of Zn and S precursors during synthesis.The optical properties and photocatalytic activity for hydrogen production were investigated and the amount of ZnS loaded as shell was optimized.Thermal annealing and hydrothermal sulfurization treatments were applied to the core-shell structure and both treatments enhanced the material's photocatalytic activity and stability by eliminating crystalline defects and surface states.The result showed that thermal annealing treatment improved the bulk crystallinity and hydrothermal sulfurization improved the surface properties.The sample subjected to both treatments showed the highest photocatalytic activity.These results indicate that CdS/ZnS core-shell microspheres are a simple structure that can be used as efficient photocatalysts.The hydrothermal sulfurization treatment may also be a useful surface treatment for metal sulfide photocatalysts.The simple two-step method provides a promising approach to the large-scale synthesis of core-shell microsphere catalysts.展开更多
The aim of this study was investigate the effects of heat treatment on the contact angle of Chinese fir, and the indicators affecting the change of contact an-gle change. It was determined that the duration of treatme...The aim of this study was investigate the effects of heat treatment on the contact angle of Chinese fir, and the indicators affecting the change of contact an-gle change. It was determined that the duration of treatment had significant effect on the change curves of contact angle of Chinese fir wood due to the change curves of contact angle became more centralized and orderly after the specimens heat treated at 180 ℃. Compared with the untreated wood, the contact angle in-creased from 51&#176; to 124&#176; after 4 h treatment, and hydroxyl absorbance of hy-drophilic functional groups decreased from 2.08 to 1.63, while carbonyl absorbance from 0.92 to 0.62. The surface roughness has not significant influence on the con-tact angle. Heat treatment of the Chinese fir caused surface morphological change, which produced hol owed-out phenomenon. The increased surface contact angle caused by heat treatment can be used for outdoor and sauna facilities.展开更多
Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar f...Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar fuels.A surface-modified Ag@Ru-P25 photocatalyst with H_(2)O_(2) treatment was designed in this study to convert CO_(2) and H_(2)O vapor into highly selective CH4.Ru doping followed by Ag nanoparticles(NPs)cocatalyst deposition on P25(TiO_(2))enhances visible light absorption and charge separation,whereas H_(2)O_(2) treatment modifies the surface of the photocatalyst with hydroxyl(–OH)groups and promotes CO_(2) adsorption.High-resonance transmission electron microscopy,X-ray photoelectron spectroscopy,X-ray absorption near-edge structure,and extended X-ray absorption fine structure techniques were used to analyze the surface and chemical composition of the photocatalyst,while thermogravimetric analysis,CO_(2) adsorption isotherm,and temperature programmed desorption study were performed to examine the significance of H_(2)O_(2) treatment in increasing CO_(2) reduction activity.The optimized Ag1.0@Ru1.0-P25 photocatalyst performed excellent CO_(2) reduction activity into CO,CH4,and C2H6 with a~95%selectivity of CH4,where the activity was~135 times higher than that of pristine TiO_(2)(P25).For the first time,this work explored the effect of H_(2)O_(2) treatment on the photocatalyst that dramatically increases CO_(2) reduction activity.展开更多
The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Exper...The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Experimental results revealed that RE treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after RE treatment, oxygen concentration increased obviously, and the amount of oxygen-containing groups on CF surfaces were largely increased. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with VITE matrix, and large scale rubbing-off of PTFE be prevented, therefore, tribological properties of the composite was improved.展开更多
Mg-Li alloy,as a superlight metallic engineering material,shows great potential in the fields of aerospace and militarydue to its high specific strength,better formability,and excellent electromagnetic shielding perfo...Mg-Li alloy,as a superlight metallic engineering material,shows great potential in the fields of aerospace and militarydue to its high specific strength,better formability,and excellent electromagnetic shielding performance.The research process ofMg-Li alloys is reviewed and three main problems are pointed out.Aimed at the poor corrosion resistance of Mg-Li alloys,thecorrosion behavior is mainly summarized.The surface treatment technologies,including electroplating,electroless plating,plasmaspraying,molten salt replacement,conversion coating,anodizing,micro-arc oxidation,organic coating,and organic-inorganic hybridcoating,are introduced in detail.Finally,the future development of corrosion and protection of Mg?Li alloys is discussed.展开更多
Surface modification is often performed using grit or shot blasting treatment for improving the performances of biomedical implants. The effects of blasting treatments using steel slag balls and spherical shots on the...Surface modification is often performed using grit or shot blasting treatment for improving the performances of biomedical implants. The effects of blasting treatments using steel slag balls and spherical shots on the surface and subsurface of titanium were studied in this paper. The treatments were conducted for 60-300 s using 2-5 mm steel slag bails and 3.18 mm spherical shots. The surface morphology, roughness, and elemental composition of titanium specimens were examined prior to and after the treatments. Irregular and rough titanium surfaces were formed after the treatment with the steel slag balls instead of the spherical shots. The former treatment also introduced some bioactive elements on the titanium surface, but the latter one yielded a harder surface layer. In conclusion, both steel slag ball and shot blasting treatment have their own specialization in modifying the surface of metallic biomaterials. Steel slag ball blasting is potential for improving the osseointegration quality of implants; but the shot blasting is more appropriate for improving the mechanical properties of temporary and load bearing implants, such as osteosynthesis plates.展开更多
Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (...Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the展开更多
This paper presents the effects of surface finish and treatment on the high cycle fatigue behaviour of vibrating cylinder block of a new two-stroke free piston engine at complex variable amplitude loading conditions u...This paper presents the effects of surface finish and treatment on the high cycle fatigue behaviour of vibrating cylinder block of a new two-stroke free piston engine at complex variable amplitude loading conditions using frequency response approach. Finite element modelling and frequency response analysis was conducted using finite element analysis software Package MSC.PATRAN/MSC.NASTRAN and fatigue life prediction was carded out using MSC.FATIGUE software. Based on the finite element results, different frequency response approach was applied to predict the cylinder block fatigue life. Results for different load histories and material combinations are also discussed. Results indicated great effects for all surface finish and treatment. It is concluded that polished and cast surface finish conditions give the highest and lowest cylinder block lives, respectively; and that Nitrided treatment leads to longest cylinder block life. The results were used to draw contour plots of fatigue life and damage in the worst or most damaging case.展开更多
Surface-treated MmNi3.55Co0.75Mn0.4Al0.3 alloy as negative electrode material of nickel-metal hydride battery was employed to improve the high-rate dischargeability. Surface treatment was realized by dipping and stirr...Surface-treated MmNi3.55Co0.75Mn0.4Al0.3 alloy as negative electrode material of nickel-metal hydride battery was employed to improve the high-rate dischargeability. Surface treatment was realized by dipping and stirring the alloy into a HCl aqueous solution with various concentrations at room temperature. The microstructure of the alloy before and after surface treatment was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties before and after surface treatment were compared, and the alloy treated in 0.025 mol/L HCl solution showed the optimal high-rate dischargeability.展开更多
The effect of high-energy electropulsing-ultrasonic surface treatment(EUST) on the surface properties and the microstructure evolution of C45 E4 steel was investigated. Refined microstructure and reduced surface rou...The effect of high-energy electropulsing-ultrasonic surface treatment(EUST) on the surface properties and the microstructure evolution of C45 E4 steel was investigated. Refined microstructure and reduced surface roughness were obtained owing to the surface nanocrystallization process. Compared with the ultrasonic surface treatment(UST), the impact depth of the surface strengthened layer was increased by 40% to 700 μm after EUST. The average grain size of the surface nanocrystallization layer was reduced to 30-50 nm. The surface roughness of the C45 E4 steel was reduced to 0.25 μm, and the surface microhardness was dramatically enhanced to 460 HV. The improvement of microstructure and micro-hardness at ambient temperature was likely attributed to the acceleration of atomic diffusion and the enhancement of plastic deformation ability in the surface strengthened layer under the influence of electropulsing. Due to the electropulsing-assisted ultrasonic strengthening effect, the surface nanocrystallization in this ultrafast procedure was noticeably enhanced.展开更多
Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted i...Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87~ to 42.3~, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The micmhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment thne when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.展开更多
Thermal fatigue checking is the general failure of hot work die steels, which is relative with the structures and properties of the steels and the stress alternated during the employment. The Uddeholm test method on t...Thermal fatigue checking is the general failure of hot work die steels, which is relative with the structures and properties of the steels and the stress alternated during the employment. The Uddeholm test method on thermal fatigue is used to compare the behaviors of different samples, which are treated with plasma nitriding、plasma sulfur carbon nitriding、boronizing or not treated. The results show that the nitriding improves the thermal fatigue property of the tool steel, while the plasma sulfur carbon nitriding and the boronizing impair the property. The mechanisms are induced as follows. By increasing the hardness and changing the stress distribution in the surface layer, surface treatment can decrease the plastic deformation and the tensile stress during the cycling. Therefore, the generation and growth of the cracks are restrained. On the other hand, as results of surface treating, in the surface layer the toughness declines and the expanding coefficient ascendes; the latter change caused the strengthening of the tensile and compressive stress during the cycling. Thus the resistance to thermal fatigue is weakened. Whether or not the surface treatment is favor to thermal fatigue of tool steels relies on which factor is dominant.展开更多
Aluminum foils having thicknesses of 10-20 μm are commonly employed as current collectors for cathode electrodes in Li-ion batteries. The effects of the surface morphology of the foil on battery performance were inve...Aluminum foils having thicknesses of 10-20 μm are commonly employed as current collectors for cathode electrodes in Li-ion batteries. The effects of the surface morphology of the foil on battery performance were investigated by using a foil with roughened surface by chemical etching and a plain foil with smooth surface on both sides. For high-conductivity LiCoO2 active materials with large particle size, there are no significant differences in battery performance between the two types of foils. But for low-conductivity LiFePO4 active materials with small particle size, high-rate discharge properties are significantly different. The possibility shows that optimizing both the surface morphology of the aluminum foil and particle size of active material leads to improvement of the battery performance.展开更多
In order to lower the boriding temperature of hot work steel H13, method of surface mechanical attrition treatment (SMAT), which can make the grain size of the surface reach nano-scale, was used before pack boriding...In order to lower the boriding temperature of hot work steel H13, method of surface mechanical attrition treatment (SMAT), which can make the grain size of the surface reach nano-scale, was used before pack boriding. The growth of the boride layer was studied in a function of boriding temperature and time. By TEM (transmission electron microscopy), SEM (scanning electron microscopy), XRD (x-ray diffraction) and microhardness tests, the grain size, thermal stability of the nano-structured (NS) surface and the thickness,appearance, phases of the surface boride layer were studied. Kinetic of boriding was compared between untreated samples and treated samples. Results showed that after SMAT, the boride layer was thicker and the hardness gradient was smoother. Furthermore, after boriding at a low temperature of 700℃ for 8 h, a boride layer of about 5 μm formed on the NS surface. This layer was toothlike and wedged into the substrate, which made the surface layer combine well with the substrate. The phase of the boride layer was Fe2B. Research on boriding kinetics indicated that the activation energy was decreased for the treated samples.展开更多
To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the p...To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the precipitates generation of Al6061 on surface integrity and surface roughness.Based on the Johnson-Mehl-Avrami solid phase transformation kinetics equation, theoretical and experimental studies were conducted to build the relationship between the aging condition and the type, size and number of the precipitates for Al6061. Diamond cutting experiments were conducted to machine Al6061 samples under different aging conditions. The experimental results show that, the protruding on the chip surface is mainly Mg_(2)Si and the scratches on the machined surface mostly come from the iron-containing phase(α-, β-AlFeSi).Moreover, the generated Mg_(2)Si and α-, β-AlFeSi affect the surface integrity and the diamond turned surface roughness. Especially, the achieved surface roughness in SPDT is consistent with the variation of the number of AlFeSi and Mg_(2)Si with the medium size(more than 1 μm and less than 2 μm) in Al6061.展开更多
In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chlo- ride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Py...In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chlo- ride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemi- cal changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT4R) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR- FTIR) spectroscopy after treatment for 2 min, 4 min and 6 rain in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times.展开更多
A direct strategy for the creation of defects on carbon nanofibers (CNFs) has been developed by steam treatment.Nitrogen physisorption,XRD,Raman spectra,SEM and TEM analyses proved the existence of the new defects on ...A direct strategy for the creation of defects on carbon nanofibers (CNFs) has been developed by steam treatment.Nitrogen physisorption,XRD,Raman spectra,SEM and TEM analyses proved the existence of the new defects on CNFs.BET surface area of CNFs after steam treatment was enhanced from 20 to 378 m2/g.Pd catalysts supported on CNFs were also prepared by colloidal deposition method.The different activity of Pd/CNFs catalysts in the partial hydrogenation of phenylacetylene further demonstrated the diverse surfaces of CNFs could be formed by steam treatment.展开更多
In the present research, the influence of chromium enrichment by surface treatment on corrosion resistance of type 316L stainless steel in body environment was investigated. For this study, weight loss test during 18 ...In the present research, the influence of chromium enrichment by surface treatment on corrosion resistance of type 316L stainless steel in body environment was investigated. For this study, weight loss test during 18 months, cyclic and liner polarization tests before and after surface treatment and metallography by electron and light microscopy were used to evaluate the effectiveness of the proposed method. In addition, X-ray photoelectron spectroscopy (XPS) method was used to determine the chromium concentration in the surface layer after surface treatment. Results show that the surface treatment has improved corrosion resistance of the type 316L stainless steel in body environment.展开更多
A pipeline steel X80 with welded joint was subjected to surface mechanical attrition treatment (SMAT). After SMAT, a nanostructure surface layer with an average grain size of about 10 nm was formed in the treated sa...A pipeline steel X80 with welded joint was subjected to surface mechanical attrition treatment (SMAT). After SMAT, a nanostructure surface layer with an average grain size of about 10 nm was formed in the treated sample, and the fatigue limit of the welded joint was elevated by about 13% relative to the untreated joints. In the low and the high amplitude stress regimes, both fatigue strength and fatigue life were enhanced. Formation of the nanostructured surface layer played more important role in the enhanced fatigue behavior than that of residual stress induced by the SMAT.展开更多
基金financialy supported by the National Key R&D Program of China(Grant No.2018YFB0905400)the National Natural Science Foundation of China(Grant Nos.22075331,51702376)+2 种基金the Fundamental Research Funds for the Central Universities(19lgzd02)the Guangdong Pearl River Talents Plan(2019QN01L117)the National Thousand Youth Talents Project of the Chinese Government
文摘For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.
基金supported by the National Natural Science Foundation of China(51202186,51323011)the Fundamental Research Funds for the Central University(xjj2016039)~~
文摘CdS/ZnS core-shell microparticles were prepared by a simple two-step method combining ultrasonic spray pyrolysis and chemical bath deposition.The core-shell structures showed enhanced photocatalytic properties compared with those of CdS or ZnS spherical particles.CdS/ZnS photocatalysts with different amount of ZnS loaded as shells were prepared by adjusting the concentrations of Zn and S precursors during synthesis.The optical properties and photocatalytic activity for hydrogen production were investigated and the amount of ZnS loaded as shell was optimized.Thermal annealing and hydrothermal sulfurization treatments were applied to the core-shell structure and both treatments enhanced the material's photocatalytic activity and stability by eliminating crystalline defects and surface states.The result showed that thermal annealing treatment improved the bulk crystallinity and hydrothermal sulfurization improved the surface properties.The sample subjected to both treatments showed the highest photocatalytic activity.These results indicate that CdS/ZnS core-shell microspheres are a simple structure that can be used as efficient photocatalysts.The hydrothermal sulfurization treatment may also be a useful surface treatment for metal sulfide photocatalysts.The simple two-step method provides a promising approach to the large-scale synthesis of core-shell microsphere catalysts.
基金Supported by Science and Technology Programs of Liangqing District of Nanning City(201304A)Science and Technology Program of Guangxi University(XJZ120270)~~
文摘The aim of this study was investigate the effects of heat treatment on the contact angle of Chinese fir, and the indicators affecting the change of contact an-gle change. It was determined that the duration of treatment had significant effect on the change curves of contact angle of Chinese fir wood due to the change curves of contact angle became more centralized and orderly after the specimens heat treated at 180 ℃. Compared with the untreated wood, the contact angle in-creased from 51&#176; to 124&#176; after 4 h treatment, and hydroxyl absorbance of hy-drophilic functional groups decreased from 2.08 to 1.63, while carbonyl absorbance from 0.92 to 0.62. The surface roughness has not significant influence on the con-tact angle. Heat treatment of the Chinese fir caused surface morphological change, which produced hol owed-out phenomenon. The increased surface contact angle caused by heat treatment can be used for outdoor and sauna facilities.
基金supported by the Ministry of Science and ICT in Korea(2021R1A2C2009459)X-ray absorption spectra were obtained from Pohang Accelerator Laboratory(PAL)10C beamlinesupported by the US Department of Energy,Office of Science,Office of Advanced Scientific Computing Research,and Scientific Discovery through Advanced Computing(SciDAC)program under Award Number DE-SC0022209.
文摘Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar fuels.A surface-modified Ag@Ru-P25 photocatalyst with H_(2)O_(2) treatment was designed in this study to convert CO_(2) and H_(2)O vapor into highly selective CH4.Ru doping followed by Ag nanoparticles(NPs)cocatalyst deposition on P25(TiO_(2))enhances visible light absorption and charge separation,whereas H_(2)O_(2) treatment modifies the surface of the photocatalyst with hydroxyl(–OH)groups and promotes CO_(2) adsorption.High-resonance transmission electron microscopy,X-ray photoelectron spectroscopy,X-ray absorption near-edge structure,and extended X-ray absorption fine structure techniques were used to analyze the surface and chemical composition of the photocatalyst,while thermogravimetric analysis,CO_(2) adsorption isotherm,and temperature programmed desorption study were performed to examine the significance of H_(2)O_(2) treatment in increasing CO_(2) reduction activity.The optimized Ag1.0@Ru1.0-P25 photocatalyst performed excellent CO_(2) reduction activity into CO,CH4,and C2H6 with a~95%selectivity of CH4,where the activity was~135 times higher than that of pristine TiO_(2)(P25).For the first time,this work explored the effect of H_(2)O_(2) treatment on the photocatalyst that dramatically increases CO_(2) reduction activity.
基金the National Natural Science Foundation of China (50275093)
文摘The effect of rare earths (RE) surface treatment of carbon fibers (CF) on tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites under oil-lubricated condition was investigated. Experimental results revealed that RE treated CF reinforced PTFE (CF/PTFE) composite had the lowest friction coefficient and wear under various applied loads and sliding speeds compared with untreated and air-oxidated composites. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that, after RE treatment, oxygen concentration increased obviously, and the amount of oxygen-containing groups on CF surfaces were largely increased. The increase in the amount of oxygen-containing groups enhanced interfacial adhesion between CF and PTFE matrix. With strong interfacial adhesion of the composite, stress could be effectively transmitted to carbon fibers; carbon fibers were strongly bonded with VITE matrix, and large scale rubbing-off of PTFE be prevented, therefore, tribological properties of the composite was improved.
基金Project(2017zzts005) supported by the Fundamental Research Funds for the Central Universities of Central South University
文摘Mg-Li alloy,as a superlight metallic engineering material,shows great potential in the fields of aerospace and militarydue to its high specific strength,better formability,and excellent electromagnetic shielding performance.The research process ofMg-Li alloys is reviewed and three main problems are pointed out.Aimed at the poor corrosion resistance of Mg-Li alloys,thecorrosion behavior is mainly summarized.The surface treatment technologies,including electroplating,electroless plating,plasmaspraying,molten salt replacement,conversion coating,anodizing,micro-arc oxidation,organic coating,and organic-inorganic hybridcoating,are introduced in detail.Finally,the future development of corrosion and protection of Mg?Li alloys is discussed.
基金financially funded by the Institute for Research and Community Service,Gadjah Mada University,Indonesia,through Research Grant for Junior Lecturer 2012 (Grant No. LPPM-UGM/315/BID.I/2012)
文摘Surface modification is often performed using grit or shot blasting treatment for improving the performances of biomedical implants. The effects of blasting treatments using steel slag balls and spherical shots on the surface and subsurface of titanium were studied in this paper. The treatments were conducted for 60-300 s using 2-5 mm steel slag bails and 3.18 mm spherical shots. The surface morphology, roughness, and elemental composition of titanium specimens were examined prior to and after the treatments. Irregular and rough titanium surfaces were formed after the treatment with the steel slag balls instead of the spherical shots. The former treatment also introduced some bioactive elements on the titanium surface, but the latter one yielded a harder surface layer. In conclusion, both steel slag ball and shot blasting treatment have their own specialization in modifying the surface of metallic biomaterials. Steel slag ball blasting is potential for improving the osseointegration quality of implants; but the shot blasting is more appropriate for improving the mechanical properties of temporary and load bearing implants, such as osteosynthesis plates.
文摘Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the
基金Project (No. 03-02-02-0056 PR0025/04-03) supported by Ministry of Science, Technology and Innovation, Malaysia
文摘This paper presents the effects of surface finish and treatment on the high cycle fatigue behaviour of vibrating cylinder block of a new two-stroke free piston engine at complex variable amplitude loading conditions using frequency response approach. Finite element modelling and frequency response analysis was conducted using finite element analysis software Package MSC.PATRAN/MSC.NASTRAN and fatigue life prediction was carded out using MSC.FATIGUE software. Based on the finite element results, different frequency response approach was applied to predict the cylinder block fatigue life. Results for different load histories and material combinations are also discussed. Results indicated great effects for all surface finish and treatment. It is concluded that polished and cast surface finish conditions give the highest and lowest cylinder block lives, respectively; and that Nitrided treatment leads to longest cylinder block life. The results were used to draw contour plots of fatigue life and damage in the worst or most damaging case.
基金supported by Hi-Tech Research and Development Program (863) of China (2006AA11A159)
文摘Surface-treated MmNi3.55Co0.75Mn0.4Al0.3 alloy as negative electrode material of nickel-metal hydride battery was employed to improve the high-rate dischargeability. Surface treatment was realized by dipping and stirring the alloy into a HCl aqueous solution with various concentrations at room temperature. The microstructure of the alloy before and after surface treatment was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties before and after surface treatment were compared, and the alloy treated in 0.025 mol/L HCl solution showed the optimal high-rate dischargeability.
基金Funded by the Natural Science Foundation of China(No.50571048)the Research & Development Funding Project of Shenzhen(No.JCYJ20120619152539900)
文摘The effect of high-energy electropulsing-ultrasonic surface treatment(EUST) on the surface properties and the microstructure evolution of C45 E4 steel was investigated. Refined microstructure and reduced surface roughness were obtained owing to the surface nanocrystallization process. Compared with the ultrasonic surface treatment(UST), the impact depth of the surface strengthened layer was increased by 40% to 700 μm after EUST. The average grain size of the surface nanocrystallization layer was reduced to 30-50 nm. The surface roughness of the C45 E4 steel was reduced to 0.25 μm, and the surface microhardness was dramatically enhanced to 460 HV. The improvement of microstructure and micro-hardness at ambient temperature was likely attributed to the acceleration of atomic diffusion and the enhancement of plastic deformation ability in the surface strengthened layer under the influence of electropulsing. Due to the electropulsing-assisted ultrasonic strengthening effect, the surface nanocrystallization in this ultrafast procedure was noticeably enhanced.
基金partly supported by National Natural Science Foundation of China under Grant No. 51477164the National Basic Research Program of China under Grant No. 2014CB239505-03+1 种基金the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant No. LAPS16013the Science and Technology Project of State Grid Corporation of China
文摘Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87~ to 42.3~, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The micmhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment thne when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.
文摘Thermal fatigue checking is the general failure of hot work die steels, which is relative with the structures and properties of the steels and the stress alternated during the employment. The Uddeholm test method on thermal fatigue is used to compare the behaviors of different samples, which are treated with plasma nitriding、plasma sulfur carbon nitriding、boronizing or not treated. The results show that the nitriding improves the thermal fatigue property of the tool steel, while the plasma sulfur carbon nitriding and the boronizing impair the property. The mechanisms are induced as follows. By increasing the hardness and changing the stress distribution in the surface layer, surface treatment can decrease the plastic deformation and the tensile stress during the cycling. Therefore, the generation and growth of the cracks are restrained. On the other hand, as results of surface treating, in the surface layer the toughness declines and the expanding coefficient ascendes; the latter change caused the strengthening of the tensile and compressive stress during the cycling. Thus the resistance to thermal fatigue is weakened. Whether or not the surface treatment is favor to thermal fatigue of tool steels relies on which factor is dominant.
文摘Aluminum foils having thicknesses of 10-20 μm are commonly employed as current collectors for cathode electrodes in Li-ion batteries. The effects of the surface morphology of the foil on battery performance were investigated by using a foil with roughened surface by chemical etching and a plain foil with smooth surface on both sides. For high-conductivity LiCoO2 active materials with large particle size, there are no significant differences in battery performance between the two types of foils. But for low-conductivity LiFePO4 active materials with small particle size, high-rate discharge properties are significantly different. The possibility shows that optimizing both the surface morphology of the aluminum foil and particle size of active material leads to improvement of the battery performance.
文摘In order to lower the boriding temperature of hot work steel H13, method of surface mechanical attrition treatment (SMAT), which can make the grain size of the surface reach nano-scale, was used before pack boriding. The growth of the boride layer was studied in a function of boriding temperature and time. By TEM (transmission electron microscopy), SEM (scanning electron microscopy), XRD (x-ray diffraction) and microhardness tests, the grain size, thermal stability of the nano-structured (NS) surface and the thickness,appearance, phases of the surface boride layer were studied. Kinetic of boriding was compared between untreated samples and treated samples. Results showed that after SMAT, the boride layer was thicker and the hardness gradient was smoother. Furthermore, after boriding at a low temperature of 700℃ for 8 h, a boride layer of about 5 μm formed on the NS surface. This layer was toothlike and wedged into the substrate, which made the surface layer combine well with the substrate. The phase of the boride layer was Fe2B. Research on boriding kinetics indicated that the activation energy was decreased for the treated samples.
基金Funded by Natural Science Foundation of Guangdong Province,China (No.2017A030313330)Science and Technology Program of Guangzhou (No.201804020040)。
文摘To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the precipitates generation of Al6061 on surface integrity and surface roughness.Based on the Johnson-Mehl-Avrami solid phase transformation kinetics equation, theoretical and experimental studies were conducted to build the relationship between the aging condition and the type, size and number of the precipitates for Al6061. Diamond cutting experiments were conducted to machine Al6061 samples under different aging conditions. The experimental results show that, the protruding on the chip surface is mainly Mg_(2)Si and the scratches on the machined surface mostly come from the iron-containing phase(α-, β-AlFeSi).Moreover, the generated Mg_(2)Si and α-, β-AlFeSi affect the surface integrity and the diamond turned surface roughness. Especially, the achieved surface roughness in SPDT is consistent with the variation of the number of AlFeSi and Mg_(2)Si with the medium size(more than 1 μm and less than 2 μm) in Al6061.
文摘In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chlo- ride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemi- cal changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT4R) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR- FTIR) spectroscopy after treatment for 2 min, 4 min and 6 rain in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times.
基金supported by the National Natural Science Foundation of China(21073023 and 20906008)the Fundamental Research Funds for the Central Universities(DUT12YQ03)the CSC and DAAD for a Project Based Personnel Exchange Program
文摘A direct strategy for the creation of defects on carbon nanofibers (CNFs) has been developed by steam treatment.Nitrogen physisorption,XRD,Raman spectra,SEM and TEM analyses proved the existence of the new defects on CNFs.BET surface area of CNFs after steam treatment was enhanced from 20 to 378 m2/g.Pd catalysts supported on CNFs were also prepared by colloidal deposition method.The different activity of Pd/CNFs catalysts in the partial hydrogenation of phenylacetylene further demonstrated the diverse surfaces of CNFs could be formed by steam treatment.
文摘In the present research, the influence of chromium enrichment by surface treatment on corrosion resistance of type 316L stainless steel in body environment was investigated. For this study, weight loss test during 18 months, cyclic and liner polarization tests before and after surface treatment and metallography by electron and light microscopy were used to evaluate the effectiveness of the proposed method. In addition, X-ray photoelectron spectroscopy (XPS) method was used to determine the chromium concentration in the surface layer after surface treatment. Results show that the surface treatment has improved corrosion resistance of the type 316L stainless steel in body environment.
基金supported by the CNPC (China National Petroleum Corporation) Innovation Foundation under grant No.07E1015
文摘A pipeline steel X80 with welded joint was subjected to surface mechanical attrition treatment (SMAT). After SMAT, a nanostructure surface layer with an average grain size of about 10 nm was formed in the treated sample, and the fatigue limit of the welded joint was elevated by about 13% relative to the untreated joints. In the low and the high amplitude stress regimes, both fatigue strength and fatigue life were enhanced. Formation of the nanostructured surface layer played more important role in the enhanced fatigue behavior than that of residual stress induced by the SMAT.