A detailed investigation for the influence of post weld heat treatment (PWHT) on the microstructure of TC4 and TC17 dissimilar joints was analyzed. The fully transformed microstructure in the as-welded zone indicate...A detailed investigation for the influence of post weld heat treatment (PWHT) on the microstructure of TC4 and TC17 dissimilar joints was analyzed. The fully transformed microstructure in the as-welded zone indicated that the peak temperature exceeded theβ-transus temperature at the weld interface during linear friction welding. TC4 side was mainly composed of martensiteα′phase with random distribution and it was singleβfor that of TC17. In the thermomechanically affected zones of TC4 and TC17, the structure undergoes severe plastic deformation and re-orientation, yet without altering the phase fractions. After PWHT, in the weld zone of TC4 alloy, the phase transformationα′→α+βoccurred and the acicularαwas coarsened, which resulted in a decrease in hardness. In the weld zone of TC17 alloy, fineαphase precipitated at the grain boundary and withinβgrains, which resulted in a sharp increase in hardness.展开更多
The microstructure and hardness of the stir zone (SZ) with different welding heat inputs were investigated for friction stir-welded 2024-T3 aluminum by transmission electron microscopy, differential scanning calorim...The microstructure and hardness of the stir zone (SZ) with different welding heat inputs were investigated for friction stir-welded 2024-T3 aluminum by transmission electron microscopy, differential scanning calorimeter and Vickers micro-hardness test. The results show that welding heat input has a significant effect on the hardness of the SZ. Under high welding heat input condition, a higher welding speed is beneficial for improving the hardness of the SZ. However, when the welding heat input is low, the hardness of the SZ elevates with increasing the rotation speed. The hardness of the SZ decreases after post-welded heat treatment due to overaging. The joints welded at 500 r/min and 100 mm/min show a high resistance to overaging. The reduction of hardness in the SZ is only 3.8%, while in other joints, the reduction is more than 10%. The morphology of strengthening precipitates plays important roles for the improvement of hardness.展开更多
AA2219 aluminium alloy joints were fabricated by variable polarity tungsten inert gas (VPTIG) welding process and the effects of post weld heat treatment (PWHT) on the tensile properties, microstructure and fatigu...AA2219 aluminium alloy joints were fabricated by variable polarity tungsten inert gas (VPTIG) welding process and the effects of post weld heat treatment (PWHT) on the tensile properties, microstructure and fatigue behaviour of the welded joints were investigated. The VPTIG welding process was adopted because it could meet the need of cathode cleaning and meanwhile it could reduce the deterioration of tungsten electrode furthest. The welded samples were divided into as-welded (AW) sample and PWHT sample. The PWHT method used on the samples was solution treatment (535 ℃, 30 rain), water quenching and artificial aging (175 ℃, 12 h). The experimental results show that, compared with the AW samples, the microstructure characteristics and mechanical properties of the AA2219 joints after PWHT were significantly improved. The improvement of yield strength, ultimate tensile strength, and fatigue strength are 42.6%, 43.1% and 18.4%, respectively.展开更多
Ultrasonic shot peening treatment (USPT) was proposed to correct welding buckling distortion. The residual stress distribution along the depth direction of the peened zone was measured by an X-ray diffractometer. T...Ultrasonic shot peening treatment (USPT) was proposed to correct welding buckling distortion. The residual stress distribution along the depth direction of the peened zone was measured by an X-ray diffractometer. The microstructure of the treated specimens was investigated by scanning electron microscopy (SEM). The Vickers microhardness was measured in different areas of welded joint before USPT and along the depth direction of the weld after USPT. The experimental results indicated that the welding buckling distortion of 5A06 aluminum alloy butt joint can be essentially corrected by USPT; the average correction rate reached 90.8% in this study. Furthermore, USPT enhanced specimens by work hardening. The microstructure of the peened zone was improved; moreover, the distribution of the precipitates and grains presented an apparent orientation.展开更多
To improve the microstructure and properties of the electron beam welded joints, the vacuum or furnace whole post weld heat treatment (FWPWHT) usually should be done on it. The electron beam local post weld heat treat...To improve the microstructure and properties of the electron beam welded joints, the vacuum or furnace whole post weld heat treatment (FWPWHT) usually should be done on it. The electron beam local post weld heat treatment (EBLPWHT) is a rather new heat treatment procedure that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. In this paper, the microstructure, mechanical properties, fracture toughness and fatigue properties of electron beam welded joints of 30CrMnSiNi2A steel in as-welded (AW) and EBLPWHT conditions have been investigated respectively. The results show that the microstructures of different zones of joints in as-welded condition are changed by EBLPWHT procedure, in which the welds from coarse needle martensite into lath-shaped martensite; the main structures of heat affected zones (HAZ) from lath-shaped martensite into lower bainite. The properties of welded joints can be improved by the EBLPWHT in some extent, especially the fracture toughness of the welds and the fatigue crack resistance of welded joints can be sufficiently improved. However, more appropriate heat treatment parameters of the EBLPWHT have to be studied in order to increase the mechanical properties of base metal near by the HAZ.展开更多
The effects of heat treatment on the microstructure and mechanical properties of intermetallic compounds in the interface of stainless steel 321 explosively bonded to aluminum 1230 were investigated in this study. Exp...The effects of heat treatment on the microstructure and mechanical properties of intermetallic compounds in the interface of stainless steel 321 explosively bonded to aluminum 1230 were investigated in this study. Experimental investigations were performed by optical microscopy, scanning electron microscopy, and microhardness and shear tensile strength testing. Prior to heat treatment, increasing the stand-off distance between samples from 1 to 2.5 mm caused their interface to become wavy and the thickness of intermetallic layers to increase from 3.5 to 102.3 μm. The microhardness increased from HV 766 in the sample prepared at a stand-off distance of 1 mm to HV 927 in the sample prepared at a stand-off distance of 2.5 mm; in addition, the sample strength increased from 103.2 to 214.5 MPa. Heat treatment at 450°C for 6 h increased the thickness of intermetallic compound layers to 4.4 and 118.5 μm in the samples prepared at stand-off distances of 1 and 2.5 mm, respectively. These results indicated that increasing the duration and temperature of heat treatment decreased the microhardness and strength of the interface of explosively welded stainless steel 321-Al 1230 and increased the thickness of the intermetallic region.展开更多
The fatigue property of AZ31 magnesium alloy and its TIG welded joints were investigated. The ultrasonic peening treatment (UPT) was used to improve the fatigue property of the TIG welded joints, which was treated a...The fatigue property of AZ31 magnesium alloy and its TIG welded joints were investigated. The ultrasonic peening treatment (UPT) was used to improve the fatigue property of the TIG welded joints, which was treated at the weld toe by the UPT process. The test results show that the fatigue strength of the base metal of AZ31 magnesium alloys is 57.8 MPa, and those of the fillet joint and the transverse cross joint are respectively 20. 0 MPa and 17.2 MPa at 2 × 10^6 cycles. The fatigue strengths of two kinds of welded joints treated by the UPT are respectively 30. 3 MPa and 24. 7 MPa, which have been improved by 51.5% and 43.6%, respectively. The fatigue life of the fillet joint specimens is prolonged by about 2. 74 times and the fatigue life of the transverse cross joint specimens is prolonged by about 1.05 times when the stress range is at 40. 0 MPa.展开更多
The effect of post-weld heat treatment on the microstructure characterization of electron beam welded(EBW) joints of Ti3Al-Nb was investigated.The results show that the microstructure of the weld is predominantly meta...The effect of post-weld heat treatment on the microstructure characterization of electron beam welded(EBW) joints of Ti3Al-Nb was investigated.The results show that the microstructure of the weld is predominantly metastable,the columnar crystal metastructure of B2 phase.The microstructure morphology of the weld is significantly influenced by the method of the heat treatment.The microstructure of the weld is laminar structure(Widmanstaten structure) consisted of interphase α2 and B2 after post-weld heat treatment of 1000 ℃/2 h.The mechanism of the post-weld heat treatment makes the hardness distribution of joints homogeneous,but makes the whole joint somehow softened.展开更多
7XXX series aluminium alloys generally present low weldability by fusion welding methods because of the sensitivity to weld solidification cracking, vaporization of strengthening alloys and other defects in the fusion...7XXX series aluminium alloys generally present low weldability by fusion welding methods because of the sensitivity to weld solidification cracking, vaporization of strengthening alloys and other defects in the fusion zone. Friction stir welding(FSW) can be deployed successfully with aluminium alloys. We presented the effect of post-weld heat treatment(PWHT) on the microstructure and mechanical properties of SSM7075 joints. Semi solid plates were butt-welded by FSW at a rotation speed of 1110 r/min, welding speeds of 70 and 110 mm/min. Solution treatment, artificial aging, and T6(solution treatment and artificial aging combined) were applied to the welded joints, each with three samples. It was found that the T6 joints at the speed of 70 mm/min yielded the highest tensile strength of 459.23 MPa. This condition best enhanced the mechanical properties of FSW SSM7075 aluminium alloy joints.展开更多
6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and tim...6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and time was investigated by transmission electron microscopy and scanning electron microscopy. The mechanical properties were examined by hardness test and tensile test. The results showed that the micro-hardness was sensitive to heat treatment temperature and time. Increasing temperature was beneficial to the shortening of peak aging time. There were a large number of dislocations and few precipitates in the welded joints. With the increase of post-weld heat treatment temperature and time, the density of dislocation decreased. Meanwhile, the strengthening phase precipitated and grew up gradually. When the post-weld heat treatment temperature increased up to 200℃, large Q' phases were observed. And they were responsible for the peak value of the micro-hardness in the welded joints.展开更多
Deep cryogenic treatment technology of electrodes is put forward to improve electrode life of resistance spot welding of aluminum alloy LF2. Deep cryogenic treatment makes electrode life for spot welding aluminum allo...Deep cryogenic treatment technology of electrodes is put forward to improve electrode life of resistance spot welding of aluminum alloy LF2. Deep cryogenic treatment makes electrode life for spot welding aluminum alloy improve. The specific resistivity of the deep cryogenic treatment electrodes is tested and experimental results show that specific resistivity is decreased sharply. The temperature field and the influence of deep cryogenic treatment on the electrode tip temperature during spot welding aluminium alloy is studied by numerical simulation method with the software ANSYS. The axisymmetric finite element model of mechanical, thermal and electrical coupled analysis of spot welding process is developed. The numerical simulation results show that the influence of deep cryogenic treatment on electrode tip temperature is very large.展开更多
The effects of deep cryogenic treatment on mechanical behavior of a Cu-Cr-Zr alloy for electrodes of spot welding were investigated employing Brinell-hardness testing unit, abrasion examination machine, electronic alm...The effects of deep cryogenic treatment on mechanical behavior of a Cu-Cr-Zr alloy for electrodes of spot welding were investigated employing Brinell-hardness testing unit, abrasion examination machine, electronic almighty testing machine and X-ray stress analyzer. Tensile fracture surfaces of the alloy were characterized by scanning electronic microscope (SEM) with energy dispersive X-ray spectroscopy (EDS). The results showed that, after deep cryogenic treatment, σb and σ0.2 increased 23 MPa and 21 MPa respectively, the wear rate of the alloy exhibited the trend of decrease with the decreasing temperature and increasing time of deep cryogenic treatment, and the surface residual stress of the alloy was partially eliminated by deep cryogenic treatment.展开更多
In order to improve microstructure distribution and mechanical properties of Mg alloy joint by annealing treatment, die-casting AZ31 Mg alloy was successfully welded at rotation speed of 1 400 rpm and travel speed of ...In order to improve microstructure distribution and mechanical properties of Mg alloy joint by annealing treatment, die-casting AZ31 Mg alloy was successfully welded at rotation speed of 1 400 rpm and travel speed of 200 mm/min. The welded joints were annealed at 150-300 ℃ for 15-120 min and then were subjected to transverse tensile. The microstructure of annealed joints was analyzed by optical microscopy and electron backscatter diffraction. The experimental results indicate that(0001) texture intensity in stir zone significantly reduces and sharp transition of grain size is relieved in the interface between stir zone and thermo-mechanically affected zone after annealed at 200 ℃ for 30 min. Meanwhile, the elongation is increased from 7.5% to 13.0% and strength is increased slightly. It is because that annealing treatment can inhibit twin transformation and retain its ability to coordinate deformation during tensile deformation, which contributes to the improvement of plasticity. In addition, annealing treatment can increase the width of interfacial transition zone and lead to gradual transition of grain size between the SZ and TMAZ, which balances dislocation diffusion rate in different zone.展开更多
In local post weld heat treatment, the temperature difference is the criterion of the process. The temperature field in the main stream pipe under local post weld heat treatment is simulated by finite element method. ...In local post weld heat treatment, the temperature difference is the criterion of the process. The temperature field in the main stream pipe under local post weld heat treatment is simulated by finite element method. A close-loop control program is designed to simulate the temperature field of two different pipes. Both the skin effect of induction heating and electro-thermal coupled effect are considered in the heating model. The local heat treatment temperature difference at the inner and outer side of the pipe is analyzed and the different convection conditions are also considered. The simulation results show that in appropriate induction heating process, the temperature difference in the pipe can be controlled within 30 ℃.展开更多
The effect of post-weld heat treatment on dissimilar friction stir welded AA7075 and AA2024 joints was studied. After welding in constant parameters, solution heat treatment and various aging treatments were given to ...The effect of post-weld heat treatment on dissimilar friction stir welded AA7075 and AA2024 joints was studied. After welding in constant parameters, solution heat treatment and various aging treatments were given to the welded joints. Microstructural and phase characterizations were done using optical microscope, SEM, FE-SEM, XRD and EDS techniques. Finally, mechanical properties of post-weld heat treated joints were evaluated and compared with as-welded joints. Results show that both 2024-T6 and 7075-T6 post-weld heat treatment procedures considerably improve the mechanical strength of the welded joint, with higher strength obtained for the 7075-T6 procedure, in comparison with the as-welded joint. This is explained by the formation of fine precipitates during the aging process, despite the abnormal grain growth. Fracture occurs at the interface between thermo-mechanical affected zone(TMAZ) and heat affected zone(HAZ) on the retreating side(AA7075) of as-welded joint, while by applying post-weld heat treatment fracture location shifts towards the stir zone(SZ) of the welded joint. Also, for post-weld heat treated samples, fracture surface is predominantly inter-granular, while in as-weld joint, fracture surface is mostly trans-granular. This is explained by dissolution and coarsening of precipitates within grains in post-weld heat treated joints.展开更多
The effects of postweld heat treatment on the microstructure and metallurgical properties of a bronze–carbon steel(st37)explosively bonded interface were studied.Explosive welding was done under 1.5-and 2-mm standoff...The effects of postweld heat treatment on the microstructure and metallurgical properties of a bronze–carbon steel(st37)explosively bonded interface were studied.Explosive welding was done under 1.5-and 2-mm standoff distances and different conditions of explosive charge.Samples were postweld heat treated for 4 and 16 h in the furnace at 250°C and 500°C and then air cooled.Laboratory studies using optical microscopy,scanning electron microscopy,and microhardness testing were used to evaluate the welded samples.Microstructural examinations showed that by increasing the standoff distance and the explosive charge,the interface of bronze to steel became wavier.The microhardness test result showed that the hardness of the samples was higher near the joint interface compared with other areas because of the intensive plastic deformation,which was caused by the explosion force.The results show that increasing the heat treatment temperature and time caused the intermetallic compounds’layer thickness to increase,and,because of the higher diffusion of copper and tin,the iron amount in the intermetallic compounds decreased.Also,because of the increase in heat treatment temperature and time,internal stresses were released,and the interface hardness decreased.展开更多
The transformation induced plasticity (TRIP) steels effect occurs because of the martensitic transformation of retained austenite during plastic deformation,and it provides the steel with excellent strength and ductil...The transformation induced plasticity (TRIP) steels effect occurs because of the martensitic transformation of retained austenite during plastic deformation,and it provides the steel with excellent strength and ductility.While welding remains a vital part of auto body manufacturing,the weldability of TRIP steels is problematic,and this prevents its adoption for many applications in the automotive industry.This present work studies the effects of welding and post-weld heat treatment on the microstructure of TRIP steels.It is found that the microstructures of the fusion zone and the heat affected zone (HAZ) are changed after high-temperature heat treatment.Hardness tests revealed that fusion zone hardness decreased with increasing of temperatures in the post-weld heat treatment on the laser weld seam.The rolling performance of the welding seam and the seam of post-weld heat treatment were also studied.展开更多
Double-V butt TIG welding process was performed on two plates of AA6061-T6 using ER5356 filler. The microstructure,mechanical and nanomechanical properties of the joint were evaluated in as-welded and after post weld ...Double-V butt TIG welding process was performed on two plates of AA6061-T6 using ER5356 filler. The microstructure,mechanical and nanomechanical properties of the joint were evaluated in as-welded and after post weld heat treatment (PWHT) usingXRD, FESEM, EBSD, nanoindentation and tensile tests. The results show that PWHT led to microstructural recovery of the heataffected zone (HAZ) in addition to the appearance of β-phase (Al3Mg2) at the grain boundaries of weld zone. The hardness (Hnano) inall zones increased after PWHT while the elastic modulus (Enano) was improved from 69.93 GPa to 81 GPa in weld area. All resultsindicate that PWHT has created a homogenous microstructure in the weld zone in addition to outstanding improvement inmechanical properties for the weld zone which surpass the base metal.展开更多
Through laser swing welding of dissimilar steels,the microstructure and properties of welded joints of dissimilar steels under different heat treatment processes were investigated.In the test,the equilibrium phase dia...Through laser swing welding of dissimilar steels,the microstructure and properties of welded joints of dissimilar steels under different heat treatment processes were investigated.In the test,the equilibrium phase diagrams of the base materials 3Cr13 and VG10 were calculated by JMATPro software.The microstructures of the different regions of the welded joints after the original and heat treatment were analyzed by XRD and SEM,and the changes of the microhardness were tested.The test results show that a martensite-like structure is generated at the base material on the 3Cr13 side of the original welded joint,and a non-convective mixing zone exists in the fusion zone on the VG10 side.At this location,a block-like,island-like structure is embedded in the base material.There were lamellar carbide formation on this structure.After heat treatment,the amount of carbides in the welded joints is reduced,but the primary carbides in the VG10 base metal are difficult to eliminate by heat treatment.In addition,the lamellar carbides in the VG10 side fusion zone are polymerized to form network carbides.The hardness of the base metal near the fusion line on both sides of the original welded joint is relatively large,and the hardness of the heat affected zone gradually decreases with increasing distance from the center of the weld.After heat treatment,the overall hardness of the welded joint has increased significantly.Among them,the hardness increase is greatest at the quenching temperature of 1050°C,and VG10 can reach about 830 HV.展开更多
The mechanical properties of Ti-23Al-17Nb (mole fraction,%) laser beam welding alloy joint at room temperature are comparable to that of the base materials.However,the strength and ductility of the as-welded joint det...The mechanical properties of Ti-23Al-17Nb (mole fraction,%) laser beam welding alloy joint at room temperature are comparable to that of the base materials.However,the strength and ductility of the as-welded joint deteriorate seriously after high temperature circulation.The effect of post-welded heat treatment on the microstructure and mechanical properties of the joint was investigated.The heat treatment was taken at 980 ℃ for 1.5 h,then furnace cooling and air cooling were performed separately.The results indicate that proper post-welded heat treatment improves the ductility of the joint at high temperature.展开更多
文摘A detailed investigation for the influence of post weld heat treatment (PWHT) on the microstructure of TC4 and TC17 dissimilar joints was analyzed. The fully transformed microstructure in the as-welded zone indicated that the peak temperature exceeded theβ-transus temperature at the weld interface during linear friction welding. TC4 side was mainly composed of martensiteα′phase with random distribution and it was singleβfor that of TC17. In the thermomechanically affected zones of TC4 and TC17, the structure undergoes severe plastic deformation and re-orientation, yet without altering the phase fractions. After PWHT, in the weld zone of TC4 alloy, the phase transformationα′→α+βoccurred and the acicularαwas coarsened, which resulted in a decrease in hardness. In the weld zone of TC17 alloy, fineαphase precipitated at the grain boundary and withinβgrains, which resulted in a sharp increase in hardness.
基金Project(61901110301)supported by the Aircraft Science Foundation,China
文摘The microstructure and hardness of the stir zone (SZ) with different welding heat inputs were investigated for friction stir-welded 2024-T3 aluminum by transmission electron microscopy, differential scanning calorimeter and Vickers micro-hardness test. The results show that welding heat input has a significant effect on the hardness of the SZ. Under high welding heat input condition, a higher welding speed is beneficial for improving the hardness of the SZ. However, when the welding heat input is low, the hardness of the SZ elevates with increasing the rotation speed. The hardness of the SZ decreases after post-welded heat treatment due to overaging. The joints welded at 500 r/min and 100 mm/min show a high resistance to overaging. The reduction of hardness in the SZ is only 3.8%, while in other joints, the reduction is more than 10%. The morphology of strengthening precipitates plays important roles for the improvement of hardness.
基金Project(51275343)supported by the National Natural Science Foundation of China
文摘AA2219 aluminium alloy joints were fabricated by variable polarity tungsten inert gas (VPTIG) welding process and the effects of post weld heat treatment (PWHT) on the tensile properties, microstructure and fatigue behaviour of the welded joints were investigated. The VPTIG welding process was adopted because it could meet the need of cathode cleaning and meanwhile it could reduce the deterioration of tungsten electrode furthest. The welded samples were divided into as-welded (AW) sample and PWHT sample. The PWHT method used on the samples was solution treatment (535 ℃, 30 rain), water quenching and artificial aging (175 ℃, 12 h). The experimental results show that, compared with the AW samples, the microstructure characteristics and mechanical properties of the AA2219 joints after PWHT were significantly improved. The improvement of yield strength, ultimate tensile strength, and fatigue strength are 42.6%, 43.1% and 18.4%, respectively.
基金Project(51275343)supported by the National Natural Science Foundation of China
文摘Ultrasonic shot peening treatment (USPT) was proposed to correct welding buckling distortion. The residual stress distribution along the depth direction of the peened zone was measured by an X-ray diffractometer. The microstructure of the treated specimens was investigated by scanning electron microscopy (SEM). The Vickers microhardness was measured in different areas of welded joint before USPT and along the depth direction of the weld after USPT. The experimental results indicated that the welding buckling distortion of 5A06 aluminum alloy butt joint can be essentially corrected by USPT; the average correction rate reached 90.8% in this study. Furthermore, USPT enhanced specimens by work hardening. The microstructure of the peened zone was improved; moreover, the distribution of the precipitates and grains presented an apparent orientation.
文摘To improve the microstructure and properties of the electron beam welded joints, the vacuum or furnace whole post weld heat treatment (FWPWHT) usually should be done on it. The electron beam local post weld heat treatment (EBLPWHT) is a rather new heat treatment procedure that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. In this paper, the microstructure, mechanical properties, fracture toughness and fatigue properties of electron beam welded joints of 30CrMnSiNi2A steel in as-welded (AW) and EBLPWHT conditions have been investigated respectively. The results show that the microstructures of different zones of joints in as-welded condition are changed by EBLPWHT procedure, in which the welds from coarse needle martensite into lath-shaped martensite; the main structures of heat affected zones (HAZ) from lath-shaped martensite into lower bainite. The properties of welded joints can be improved by the EBLPWHT in some extent, especially the fracture toughness of the welds and the fatigue crack resistance of welded joints can be sufficiently improved. However, more appropriate heat treatment parameters of the EBLPWHT have to be studied in order to increase the mechanical properties of base metal near by the HAZ.
文摘The effects of heat treatment on the microstructure and mechanical properties of intermetallic compounds in the interface of stainless steel 321 explosively bonded to aluminum 1230 were investigated in this study. Experimental investigations were performed by optical microscopy, scanning electron microscopy, and microhardness and shear tensile strength testing. Prior to heat treatment, increasing the stand-off distance between samples from 1 to 2.5 mm caused their interface to become wavy and the thickness of intermetallic layers to increase from 3.5 to 102.3 μm. The microhardness increased from HV 766 in the sample prepared at a stand-off distance of 1 mm to HV 927 in the sample prepared at a stand-off distance of 2.5 mm; in addition, the sample strength increased from 103.2 to 214.5 MPa. Heat treatment at 450°C for 6 h increased the thickness of intermetallic compound layers to 4.4 and 118.5 μm in the samples prepared at stand-off distances of 1 and 2.5 mm, respectively. These results indicated that increasing the duration and temperature of heat treatment decreased the microhardness and strength of the interface of explosively welded stainless steel 321-Al 1230 and increased the thickness of the intermetallic region.
基金the National Natural Science Foundation of China (No.50675148)
文摘The fatigue property of AZ31 magnesium alloy and its TIG welded joints were investigated. The ultrasonic peening treatment (UPT) was used to improve the fatigue property of the TIG welded joints, which was treated at the weld toe by the UPT process. The test results show that the fatigue strength of the base metal of AZ31 magnesium alloys is 57.8 MPa, and those of the fillet joint and the transverse cross joint are respectively 20. 0 MPa and 17.2 MPa at 2 × 10^6 cycles. The fatigue strengths of two kinds of welded joints treated by the UPT are respectively 30. 3 MPa and 24. 7 MPa, which have been improved by 51.5% and 43.6%, respectively. The fatigue life of the fillet joint specimens is prolonged by about 2. 74 times and the fatigue life of the transverse cross joint specimens is prolonged by about 1.05 times when the stress range is at 40. 0 MPa.
文摘The effect of post-weld heat treatment on the microstructure characterization of electron beam welded(EBW) joints of Ti3Al-Nb was investigated.The results show that the microstructure of the weld is predominantly metastable,the columnar crystal metastructure of B2 phase.The microstructure morphology of the weld is significantly influenced by the method of the heat treatment.The microstructure of the weld is laminar structure(Widmanstaten structure) consisted of interphase α2 and B2 after post-weld heat treatment of 1000 ℃/2 h.The mechanism of the post-weld heat treatment makes the hardness distribution of joints homogeneous,but makes the whole joint somehow softened.
基金Partially Funded by National Research Universities(NRU)(ENG 5805855)Faculty of Engineering,Prince of Songkla University,Hatyai Songkhla,Thailand
文摘7XXX series aluminium alloys generally present low weldability by fusion welding methods because of the sensitivity to weld solidification cracking, vaporization of strengthening alloys and other defects in the fusion zone. Friction stir welding(FSW) can be deployed successfully with aluminium alloys. We presented the effect of post-weld heat treatment(PWHT) on the microstructure and mechanical properties of SSM7075 joints. Semi solid plates were butt-welded by FSW at a rotation speed of 1110 r/min, welding speeds of 70 and 110 mm/min. Solution treatment, artificial aging, and T6(solution treatment and artificial aging combined) were applied to the welded joints, each with three samples. It was found that the T6 joints at the speed of 70 mm/min yielded the highest tensile strength of 459.23 MPa. This condition best enhanced the mechanical properties of FSW SSM7075 aluminium alloy joints.
基金Projects(2019JJ70077,2019JJ50510) supported by the National Science Foundation of Hunan Province,ChinaProject(31665004) supported by Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,ChinaProjects(18B552,18B285) supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and time was investigated by transmission electron microscopy and scanning electron microscopy. The mechanical properties were examined by hardness test and tensile test. The results showed that the micro-hardness was sensitive to heat treatment temperature and time. Increasing temperature was beneficial to the shortening of peak aging time. There were a large number of dislocations and few precipitates in the welded joints. With the increase of post-weld heat treatment temperature and time, the density of dislocation decreased. Meanwhile, the strengthening phase precipitated and grew up gradually. When the post-weld heat treatment temperature increased up to 200℃, large Q' phases were observed. And they were responsible for the peak value of the micro-hardness in the welded joints.
基金This project is supported by Natural Science Foundation of Shanxi Province,China(20051063)the Education Department Science and Technology Development Foundation of Shanxi Province,China(200262)Doctor Research Foundation of Taiyuan University of Science and Technology,Taiyuan,Shanxi Province,China(200271).
文摘Deep cryogenic treatment technology of electrodes is put forward to improve electrode life of resistance spot welding of aluminum alloy LF2. Deep cryogenic treatment makes electrode life for spot welding aluminum alloy improve. The specific resistivity of the deep cryogenic treatment electrodes is tested and experimental results show that specific resistivity is decreased sharply. The temperature field and the influence of deep cryogenic treatment on the electrode tip temperature during spot welding aluminium alloy is studied by numerical simulation method with the software ANSYS. The axisymmetric finite element model of mechanical, thermal and electrical coupled analysis of spot welding process is developed. The numerical simulation results show that the influence of deep cryogenic treatment on electrode tip temperature is very large.
基金[This work was financially supported by the National Natural Science Foundation of China (No. 50175080) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP: No. 20030056003).]
文摘The effects of deep cryogenic treatment on mechanical behavior of a Cu-Cr-Zr alloy for electrodes of spot welding were investigated employing Brinell-hardness testing unit, abrasion examination machine, electronic almighty testing machine and X-ray stress analyzer. Tensile fracture surfaces of the alloy were characterized by scanning electronic microscope (SEM) with energy dispersive X-ray spectroscopy (EDS). The results showed that, after deep cryogenic treatment, σb and σ0.2 increased 23 MPa and 21 MPa respectively, the wear rate of the alloy exhibited the trend of decrease with the decreasing temperature and increasing time of deep cryogenic treatment, and the surface residual stress of the alloy was partially eliminated by deep cryogenic treatment.
基金Funded by the Fund for Shanxi Key Subjects Constructionthe National Natural Science Foundation of China(No.51275332)the Natural Science Foundation of Shanxi Province(No.201601D011036)
文摘In order to improve microstructure distribution and mechanical properties of Mg alloy joint by annealing treatment, die-casting AZ31 Mg alloy was successfully welded at rotation speed of 1 400 rpm and travel speed of 200 mm/min. The welded joints were annealed at 150-300 ℃ for 15-120 min and then were subjected to transverse tensile. The microstructure of annealed joints was analyzed by optical microscopy and electron backscatter diffraction. The experimental results indicate that(0001) texture intensity in stir zone significantly reduces and sharp transition of grain size is relieved in the interface between stir zone and thermo-mechanically affected zone after annealed at 200 ℃ for 30 min. Meanwhile, the elongation is increased from 7.5% to 13.0% and strength is increased slightly. It is because that annealing treatment can inhibit twin transformation and retain its ability to coordinate deformation during tensile deformation, which contributes to the improvement of plasticity. In addition, annealing treatment can increase the width of interfacial transition zone and lead to gradual transition of grain size between the SZ and TMAZ, which balances dislocation diffusion rate in different zone.
文摘In local post weld heat treatment, the temperature difference is the criterion of the process. The temperature field in the main stream pipe under local post weld heat treatment is simulated by finite element method. A close-loop control program is designed to simulate the temperature field of two different pipes. Both the skin effect of induction heating and electro-thermal coupled effect are considered in the heating model. The local heat treatment temperature difference at the inner and outer side of the pipe is analyzed and the different convection conditions are also considered. The simulation results show that in appropriate induction heating process, the temperature difference in the pipe can be controlled within 30 ℃.
基金Isfahan University of Technology for its financial support
文摘The effect of post-weld heat treatment on dissimilar friction stir welded AA7075 and AA2024 joints was studied. After welding in constant parameters, solution heat treatment and various aging treatments were given to the welded joints. Microstructural and phase characterizations were done using optical microscope, SEM, FE-SEM, XRD and EDS techniques. Finally, mechanical properties of post-weld heat treated joints were evaluated and compared with as-welded joints. Results show that both 2024-T6 and 7075-T6 post-weld heat treatment procedures considerably improve the mechanical strength of the welded joint, with higher strength obtained for the 7075-T6 procedure, in comparison with the as-welded joint. This is explained by the formation of fine precipitates during the aging process, despite the abnormal grain growth. Fracture occurs at the interface between thermo-mechanical affected zone(TMAZ) and heat affected zone(HAZ) on the retreating side(AA7075) of as-welded joint, while by applying post-weld heat treatment fracture location shifts towards the stir zone(SZ) of the welded joint. Also, for post-weld heat treated samples, fracture surface is predominantly inter-granular, while in as-weld joint, fracture surface is mostly trans-granular. This is explained by dissolution and coarsening of precipitates within grains in post-weld heat treated joints.
文摘The effects of postweld heat treatment on the microstructure and metallurgical properties of a bronze–carbon steel(st37)explosively bonded interface were studied.Explosive welding was done under 1.5-and 2-mm standoff distances and different conditions of explosive charge.Samples were postweld heat treated for 4 and 16 h in the furnace at 250°C and 500°C and then air cooled.Laboratory studies using optical microscopy,scanning electron microscopy,and microhardness testing were used to evaluate the welded samples.Microstructural examinations showed that by increasing the standoff distance and the explosive charge,the interface of bronze to steel became wavier.The microhardness test result showed that the hardness of the samples was higher near the joint interface compared with other areas because of the intensive plastic deformation,which was caused by the explosion force.The results show that increasing the heat treatment temperature and time caused the intermetallic compounds’layer thickness to increase,and,because of the higher diffusion of copper and tin,the iron amount in the intermetallic compounds decreased.Also,because of the increase in heat treatment temperature and time,internal stresses were released,and the interface hardness decreased.
文摘The transformation induced plasticity (TRIP) steels effect occurs because of the martensitic transformation of retained austenite during plastic deformation,and it provides the steel with excellent strength and ductility.While welding remains a vital part of auto body manufacturing,the weldability of TRIP steels is problematic,and this prevents its adoption for many applications in the automotive industry.This present work studies the effects of welding and post-weld heat treatment on the microstructure of TRIP steels.It is found that the microstructures of the fusion zone and the heat affected zone (HAZ) are changed after high-temperature heat treatment.Hardness tests revealed that fusion zone hardness decreased with increasing of temperatures in the post-weld heat treatment on the laser weld seam.The rolling performance of the welding seam and the seam of post-weld heat treatment were also studied.
基金the financial support for this study from the Malaysian Ministry of Higher Education(MOHE) through the Fundamental Research Grant Scheme and Exploratory Research Grant Scheme
文摘Double-V butt TIG welding process was performed on two plates of AA6061-T6 using ER5356 filler. The microstructure,mechanical and nanomechanical properties of the joint were evaluated in as-welded and after post weld heat treatment (PWHT) usingXRD, FESEM, EBSD, nanoindentation and tensile tests. The results show that PWHT led to microstructural recovery of the heataffected zone (HAZ) in addition to the appearance of β-phase (Al3Mg2) at the grain boundaries of weld zone. The hardness (Hnano) inall zones increased after PWHT while the elastic modulus (Enano) was improved from 69.93 GPa to 81 GPa in weld area. All resultsindicate that PWHT has created a homogenous microstructure in the weld zone in addition to outstanding improvement inmechanical properties for the weld zone which surpass the base metal.
基金Development of High-end Manufacturing Equipment and Materials for the Metal Knife and Scissors Industry in Yangjiang(510224133196)Yangjiang High Power Laser Application Laboratory Co.,Ltd.Supports the Construction of New Research and Development Institutions in the East and West of Guangdong(809099997119)Development of Additive Manufacturing Technology for Blade Laser Cladding(2017036)。
文摘Through laser swing welding of dissimilar steels,the microstructure and properties of welded joints of dissimilar steels under different heat treatment processes were investigated.In the test,the equilibrium phase diagrams of the base materials 3Cr13 and VG10 were calculated by JMATPro software.The microstructures of the different regions of the welded joints after the original and heat treatment were analyzed by XRD and SEM,and the changes of the microhardness were tested.The test results show that a martensite-like structure is generated at the base material on the 3Cr13 side of the original welded joint,and a non-convective mixing zone exists in the fusion zone on the VG10 side.At this location,a block-like,island-like structure is embedded in the base material.There were lamellar carbide formation on this structure.After heat treatment,the amount of carbides in the welded joints is reduced,but the primary carbides in the VG10 base metal are difficult to eliminate by heat treatment.In addition,the lamellar carbides in the VG10 side fusion zone are polymerized to form network carbides.The hardness of the base metal near the fusion line on both sides of the original welded joint is relatively large,and the hardness of the heat affected zone gradually decreases with increasing distance from the center of the weld.After heat treatment,the overall hardness of the welded joint has increased significantly.Among them,the hardness increase is greatest at the quenching temperature of 1050°C,and VG10 can reach about 830 HV.
文摘The mechanical properties of Ti-23Al-17Nb (mole fraction,%) laser beam welding alloy joint at room temperature are comparable to that of the base materials.However,the strength and ductility of the as-welded joint deteriorate seriously after high temperature circulation.The effect of post-welded heat treatment on the microstructure and mechanical properties of the joint was investigated.The heat treatment was taken at 980 ℃ for 1.5 h,then furnace cooling and air cooling were performed separately.The results indicate that proper post-welded heat treatment improves the ductility of the joint at high temperature.