Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-...Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-Mediterranean backbone grid can hedge the profound evolution of regional power generation,transmission,and consumption.To date,only Turkey and the Maghreb countries(i.e.,Morocco,Algeria,and Tunisia)are connected with the Continental European Synchronous Area.Other south-and east-shore countries have insufficient interconnection infrastructures and synchronization difficulties that have proven to be major hurdles to the implementation of large-scale solar and wind projects and achievement of climate goals.This study analyzes the current trans-boundary grid interconnections and power and carbon emission portfolios in the Mediterranean region.To align with the recently launched new climate target‘Fit for 55’program and the accelerated large-scale renewables target,a holistic review of projected trans-Mediterranean grids and their market,technical,and financial obstacles of implementation was conducted.For south-and east-shore countries,major legal and regulatory barriers encompassing non-liberalized market structure,regulation gaps of taxation and transmission tariffs,and the private sector’s access rights need to be removed.Enhancement of domestic grids,substations,and harmonized grid codes and frequency,voltage,and communication technology standards among all trans-Mediterranean countries are physical prerequisites for implementing the Trans-Mediterranean Electricity Market.In addition,the mobilization of capital instruments along with private and international investments is indispensable for the realization of supranational transmission projects.As the final section of the decarbonization roadmap,the development of electric appliances,equipment,and vehicles with higher efficiency is inevitable in the decarbonized building,transportation,and industry sectors.展开更多
Decarbonization is a critical issue for peaking CO_(2) emissions of energy-intensive industries,such as the iron and steel industry.The decarbonization options of China’s ironmaking and steelmaking sector were discus...Decarbonization is a critical issue for peaking CO_(2) emissions of energy-intensive industries,such as the iron and steel industry.The decarbonization options of China’s ironmaking and steelmaking sector were discussed based on a systematic three-dimensional low-carbon analysis from the aspects of resource utilization(Y),energy utilization(Q),and energy cleanliness which is evaluated by a process general emission factor(PGEF)on all the related processes,including the current blast furnace(BF)-basic oxygen furnace(BOF)integrated process and the specific sub-processes,as well as the electric arc furnace(EAF)process,typical direct reduction(DR)process,and smelting reduction(SR)process.The study indicates that the three-dimensional aspects,particularly the energy structure,should be comprehensively considered to quantitatively evaluate the decarbonization road map based on novel technologies or processes.Promoting scrap utilization(improvement of Y)and the substitution of carbon-based energy(improvement of PGEF)in particular is critical.In terms of process scale,promoting the development of the scrap-based EAF or DR-EAF process is highly encouraged because of their lower PGEF.The three-dimensional method is expected to extend to other processes or industries,such as the cement production and thermal electricity generation industries.展开更多
A crystalline sapphire (Al2O3) boule (Ф10 × 80mm^3) grown by the temperature gradient technique (TGT) is a bit colored due to carbon volatilization from the graphite heater at high temperatures and the abs...A crystalline sapphire (Al2O3) boule (Ф10 × 80mm^3) grown by the temperature gradient technique (TGT) is a bit colored due to carbon volatilization from the graphite heater at high temperatures and the absorption of transitional metal inclusions in the raw material. The sapphire becomes colorless and transparent after decolorization and decarbonization in successive annealings in air and hydrogen at high temperatures. The quality, optical transmissivity,and homogeneity of the sapphire are remarkably improved.展开更多
On the basis of understanding the principle of rotary triboelectrostatic separation, dynamic analysis of charged fly ash particles aimed at determining the key factors and separation experiments to improve decarboniza...On the basis of understanding the principle of rotary triboelectrostatic separation, dynamic analysis of charged fly ash particles aimed at determining the key factors and separation experiments to improve decarbonization efficiency had been carried out Variables of electrode plate voltage and corrected wind speed are the key factors which affect the decarbonization efficiency on the separation of fly ash, The results of separation experiments show that:(1) With the plate voltage increasing, the efficiency of decarbonization continuously rises and in its selected range, the optimal voltage level is 45 KV;(2) The corrected wind speed can impact the efficiency of decarbonization significantly: with the speed increasing, the efficiency of decarbonization shows a trend of first decline, then increase and decrease again, and in its selected range, the optimal speed is 2.0 m/s. This study is of significance for the improvement of rotary triboelectrostatic separation performance and its decarbonization separation efficiency.展开更多
The basic principle of fly ash triboelectrification is analysed. The mineral electrical index and test method are introduced. The electric difference of different mineral composition of fly ash is discussed by analysi...The basic principle of fly ash triboelectrification is analysed. The mineral electrical index and test method are introduced. The electric difference of different mineral composition of fly ash is discussed by analysis of chemical and mineral composition of fly ash in Xinwen power plant. The dielectric constant and charge-mass ratio of carbon and ash of fly ash are tested. Combined with the experimental study on rotary triboelectrostatic separation, the charged characteristic of fly ash particles with different size is gained. The results show that the dielectric constant of fly ash with different grain size decreased with the decrease of particle size, which lead to the poor electrical conductivity, Thus it can be seen that par- ticle size plays a leading role in conductivity, The charge of carbon and ash with each size increased with the decreased of particle size; and the charge-mass ratio between carbon and ash with the same size lar- ger with the decrease of size, which indicated that the finer particle size, the more favorable for triboelec- trification separation. In the same conditions, the best decarburization effect is realized when the particle size ranges from 0.038 to 0.074 ram, whose decarbonization rate and efficiency index reached 38.93% and 120.83% respectively.展开更多
Yanbei project of Schlumberger Copower Oilfield Engineering Co.,Ltd.-natural gas purification plant decarbonization unit is equipped with two sets of decarbonization systems(parallel operation).The two sets of systems...Yanbei project of Schlumberger Copower Oilfield Engineering Co.,Ltd.-natural gas purification plant decarbonization unit is equipped with two sets of decarbonization systems(parallel operation).The two sets of systems adopt two tower process,full lean liquid circulation regeneration process,one tower absorption(absorption pressure 5.4mpag),one tower regeneration(regeneration temperature 95℃-110℃),purified natural gas carbon dioxide content≤2.5vol%,single set The treatment capacity is 2300 KM3/d.This paper introduces the problems existing in the decarbonization solution of the decarbonization unit in the natural gas purification plant in recent three years,analyzes the causes of pollutants affecting the quality of the decarbonization solution,and probes into the control measures for the pollution of the decarbonization solution,so as to provide reference.展开更多
为探究生猪产业低碳发展研究动态和发展趋势,本文基于web of science(WOS)核心数据库,运用CiteSpace文献计量软件对该研究领域进行了全面的梳理,从多个角度分析生猪产业低碳发展现状,并揭示该领域研究热点的演变以及未来发展趋势。结果...为探究生猪产业低碳发展研究动态和发展趋势,本文基于web of science(WOS)核心数据库,运用CiteSpace文献计量软件对该研究领域进行了全面的梳理,从多个角度分析生猪产业低碳发展现状,并揭示该领域研究热点的演变以及未来发展趋势。结果:低碳养猪研究的发展依次经历了3个时期和4个产业发展阶段,其中气体控制与资源高效利用两个主题在研究的各时期均表现出较高热度;核心作者和机构合作网络已初步形成,李荣华、Awasthi、Lehmann、Sommer等是该领域研究较有影响力的学者,中国和美国是该领域发文最多的国家;研究确定了87个关键词、4个研究热点和5个研究领域,并绘制了生猪产业低碳发展研究知识路线图。未来研究将继续注重技术创新、加强跨学科间的合作,并在此基础上,进一步应用跨学科方法开展生猪生产效率与动物福利、养殖主体低碳行为决策等前沿研究。同时,政府的引导能够让生猪产业降碳减排潜力得到更好地量化。展开更多
在中国推进生态文明建设的背景下,农业固碳增效被写入“双碳目标”,低碳农业随之兴起。生物多样性是生态系统功能与服务的基础,在农业低碳化过程中发挥了至关重要的作用,保护农田生物多样性,充分发挥其生态作用是实现农业减排固碳的重...在中国推进生态文明建设的背景下,农业固碳增效被写入“双碳目标”,低碳农业随之兴起。生物多样性是生态系统功能与服务的基础,在农业低碳化过程中发挥了至关重要的作用,保护农田生物多样性,充分发挥其生态作用是实现农业减排固碳的重要路径。收集“Web of Science”数据库中2010-2022年的文献,利用CiteSpace文献计量软件的关键词共现以及聚类分析,对近年来国际低碳农业中生物多样性的研究动态、研究热点进行分析,对生物多样性的功能进行归纳总结。分析结果表明,生物多样性的保护与管理是目前低碳农业生物多样性的研究热点,而生物防治是生物多样性实现农业低碳化的主要途径,通过对不同生物类群多样性的生态价值进行梳理,发现生物多样性可以增加农业生产过程中的生态与经济价值。未来的研究可从生态系统和景观的尺度,探索基于生物多样性的多功能农业发展模式,从而更好地助力双碳目标的顺利实现。展开更多
基金supported by the National Science Foundation of China(Grant No.41701232).
文摘Climate change is becoming an important issue in all fields of infrastructure development.Electricity plays a core role in the decarbonized energy system’s path to a regional zero-emission pattern.A well-built trans-Mediterranean backbone grid can hedge the profound evolution of regional power generation,transmission,and consumption.To date,only Turkey and the Maghreb countries(i.e.,Morocco,Algeria,and Tunisia)are connected with the Continental European Synchronous Area.Other south-and east-shore countries have insufficient interconnection infrastructures and synchronization difficulties that have proven to be major hurdles to the implementation of large-scale solar and wind projects and achievement of climate goals.This study analyzes the current trans-boundary grid interconnections and power and carbon emission portfolios in the Mediterranean region.To align with the recently launched new climate target‘Fit for 55’program and the accelerated large-scale renewables target,a holistic review of projected trans-Mediterranean grids and their market,technical,and financial obstacles of implementation was conducted.For south-and east-shore countries,major legal and regulatory barriers encompassing non-liberalized market structure,regulation gaps of taxation and transmission tariffs,and the private sector’s access rights need to be removed.Enhancement of domestic grids,substations,and harmonized grid codes and frequency,voltage,and communication technology standards among all trans-Mediterranean countries are physical prerequisites for implementing the Trans-Mediterranean Electricity Market.In addition,the mobilization of capital instruments along with private and international investments is indispensable for the realization of supranational transmission projects.As the final section of the decarbonization roadmap,the development of electric appliances,equipment,and vehicles with higher efficiency is inevitable in the decarbonized building,transportation,and industry sectors.
基金supported by the State Key Laboratory of Advanced Metallurgy,China(Project Code:41603006).
文摘Decarbonization is a critical issue for peaking CO_(2) emissions of energy-intensive industries,such as the iron and steel industry.The decarbonization options of China’s ironmaking and steelmaking sector were discussed based on a systematic three-dimensional low-carbon analysis from the aspects of resource utilization(Y),energy utilization(Q),and energy cleanliness which is evaluated by a process general emission factor(PGEF)on all the related processes,including the current blast furnace(BF)-basic oxygen furnace(BOF)integrated process and the specific sub-processes,as well as the electric arc furnace(EAF)process,typical direct reduction(DR)process,and smelting reduction(SR)process.The study indicates that the three-dimensional aspects,particularly the energy structure,should be comprehensively considered to quantitatively evaluate the decarbonization road map based on novel technologies or processes.Promoting scrap utilization(improvement of Y)and the substitution of carbon-based energy(improvement of PGEF)in particular is critical.In terms of process scale,promoting the development of the scrap-based EAF or DR-EAF process is highly encouraged because of their lower PGEF.The three-dimensional method is expected to extend to other processes or industries,such as the cement production and thermal electricity generation industries.
文摘A crystalline sapphire (Al2O3) boule (Ф10 × 80mm^3) grown by the temperature gradient technique (TGT) is a bit colored due to carbon volatilization from the graphite heater at high temperatures and the absorption of transitional metal inclusions in the raw material. The sapphire becomes colorless and transparent after decolorization and decarbonization in successive annealings in air and hydrogen at high temperatures. The quality, optical transmissivity,and homogeneity of the sapphire are remarkably improved.
基金provided by the National Natural Science Foundation of China(No.51274200)Research Fund for the Doctoral Program of Higher Education of China(No.20130095110010)
文摘On the basis of understanding the principle of rotary triboelectrostatic separation, dynamic analysis of charged fly ash particles aimed at determining the key factors and separation experiments to improve decarbonization efficiency had been carried out Variables of electrode plate voltage and corrected wind speed are the key factors which affect the decarbonization efficiency on the separation of fly ash, The results of separation experiments show that:(1) With the plate voltage increasing, the efficiency of decarbonization continuously rises and in its selected range, the optimal voltage level is 45 KV;(2) The corrected wind speed can impact the efficiency of decarbonization significantly: with the speed increasing, the efficiency of decarbonization shows a trend of first decline, then increase and decrease again, and in its selected range, the optimal speed is 2.0 m/s. This study is of significance for the improvement of rotary triboelectrostatic separation performance and its decarbonization separation efficiency.
基金supported by the National Natural Science Foundation of China(Nos.51274200 and 51221462)
文摘The basic principle of fly ash triboelectrification is analysed. The mineral electrical index and test method are introduced. The electric difference of different mineral composition of fly ash is discussed by analysis of chemical and mineral composition of fly ash in Xinwen power plant. The dielectric constant and charge-mass ratio of carbon and ash of fly ash are tested. Combined with the experimental study on rotary triboelectrostatic separation, the charged characteristic of fly ash particles with different size is gained. The results show that the dielectric constant of fly ash with different grain size decreased with the decrease of particle size, which lead to the poor electrical conductivity, Thus it can be seen that par- ticle size plays a leading role in conductivity, The charge of carbon and ash with each size increased with the decreased of particle size; and the charge-mass ratio between carbon and ash with the same size lar- ger with the decrease of size, which indicated that the finer particle size, the more favorable for triboelec- trification separation. In the same conditions, the best decarburization effect is realized when the particle size ranges from 0.038 to 0.074 ram, whose decarbonization rate and efficiency index reached 38.93% and 120.83% respectively.
文摘Yanbei project of Schlumberger Copower Oilfield Engineering Co.,Ltd.-natural gas purification plant decarbonization unit is equipped with two sets of decarbonization systems(parallel operation).The two sets of systems adopt two tower process,full lean liquid circulation regeneration process,one tower absorption(absorption pressure 5.4mpag),one tower regeneration(regeneration temperature 95℃-110℃),purified natural gas carbon dioxide content≤2.5vol%,single set The treatment capacity is 2300 KM3/d.This paper introduces the problems existing in the decarbonization solution of the decarbonization unit in the natural gas purification plant in recent three years,analyzes the causes of pollutants affecting the quality of the decarbonization solution,and probes into the control measures for the pollution of the decarbonization solution,so as to provide reference.
文摘为探究生猪产业低碳发展研究动态和发展趋势,本文基于web of science(WOS)核心数据库,运用CiteSpace文献计量软件对该研究领域进行了全面的梳理,从多个角度分析生猪产业低碳发展现状,并揭示该领域研究热点的演变以及未来发展趋势。结果:低碳养猪研究的发展依次经历了3个时期和4个产业发展阶段,其中气体控制与资源高效利用两个主题在研究的各时期均表现出较高热度;核心作者和机构合作网络已初步形成,李荣华、Awasthi、Lehmann、Sommer等是该领域研究较有影响力的学者,中国和美国是该领域发文最多的国家;研究确定了87个关键词、4个研究热点和5个研究领域,并绘制了生猪产业低碳发展研究知识路线图。未来研究将继续注重技术创新、加强跨学科间的合作,并在此基础上,进一步应用跨学科方法开展生猪生产效率与动物福利、养殖主体低碳行为决策等前沿研究。同时,政府的引导能够让生猪产业降碳减排潜力得到更好地量化。
文摘在中国推进生态文明建设的背景下,农业固碳增效被写入“双碳目标”,低碳农业随之兴起。生物多样性是生态系统功能与服务的基础,在农业低碳化过程中发挥了至关重要的作用,保护农田生物多样性,充分发挥其生态作用是实现农业减排固碳的重要路径。收集“Web of Science”数据库中2010-2022年的文献,利用CiteSpace文献计量软件的关键词共现以及聚类分析,对近年来国际低碳农业中生物多样性的研究动态、研究热点进行分析,对生物多样性的功能进行归纳总结。分析结果表明,生物多样性的保护与管理是目前低碳农业生物多样性的研究热点,而生物防治是生物多样性实现农业低碳化的主要途径,通过对不同生物类群多样性的生态价值进行梳理,发现生物多样性可以增加农业生产过程中的生态与经济价值。未来的研究可从生态系统和景观的尺度,探索基于生物多样性的多功能农业发展模式,从而更好地助力双碳目标的顺利实现。