The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reve...The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reveal the landslide mechanism,taking the north slope of Fushun West Open-pit Mine as an example,this paper analyzed the failure mechanism of different landslides with monitoring and field surveys,and simulated the evolution of landslides.The study indicated that when the green mudstone(hard rock)of the anti-dip slope contains siltized intercalations(soft rock),the existence of weak layers not only aggravates the toppling deformation of anti-dip layered slope with high dip,but also causes the shear failure of anti-dip layered slope with stable low dip.The shear failure including subsidence induced sliding and wedge failure mainly exists in the unloading zone of the slope.Its failure depth and failure time were far less than that of toppling failure.In terms of the development characteristics of deformation,toppling deformation has the long-term and progressive characteristics,but shear failure deformation has the abrupt and transient characteristics.This study has deepened the understanding of such slope landslide mechanism,and can provide reference for similar engineering.展开更多
Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model sl...Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe.展开更多
Blasting is one of the most economical and efficient mining methods in open-pit mine production.However,behind the huge benefits,it poses a hidden threat to the quality of slope rock mass,stability of slope,and safety...Blasting is one of the most economical and efficient mining methods in open-pit mine production.However,behind the huge benefits,it poses a hidden threat to the quality of slope rock mass,stability of slope,and safety of nearby buildings.In order to explore the influence of blasting vibration on the stability of anti-dip layered rock slopes,herein,the site near the large-scale toppling failure area of Changshanhao gold mine stope of Inner Mongolia Taiping Mining Co.,Ltd.was selected for on-site blasting test and monitoring.The Peak Particle Velocity(PPV)measured at the monitoring point is located on the lower side of the maximum allowable vibration velocity curve that is prepared based on the allowable speed standard evaluation chart in the full frequency domain established by standards practiced in various countries such as German DIN4150,the USBM RI 8507,and Chinese GB6722-2014.This indicates that the blasting vibration has less influence on the location of the monitoring point.The vibration signals obtained in the blasting test were analyzed using the wavelet packet theory,and it was concluded that the blasting vibration signals measured in the anti-dip layered rock slope were mainly concentrated in two frequency bands of 0-80 Hz and 115-160 Hz.The sum of energy of the two frequency bands accounted for more than 99%,wherein,the energy contained in the 0-80 Hz frequency band accounted for more than 85%of the monitoring signals.The vibration signal with 0-80 Hz frequency band monitored at the slope toe was selected for the energy attenuation analysis.The results showed that the energy attenuation decreased in radial,vertical,and tangential directions.Further,the Energy Attenuation Rate per Meter(EARPM)was calculated.In conjunction with the site characteristics analysis,it was found that the energy attenuation rate was significantly affected by the rock mass characteristics of the structural plane.The slope reinforcement project can effectively reduce the absorption of vibration energy by the slope and increase slope stability.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2022YFC2903902 and 2022YFC2903903)the National Natural Science Foundation of China(Nos.U1903216 and 52174070).
文摘The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reveal the landslide mechanism,taking the north slope of Fushun West Open-pit Mine as an example,this paper analyzed the failure mechanism of different landslides with monitoring and field surveys,and simulated the evolution of landslides.The study indicated that when the green mudstone(hard rock)of the anti-dip slope contains siltized intercalations(soft rock),the existence of weak layers not only aggravates the toppling deformation of anti-dip layered slope with high dip,but also causes the shear failure of anti-dip layered slope with stable low dip.The shear failure including subsidence induced sliding and wedge failure mainly exists in the unloading zone of the slope.Its failure depth and failure time were far less than that of toppling failure.In terms of the development characteristics of deformation,toppling deformation has the long-term and progressive characteristics,but shear failure deformation has the abrupt and transient characteristics.This study has deepened the understanding of such slope landslide mechanism,and can provide reference for similar engineering.
基金The authors wish to thank National Key R&D Program of China(Grant No.2022YFC308100)the National Nature Science Foundation of China(Grant Nos.42107172 and 42072303)for financial support.
文摘Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe.
基金supported by Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020007)。
文摘Blasting is one of the most economical and efficient mining methods in open-pit mine production.However,behind the huge benefits,it poses a hidden threat to the quality of slope rock mass,stability of slope,and safety of nearby buildings.In order to explore the influence of blasting vibration on the stability of anti-dip layered rock slopes,herein,the site near the large-scale toppling failure area of Changshanhao gold mine stope of Inner Mongolia Taiping Mining Co.,Ltd.was selected for on-site blasting test and monitoring.The Peak Particle Velocity(PPV)measured at the monitoring point is located on the lower side of the maximum allowable vibration velocity curve that is prepared based on the allowable speed standard evaluation chart in the full frequency domain established by standards practiced in various countries such as German DIN4150,the USBM RI 8507,and Chinese GB6722-2014.This indicates that the blasting vibration has less influence on the location of the monitoring point.The vibration signals obtained in the blasting test were analyzed using the wavelet packet theory,and it was concluded that the blasting vibration signals measured in the anti-dip layered rock slope were mainly concentrated in two frequency bands of 0-80 Hz and 115-160 Hz.The sum of energy of the two frequency bands accounted for more than 99%,wherein,the energy contained in the 0-80 Hz frequency band accounted for more than 85%of the monitoring signals.The vibration signal with 0-80 Hz frequency band monitored at the slope toe was selected for the energy attenuation analysis.The results showed that the energy attenuation decreased in radial,vertical,and tangential directions.Further,the Energy Attenuation Rate per Meter(EARPM)was calculated.In conjunction with the site characteristics analysis,it was found that the energy attenuation rate was significantly affected by the rock mass characteristics of the structural plane.The slope reinforcement project can effectively reduce the absorption of vibration energy by the slope and increase slope stability.