Objective: To explore whether a DNA immunization approach targeting the major haemorrhage molecule of a prothrombin activator-like metalloproteinase from Echis ocellatus(E. ocellatus) venom could be conceived to inspi...Objective: To explore whether a DNA immunization approach targeting the major haemorrhage molecule of a prothrombin activator-like metalloproteinase from Echis ocellatus(E. ocellatus) venom could be conceived to inspire antibodies with more prominent specificity and equal adequacy to current conventional antivenoms systems.Methods: The isolated DNA Eo MP-6 was used as the template for PCR amplification using the Eo DC-2-specific forward and reverse primers. A PCR product of approximately700 bp was obtained and cloned into p Sec Tag-B expression vector where anti-Eo DC-2antibodies were generated and analysed for their efficacy to neutralise local haemorrhage in vitro and in vivo.Results: Our results suggest that the generated anti-Eo DC-2 showed a remarkable efficacy by(a) interfering with the interaction of the recombinant disintegrin "Eo DC-2" isolated from the E. ocellatus as well as other viper species to the a2b1-integrins on platelets;(b) complete inhibition of the catalytic site of the metalloproteinase molecules in vitro using an adaptation antibody zymography assay. Furthermore, it has a polyspecific potential and constitutively expressed significant inhibition by cross-reaction and neutralised venom-induced local haemorrhage exerted by different viper species in vivo. The potential characteristic of Eo DC-2 against one part(the non-catalytic domain) as opposed to the whole molecule to neutralise its haemorrhagic activity is of crucial importance as it represents a novel approach with greater immunological specificity and fewer hazards, if any, than conventional systems of antivenom production, by exposure large animals that usually being used for the current antivenom production to a less injurious than expression of the whole molecule containing the catalytic metalloprotease domain. Hence, we report for the first time that our preliminary results hold a promising future for antivenom development.Conclusions: Antibodies generated against the E. ocellatus venom prothrombin activatorlike metalloprotease and disintegrin-cysteine-rich domains modulated and inhibited the catalytic activity both in vitro and in vivo of venom metalloproteinase disintegrin cysteine rich molecules. Thus, generating of venom specific-toxin antibodies by DNA immunization offer a more rational treatment of snake envenoming than conventional antivenom.展开更多
Antibody-drug conjugates(ADCs)are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells,thereby attrac...Antibody-drug conjugates(ADCs)are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells,thereby attracting considerable attention in precise oncology therapy.Cetuximab(Cet)is a typical antibody that offers the benefits of good targeting and safety for individuals with advanced and inoperable cutaneous squamous cell carcinoma(cSCC);however,its anti-tumor activity is limited to a single use.Cisplatin(CisPt)shows good curative effects;however,its adverse effects and non-tumor-targeting ability are major drawbacks.In this study,we designed and developed a new ADC based on a new cytotoxic platinum(IV)prodrug(C8Pt(IV))and Cet.The so-called antibody-platinum(IV)prodrugs conjugates,named Cet-C8Pt(IV),showed excellent tumor targeting in cSCC.Specifically,it accurately delivered C8Pt(IV)into tumor cells to exert the combined anti-tumor effect of Cet and CisPt.Herein,metabolomic analysis showed that Cet-C8Pt(IV)promoted cellular apoptosis and increased DNA damage in cSCC cells by affecting the vitamin B6 metabolic pathway in tumor cells,thereby further enhancing the tumor-killing ability and providing a new strategy for clinical cancer treatment using antibody-platinum(IV)prodrugs conjugates.展开更多
基金Supported by the Wellcome Trust,UK(RAH,Grant No.061325)the University of Science and Technology,Yementhe Gunter Trust,UK
文摘Objective: To explore whether a DNA immunization approach targeting the major haemorrhage molecule of a prothrombin activator-like metalloproteinase from Echis ocellatus(E. ocellatus) venom could be conceived to inspire antibodies with more prominent specificity and equal adequacy to current conventional antivenoms systems.Methods: The isolated DNA Eo MP-6 was used as the template for PCR amplification using the Eo DC-2-specific forward and reverse primers. A PCR product of approximately700 bp was obtained and cloned into p Sec Tag-B expression vector where anti-Eo DC-2antibodies were generated and analysed for their efficacy to neutralise local haemorrhage in vitro and in vivo.Results: Our results suggest that the generated anti-Eo DC-2 showed a remarkable efficacy by(a) interfering with the interaction of the recombinant disintegrin "Eo DC-2" isolated from the E. ocellatus as well as other viper species to the a2b1-integrins on platelets;(b) complete inhibition of the catalytic site of the metalloproteinase molecules in vitro using an adaptation antibody zymography assay. Furthermore, it has a polyspecific potential and constitutively expressed significant inhibition by cross-reaction and neutralised venom-induced local haemorrhage exerted by different viper species in vivo. The potential characteristic of Eo DC-2 against one part(the non-catalytic domain) as opposed to the whole molecule to neutralise its haemorrhagic activity is of crucial importance as it represents a novel approach with greater immunological specificity and fewer hazards, if any, than conventional systems of antivenom production, by exposure large animals that usually being used for the current antivenom production to a less injurious than expression of the whole molecule containing the catalytic metalloprotease domain. Hence, we report for the first time that our preliminary results hold a promising future for antivenom development.Conclusions: Antibodies generated against the E. ocellatus venom prothrombin activatorlike metalloprotease and disintegrin-cysteine-rich domains modulated and inhibited the catalytic activity both in vitro and in vivo of venom metalloproteinase disintegrin cysteine rich molecules. Thus, generating of venom specific-toxin antibodies by DNA immunization offer a more rational treatment of snake envenoming than conventional antivenom.
基金the National Natural Science Foundation of China(Grant No.:51803120).
文摘Antibody-drug conjugates(ADCs)are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells,thereby attracting considerable attention in precise oncology therapy.Cetuximab(Cet)is a typical antibody that offers the benefits of good targeting and safety for individuals with advanced and inoperable cutaneous squamous cell carcinoma(cSCC);however,its anti-tumor activity is limited to a single use.Cisplatin(CisPt)shows good curative effects;however,its adverse effects and non-tumor-targeting ability are major drawbacks.In this study,we designed and developed a new ADC based on a new cytotoxic platinum(IV)prodrug(C8Pt(IV))and Cet.The so-called antibody-platinum(IV)prodrugs conjugates,named Cet-C8Pt(IV),showed excellent tumor targeting in cSCC.Specifically,it accurately delivered C8Pt(IV)into tumor cells to exert the combined anti-tumor effect of Cet and CisPt.Herein,metabolomic analysis showed that Cet-C8Pt(IV)promoted cellular apoptosis and increased DNA damage in cSCC cells by affecting the vitamin B6 metabolic pathway in tumor cells,thereby further enhancing the tumor-killing ability and providing a new strategy for clinical cancer treatment using antibody-platinum(IV)prodrugs conjugates.