期刊文献+
共找到7,356篇文章
< 1 2 250 >
每页显示 20 50 100
Metal–Organic Gel Leading to Customized Magnetic‑Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances
1
作者 Xin Li Ruizhe Hu +7 位作者 Zhiqiang Xiong Dan Wang Zhixia Zhang Chongbo Liu Xiaojun Zeng Dezhi Chen Renchao Che Xuliang Nie 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期36-52,共17页
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h... Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings. 展开更多
关键词 Metal-organic gels Heterometallic magnetic coupling Radar stealth thermal insulation Computer simulation technology
下载PDF
Preparation of Polyurea Elastomer with Flame Retardant, Insulation and Thermal Conductivity Properties
2
作者 方今 DONG Yang +3 位作者 LU Shangkai LIU Junbang AI Lianghui 刘平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期781-789,共9页
By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant p... By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA. 展开更多
关键词 POLYUREA organic flame retardant inorganic flame retardant synergistic flame retardancy insulation thermal conductivity
下载PDF
Flexible and Robust Functionalized Boron Nitride/Poly(p‑Phenylene Benzobisoxazole)Nanocomposite Paper with High Thermal Conductivity and Outstanding Electrical Insulation
3
作者 Lin Tang Kunpeng Ruan +3 位作者 Xi Liu Yusheng Tang Yali Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期423-437,共15页
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature... With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment. 展开更多
关键词 Poly(p-phenylene-2 6-benzobisoxazole)nanofiber Boron nitride thermal conductivity Electrical insulation
下载PDF
Fabrication and Characterization of Bamboo—Epoxy Reinforced Composite for Thermal Insulation
4
作者 Nandavardhan Reddy Kopparthi Jens Schuster Yousuf Pasha Shaik 《Open Journal of Composite Materials》 2024年第1期15-32,共18页
As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime ca... As global warming intensifies, researchers worldwide strive to develop effective ways to reduce heat transfer. Among the natural fiber composites studied extensively in recent decades, bamboo has emerged as a prime candidate for reinforcement. This woody plant offers inherent strengths, biodegradability, and abundant availability. Due to its high cellulose content, its low thermal conductivity establishes bamboo as a thermally resistant material. Its low thermal conductivity, enhanced by a NaOH solution treatment, makes it an excellent thermally resistant material. Researchers incorporated Hollow Glass Microspheres (HGM) and Kaolin fillers into the epoxy matrix to improve the insulating properties of bamboo composites. These fillers substantially enhance thermal resistance, limiting heat transfer. Various compositions, like (30% HGM + 25% Bamboo + 65% Epoxy) and (30% Kaolin + 25% Bamboo + 45% Epoxy), were compared to identify the most efficient thermal insulator. Using Vacuum Assisted Resin Transfer Molding (VARTM) ensures uniform distribution of fillers and resin, creating a structurally sound thermal barrier. These reinforced composites, evaluated using the TOPSIS method, demonstrated their potential as high-performance materials combating heat transfer, offering a promising solution in the battle against climate change. 展开更多
关键词 thermal insulator Rooftiles Hollow Glass Microspheres BAMBOO KAOLIN EPOXY VARTM Process thermal Conductivity Mechanical Properties
下载PDF
Porous high-entropy rare-earth phosphate(REPO_(4),RE=La,Sm,Eu,Ce,Pr and Gd)ceramics with excellent thermal insulation performance via pore structure tailoring
5
作者 Peixiong Zhang Enhui Wang +3 位作者 Jingjing Liu Tao Yang Hailong Wang Xinmei Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1651-1658,共8页
Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6)... Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4)(HE(6RE_(1/6))PO_(4))ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents(0–60vol%)on this ceramic properties was systematically investigated.The results show that the porous HE(6RE_(1/6))PO_(4)ceramics with 60vol%starch exhibit the lowest thermal conductivity of 0.061 W·m^(-1)·K^(-1)at room temperature and good pore structure stability with a linear shrinkage of approximately1.67%.Moreover,the effect of large regular spherical pores(>10μm)on its thermal insulation performance was discussed,and an optimal thermal conductivity prediction model was screened.The superior properties of the prepared porous HE(6RE_(1/6))PO_(4)ceramics allow them to be promising insulation materials in the future. 展开更多
关键词 porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4) ceramics high-entropy strategy pore-forming agent method thermal insulation material thermal conductivity
下载PDF
Composite Panels from the Combination of Rice Husk and Wood Chips with a Natural Resin Based on Tannins Reinforced with Sugar Cane Molasses Intended for Building Insulation: Physico-Mechanical and Thermal Properties
6
作者 Paul Nestor Djomou Djonga Rosellyne Serewane Deramne +2 位作者 Gustave Assoualaye Ahmat Tom Tégawendé Justin Zaida 《Journal of Materials Science and Chemical Engineering》 2024年第2期19-30,共12页
The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips an... The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings. 展开更多
关键词 Composite Panels Tannins Reinforced Sugar Cane Molasses Building insulation Mechanical and thermal Properties
下载PDF
Multifunctional MXene/C Aerogels for Enhanced Microwave Absorption and Thermal Insulation 被引量:2
7
作者 Fushuo Wu Peiying Hu +7 位作者 Feiyue Hu Zhihua Tian Jingwen Tang Peigen Zhang Long Pan Michel WBarsoum Longzhu Cai ZhengMing Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期74-89,共16页
Two-dimensional transition metal carbides and nitrides(MXene)have emerged as promising candidates for microwave absorption(MA)materials.However,they also have some drawbacks,such as poor impedance matching,high self-s... Two-dimensional transition metal carbides and nitrides(MXene)have emerged as promising candidates for microwave absorption(MA)materials.However,they also have some drawbacks,such as poor impedance matching,high self-stacking tendency,and high density.To tackle these challenges,MXene nanosheets were incorporated into polyacrylonitrile(PAN)nanofibers and subsequently assembled into a three-dimensional(3D)network structure through PAN carbonization,yielding MXene/C aerogels.The 3D network effectively extends the path of microcurrent transmission,leading to enhanced conductive loss of electromagnetic(EM)waves.Moreover,the aerogel’s rich pore structure significantly improves the impedance matching while effectively reducing the density of the MXenebased absorbers.EM parameter analysis shows that the MXene/C aerogels exhibit a minimum reflection loss(RL_(min))value of−53.02 dB(f=4.44 GHz,t=3.8 mm),and an effective absorption bandwidth(EAB)of 5.3 GHz(t=2.4 mm,7.44–12.72 GHz).Radar cross-sectional(RCS)simulations were employed to assess the radar stealth effect of the aerogels,revealing that the maximum RCS reduction value of the perfect electric conductor covered by the MXene/C aerogel reaches 12.02 dB m^(2).In addition to the MA performance,the MXene/C aerogel also demonstrates good thermal insulation performance,and a 5-mm-thick aerogel can generate a temperature gradient of over 30℃ at 82℃.This study provides a feasible design approach for creating lightweight,efficient,and multifunctional MXene-based MA materials. 展开更多
关键词 MXene Microwave absorption AEROGEL Radar cross-sectional(RCS)simulation thermal insulation
下载PDF
Reduced graphene oxide aerogel decorated with Mo_(2)C nanoparticles toward multifunctional properties of hydrophobicity,thermal insulation and microwave absorption 被引量:3
8
作者 Yahui Wang Minghui Zhang +5 位作者 Xuesong Deng Zhigang Li Zongsheng Chen Jiaming Shi Xijiang Han Yunchen Du 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期536-547,共12页
Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior micr... Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior microstructure,as well as good compatibility with other electromagnetic(EM)components.Herein,we realized the decoration of rGO aerogel with Mo_(2)C nanoparticles by sequential hydrothermal assembly,freeze-drying,and high-temperature pyrolysis.Results show that Mo_(2)C nanoparticle loading can be easily controlled by the ammonium molybdate to glucose molar ratio.The hydrophobicity and thermal insulation of the rGO aerogel are effectively improved upon the introduction of Mo_(2)C nanoparticles,and more importantly,these nanoparticles regulate the EM properties of the rGO aerogel to a large extent.Although more Mo_(2)C nanoparticles may decrease the overall attenuation ability of the rGO aerogel,they bring much better impedance matching.At a molar ratio of 1:1,a desirable balance between attenuation ability and impedance matching is observed.In this context,the Mo_(2)C/r GO aerogel displays strong reflection loss and broad response bandwidth,even with a small applied thickness(1.7 mm)and low filler loading(9.0wt%).The positive effects of Mo_(2)C nanoparticles on multifunctional properties may render Mo_(2)C/r GO aerogels promising candidates for high-performance EWAMs under harsh conditions. 展开更多
关键词 Mo_(2)C/reduced graphene oxide aerogel microwave absorption dielectric loss HYDROPHOBICITY thermal insulation
下载PDF
Effects of Al_(2)O_(3)-SiO_(2) Raw Material Types on Properties of Anorthite Based Insulation Refractories
9
作者 DU Juan GUO Huishi +4 位作者 YANG Jialin LI Wenfeng GUI Yanghai ZHAO Zhiqiang LIU Yingfan 《China's Refractories》 CAS 2024年第1期23-27,共5页
To optimize their Al_(2)O_(3)-SiO_(2) raw materials,anorthite based insulation refractories were prepared by the in-situ sintering process combined with the foaming method after sintering at 1350℃for 3 h,using green ... To optimize their Al_(2)O_(3)-SiO_(2) raw materials,anorthite based insulation refractories were prepared by the in-situ sintering process combined with the foaming method after sintering at 1350℃for 3 h,using green and pollution-free kaolin,kyanite,andalusite and sillimanite as Al_(2)O_(3)-SiO_(2) raw materials,respectively,and industrial CaCO_(3) as the CaO source.Effects of Al_(2)O_(3)-SiO_(2) raw material types on the physical properties,phase composition and microstructure were investigated.The results are as follows.All samples prepared by different Al_(2)O_(3)-SiO_(2) raw materials have hexagonal flake anorthite and a small amount of mullite and corundum.Their bulk density and thermal conductivity decrease in the order of using kaolin,andalusite,kyanite and sillimanite as the Al_(2)O_(3)-SiO_(2) raw material,but their apparent porosity increases.Moreover,in the sample with kaolin,the bonding between anorthite crystals on the pore walls is closer than that of the other samples,which is conducive to increasing the cold crushing strength.The bonding between anorthite crystals on pore walls gradually decreases in the order of using kyanite,andalusite and sillimanite as the Al_(2)O_(3)-SiO_(2) raw material,thus their cold crushing strength decreases accordingly.In comprehensive consideration,the properties of the sample from kyanite are the optimal.Its apparent porosity,thermal conductivity and cold crushing strength are 84.6%,0.141 W·m^(-1)·K^(-1) and 1.89 MPa,respectively. 展开更多
关键词 anorthite based insulation refractories Al_(2)O_(3)-SiO_(2)raw materials crushing strength thermal conductivity microstructure
下载PDF
Thermal Performance Analysis of Plaster Reinforced with Raffia Vinifera Particles for Use as Insulating Materials in Building
10
作者 Etienne Malbila Danielle Manuella Djouego Tagne +3 位作者 Bouto Kossi Imbga Lareba Adelaide Ouedraogo Sié Kam David Yemboini Kader Toguyeni 《Journal of Minerals and Materials Characterization and Engineering》 2024年第2期112-138,共27页
The present study focuses on the formulation of new composite consisting of plaster and raffia vinifera particle (RVP) with the purpose to reducing energy consumption. The aim of this study is to test this new compoun... The present study focuses on the formulation of new composite consisting of plaster and raffia vinifera particle (RVP) with the purpose to reducing energy consumption. The aim of this study is to test this new compound as an insulating eco-material in building in a tropical climate. The composites samples were developed by mixing plaster with raffia vinifera particles (RVP) using three different sizes (1.6 mm, 2.5 mm and 4 mm). The effects of four different RVP incorporations rates (i.e., 0wt%, 5wt%;10wt%;15wt%) on physical, thermal, mechanicals properties of the composites were investigated. In addition, the use of the raffia vinifera particles and plaster based composite material as building envelopes thermal insulation material is studied by the habitable cell thermal behavior instrumentation. The results indicate that the incorporation of raffia vinifera particle leads to improve the new composite physical, mechanical and thermal properties. And the parametric analysis reveals that the sampling rate and the size of raffia vinifera particles are the most decisive factor to impact these properties, and to decreases in the thermal conductivity which leads to an improvement to the thermal resistance and energy savings. The best improvement of plaster composite was obtained at the raffia vinifera particles size between 2.5 and 4.0 mm loading of 5wt% (C95P5R) with a good ratio of thermo-physical-mechanical properties. Additionally, the habitable cell experimental thermal behavior, with the new raffia vinifera particles and plaster-based composite as thermal insulating material for building walls, gives an average damping of 4°C and 5.8°C in the insulated house interior environment respectively for cold and hot cases compared to the outside environment and the uninsulated house interior environment. The current study highlights that this mixture gives the new composite thermal insulation properties applicable in the eco-construction of habitats in tropical environments. 展开更多
关键词 Fibres PLASTER thermal Test Mechanical Test insulating Material Indoor Comfort
下载PDF
Numerical and experimental evaluation for density-related thermal insulation capability of entangled porous metallic wire material
11
作者 Tao Zhou Rong-zheng Fang +3 位作者 Di Jia Pei Yang Zhi-ying Ren Hong-bai Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期177-188,共12页
Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great signifi... Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great significance to reveal the thermal response mechanism of EPMWM based on its complex structural effects.In the present work,virtual manufacturing technology(VMT)was developed to restore the physics-based 3D model of EPMWM.On this basis,the transient thermal analysis is carried out to explore the contact-relevant thermal behavior of EPMWM,and then the spiral unit containing unique structural information are further extracted and counted.In particular,the thermal resistance network is numerically constructed based on the spiral unit through the thermoelectric analogy method to accurately predict the effective thermal conductivity(ETC)of EPMWM.Finally,the thermal diffusivity and specific heat of the samples were obtained by the laser thermal analyzer to calculate the ETC and thermal insulation factor of interest.The results show that the ETC of EPMWM increases with increasing temperature or reducing density under the experimental conditions.The numerical prediction is consistent with the experimental result and the average error is less than 4%. 展开更多
关键词 Entangled porous metallic wire material (EPMWM) Virtual manufacturing technology(VMT) thermal resistance network Effective thermal conductivity(ETC) thermal insulation factor
下载PDF
Analyses of non-aqueous reactive polymer insulation layer in high geothermal tunnel
12
作者 Yu Chen Shiyu Wang +2 位作者 Chengchao Guo Cungang Lin Chenyang Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期169-178,共10页
The scenario of geothermal tunnel is commonly observed around the world,and increases with the new constructions in the long and deep tunnels,for example in China.Tunnel insulation is generally divided into active and... The scenario of geothermal tunnel is commonly observed around the world,and increases with the new constructions in the long and deep tunnels,for example in China.Tunnel insulation is generally divided into active and passive insulation.In passive insulation,it is an effective way to set low thermal con-ductivity materials as the thermal insulation layer as the choice of insulation material mainly depends on the thermal conductivity.Polymer is a kind of material with good geothermal performance,but there are relatively few studies.In this context,the transient plane source(TPS)method was used to measure the thermal conductivity of the developed polymer.Then,the temperature field of the high geothermal tunnel insulated by the non-aqueous reactive polymer layer was simulated.With the parametric analysis results,the suggestions for the tunnel layers were proposed accordingly.It revealed that the thermal conductivity of polymer first increases and then decreases with temperature.There are two rising sec-tions(?40e10?C and 20e90?C),one flat section(10e20?C)and one descending section(>90?C).It is observed the thermal conductivity of polymer increases with increase of the density of insulation layer and the density,and the thermal conductivity decreases when exposed to high temperatures.The temperature of the surrounding rocks increases with increase of the thermal conductivity and the thickness of polymer.Finally,a more economical thickness(5 cm)was proposed.Based on the parametric study,a thermal insulation layer with thermal conductivity less than 0.045 W/(m K),thickness of 5 cm and a density less than 0.12 g/cm 3 is suggested for practice. 展开更多
关键词 Geothermal tunnel Non-aqueous reactive polymer thermal conductivity Heat insulation
下载PDF
Influence of thermal insulation layer schemes on the frost heaving force in tunnels
13
作者 LIU Wen-jun LING Tong-hua +1 位作者 LIU Xian-jun HE Wen-chao 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3035-3050,共16页
In extreme cold regions,a thermal insulation layer(TIL)is commonly employed to mitigate the detrimental effects of frost heaving forces in tunnels.Optimizing the laying scheme of TIL,specifically minimizing frost heav... In extreme cold regions,a thermal insulation layer(TIL)is commonly employed to mitigate the detrimental effects of frost heaving forces in tunnels.Optimizing the laying scheme of TIL,specifically minimizing frost heaving forces,holds considerable importance in the prevention of frost damage.This research developed a two-dimensional unsteady temperature field of circular tunnels by using the difference method(taking the off-wall laying method as an example)based on the law of conservation of energy.Then,the frozen circle and water migration coefficient were introduced to establish the relationship between the temperature field and frost heaving forces,and a reliable methodology for calculating these forces under the specific conditions of TIL installation was developed.Then(i)the influence of the air layer thickness of the off-wall laying method,(ii)different laying methods of TIL,(iii)the TIL thickness,(iv)the thermal conductivity of the TIL,and(v)the freeze-thaw cycles on the frost heaving force were investigated.The results showed that the frost heaving force served as a reliable and effective metric for evaluating the insulation effect in tunnels.In order to avoid frost damage in compliance with the design requirements,the insulation effects from various laying methods were established,in descending efficacy order as follows:off-wall laying,double layer laying,surface laying,and sandwich laying.Our findings revealed that the optimal thickness for the air layer in the offwall laying method was 0.10 m.The insulation effect of materials with a thermal conductivity below 0.047 W/(m·℃)was furthermore found to be good.Under freeze-thaw cycle conditions,it is concluded that to prevent frost damage,the TIL thickness should be the sum of the thickness r1 of the first freeze-thaw cycle without frost heaving forces and an additional reserve value 0.06r1 of the TIL thickness. 展开更多
关键词 thermal insulation layer Frost heaving force Difference method Frozen circle Water migration coefficient Freeze-thaw cycles
下载PDF
Analysis of the Performances of a New Type of Alumina Nanocomposite Structural Material Designed for the Thermal Insulation of High-Rise Buildings
14
作者 Yue Yu 《Fluid Dynamics & Materials Processing》 EI 2023年第3期697-709,共13页
The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and... The sol-gel method is used to prepare a new nano-alumina aerogel structure and the thermal properties of this nanomaterial are investigated comprehensively using electron microscope scanning,thermal analysis,X-ray and infrared spectrometer analysis methods.It is found that the composite aerogel alumina material has a multi-level porous nano-network structure.When employed for the thermal insulation of high-rise buildings,the alumina nanocomposite aerogel material can lead to effective energy savings in winter.However,it has almost no energy-saving effect on buildings where energy is consumed for cooling in summer. 展开更多
关键词 ALUMINA NANOMATERIALS low thermal conductivity high-rise building insulation materials sol-gel method
下载PDF
Preparation of Thermal Insulation Ceramics Using Felsic Tailings as Main Raw Material and Soda-ash Dregs as Flux
15
作者 王志明 YAO Geng +7 位作者 WANG Qiang ZHU Xiangnan QU Meiyun ZHAO Wei LIU Qing SUN Shaokang XIA Chuanbo 吕宪俊 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期31-41,共11页
Low-cost thermal insulation porous ceramics with uniform pore diameter and low bulk density were prepared with soda-ash dregs and felsic tailings.We investigated the effect of temperature,foaming agent,fluxing agent,A... Low-cost thermal insulation porous ceramics with uniform pore diameter and low bulk density were prepared with soda-ash dregs and felsic tailings.We investigated the effect of temperature,foaming agent,fluxing agent,Al_(2)O_(3)and CaO content on the pore structure and crystal phase of porous ceramics.The effect of Ca^(2+)in soda-ash dregs on the preparation of quartz-feldspar based porous ceramics was studied.The results showed that the contribution of Ca^(2+)to the preparation of porous ceramics in this system was mainly to accelerate the Si-O bond fracture and reduce the sintering temperature at the initial stage of sintering,which destroyed the needle-like feldspar in the high temperature melt and reduced the melt viscosity,thus reduced the foaming resistance and promoted the porous products with uniform pore size distribution.The Ca^(2+)content on the high side can participate in the formation of crystals in sintering.The generated needle-like diopside and augite,which have small length-diameter ratio,will negligibly change in the viscosity of melt at high temperatures,and their inhibition effect on pores is not as good as that of feldspar with large length-diameter ratio,resulting in the merger and collapse of pores.But the increase of diopside and augite can improve the compressive strength of porous products to some extent.Porous ceramic products containing needle-like feldspar phase can be prepared by using two kinds of solid waste,which can improve the compressive strength of the products and reduce the raw material cost and energy consumption while comprehensively utilizing the double solid waste.The optimal product has a bulk density of 0.45 g/cm^(3),a compressive strength of 3.17 MPa,and a thermal conductivity of 0.11 W/(m·K). 展开更多
关键词 felsic tailings Ca-riched Soda-ash dregs low-cost thermal insulation porous ceramics high content of solid waste transformation of needle-like crystal phase
下载PDF
Sandwich structured ultra-strong-heat-shielding aerogel/copper composite insulation board for safe lithium-ion batteries modules 被引量:1
16
作者 Heng Yu Xiaowei Mu +7 位作者 Yulu Zhu Can Liao Longfei Han Jingwen Wang Wei Cai Yongchun Kan Lei Song Yuan Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期438-447,I0011,共11页
The fire hazard of lithium-ion batteries(LIBs)modules is extremely serious due to their high capacity.Moreover,once a battery catches fire,it can easily result in a fire of the entire LIBs modules.In this work,a sandw... The fire hazard of lithium-ion batteries(LIBs)modules is extremely serious due to their high capacity.Moreover,once a battery catches fire,it can easily result in a fire of the entire LIBs modules.In this work,a sandwich structure composite thermal insulation(STI)board(copper//silica dioxide aerogel//copper)with the advantages of low thermal conductivity(0.031 W m-1K-1),low surface radiation emissivity(0.1)and good thermal convection inhibition effect has been designed.The thermal runaway(TR)occurrence time of adjacent LIBs increases from 1384 s to more than 6 h+due to the protection of STI board.No TR propagation occurs within LIBs modules with protect of a STI board when a battery catches fire.The ultra-strong-heat-shielding mechanism of STI board has been revealed.The TR propagation of LIBs modules has been insulated effectively by STI board through reducing the heat transfer of convection,conduction and radiation.The air flow rate between the heater and LIBs and radiant heat absorbed by LIBs decrease by 63.5%and 35.1%with protection of STI board,respectively.A high temperature difference inside the STI board is also formed.This work provides direction for the designing of safe thermal insulation board for LIBs modules. 展开更多
关键词 insulation board Ultra-strong-heat-shielding Lithium-ion battery modules thermal runaway propagation Mechanism
下载PDF
Thermally insulating and fire-retardant bio-mimic structural composites with a negative Poisson's ratio for battery protection 被引量:1
17
作者 Fengyin Du Zuquan Jin +9 位作者 Ruizhe Yang Menglong Hao Jiawei Wang Gang Xu Wenqiang Zuo Zifan Geng Hao Pan Tian Li Wei Zhang Wei She 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期83-96,共14页
Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often a... Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices. 展开更多
关键词 battery protection negative Poisson's ratio thermal insulation TOUGHNESS wood-inspired materials
下载PDF
Concurrent topology optimization for minimization of total mass considering load-carrying capabilities and thermal insulation simultaneously 被引量:7
18
作者 Kai Long Xuan Wang Xianguang Gu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期315-326,共12页
The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously.Nodal displacement of macrostructure and effective thermal ... The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously.Nodal displacement of macrostructure and effective thermal conductivity of microstructure are regarded as the constraint functions, which means taking into account both the loadcarrying capabilities and the thermal insulation properties.The effective properties of porous material derived from numerical homogenization are used for macrostructural analysis. Meanwhile, displacement vectors of macrostructures from original and adjoint load cases are used for sensitivity analysis of the microstructure. Design variables in the form of reciprocal functions of relative densities are introduced and used for linearization of the constraint function. The objective function of total mass is approximately expressed by the second order Taylor series expansion. Then, the proposed concurrent optimization problem is solved using a sequential quadratic programming algorithm, by splitting into a series of sub-problems in the form of the quadratic program. Finally, several numerical examples are presented to validate the effectiveness of the proposed optimization method. The various effects including initial designs, prescribed limits of nodal displacement, and effective thermal conductivity on optimized designs are also investigated. An amount of optimized macrostructures and their corresponding microstructures are achieved. 展开更多
关键词 Concurrent design Topology optimization HOMOGENIZATION thermal insulation Nodal displacement Independent continuous mapping method
下载PDF
Mechanism of low thermal conductivity of xonotlite-silica aerogel nanoporous super insulation material 被引量:8
19
作者 Hailong Yang Wen Ni Deping Chen Guoqiang Xu Tao Liang Li Xu 《Journal of University of Science and Technology Beijing》 CSCD 2008年第5期649-653,共5页
In an effort to incorporate the low thermal conductivity of the silica aerogel and the superior structure strength of the xonotlite,a composite material of these two was produced. It was synthesized under vacuum condi... In an effort to incorporate the low thermal conductivity of the silica aerogel and the superior structure strength of the xonotlite,a composite material of these two was produced. It was synthesized under vacuum condition and dried by supercritical drying technique. The thermal conductivity of the new material,which is at 298K with the gas pressure ranging from 1.01×10^5 to 1×10^-2 Pa,was measured using the transient hot-strip method. The mechanism of the low thermal conductivity was studied. The results indicate that the low thermal conductivity mainly results from the significant decrease of gaseous thermal conductivity of the new material due to the restriction of the motion of gas molecules in its fine structures. The formation of the fine structures is because the new material takes the pore structure of the silica aerogel which consists of mainly nanometer-sized pores. 展开更多
关键词 silica aerogel XONOTLITE nanometer-sized pore super insulation thermal conductivity
下载PDF
Synthesis and Thermal Insulation Performance of Silica Aerogel from Recycled Coal Gangue by Means of Ambient Pressure Drying 被引量:5
20
作者 朱平华 ZHENG Meng +2 位作者 赵善宇 WU Junyong 徐海珣 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期908-913,共6页
Silica aerogel materials are well recognized for their superinsulation performance and are regarded as one of the hot candidates to revolutionize building insulation. To date, high production cost related to exorbitan... Silica aerogel materials are well recognized for their superinsulation performance and are regarded as one of the hot candidates to revolutionize building insulation. To date, high production cost related to exorbitant precursors as well as cumbrous multi-step hydrophobization process has often narrowed the field of applications. In this work, granular silica aerogel materials were synthesized by extracting Si O2 from recycled rich silicon coal gangue, followed by one-step hydrophobization and ambient pressure drying. Lightweight(about 0.16 g/cm3) and nanostructural aerogels were obtained through this route. They exhibit a 3D open porous microstructure with around 600 cm2/g surface area and 20 nm of the average pore diameter, thermal conductivity of 4-5 mm packed granules is 20-25 m W/(m·K), which was proved by both guarded hot plate and hot-wire transient methods. This study offers a new facile route for the synthesis of silica aerogel from recycled solid waste coal gangue and suggests a method, which may lead to a cost reduction in terms of industrial production. 展开更多
关键词 silica aerogel coal gangue thermal insulation one-step hydrophobization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部