Reinforcement learning has been applied to air combat problems in recent years,and the idea of curriculum learning is often used for reinforcement learning,but traditional curriculum learning suffers from the problem ...Reinforcement learning has been applied to air combat problems in recent years,and the idea of curriculum learning is often used for reinforcement learning,but traditional curriculum learning suffers from the problem of plasticity loss in neural networks.Plasticity loss is the difficulty of learning new knowledge after the network has converged.To this end,we propose a motivational curriculum learning distributed proximal policy optimization(MCLDPPO)algorithm,through which trained agents can significantly outperform the predictive game tree and mainstream reinforcement learning methods.The motivational curriculum learning is designed to help the agent gradually improve its combat ability by observing the agent's unsatisfactory performance and providing appropriate rewards as a guide.Furthermore,a complete tactical maneuver is encapsulated based on the existing air combat knowledge,and through the flexible use of these maneuvers,some tactics beyond human knowledge can be realized.In addition,we designed an interruption mechanism for the agent to increase the frequency of decisionmaking when the agent faces an emergency.When the number of threats received by the agent changes,the current action is interrupted in order to reacquire observations and make decisions again.Using the interruption mechanism can significantly improve the performance of the agent.To simulate actual air combat better,we use digital twin technology to simulate real air battles and propose a parallel battlefield mechanism that can run multiple simulation environments simultaneously,effectively improving data throughput.The experimental results demonstrate that the agent can fully utilize the situational information to make reasonable decisions and provide tactical adaptation in the air combat,verifying the effectiveness of the algorithmic framework proposed in this paper.展开更多
Today’s air combat has reached a high level of uncertainty where continuous or discrete variables with crisp values cannot be properly represented using fuzzy sets. With a set of membership functions, fuzzy logic is ...Today’s air combat has reached a high level of uncertainty where continuous or discrete variables with crisp values cannot be properly represented using fuzzy sets. With a set of membership functions, fuzzy logic is well-suited to tackle such complex states and actions. However, it is not necessary to fuzzify the variables that have definite discrete semantics.Hence, the aim of this study is to improve the level of model abstraction by proposing multiple levels of cascaded hierarchical structures from the perspective of function, namely, the functional decision tree. This method is developed to represent behavioral modeling of air combat systems, and its metamodel,execution mechanism, and code generation can provide a sound basis for function-based behavioral modeling. As a proof of concept, an air combat simulation is developed to validate this method and the results show that the fighter Alpha built using the proposed framework provides better performance than that using default scripts.展开更多
In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position beco...In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.展开更多
Lying in her makeshift hospital bed,Joyce Tembo thanked medical personnel for evacuating her to the designated national cholera treatment centre,6 km north of Zambia’s capital Lusaka.She was recently diagnosed with d...Lying in her makeshift hospital bed,Joyce Tembo thanked medical personnel for evacuating her to the designated national cholera treatment centre,6 km north of Zambia’s capital Lusaka.She was recently diagnosed with diarrhoeal disease.Tembo,43,commended the medical sta!stationed at the treatment centre for their great service to thousands of patients,especially women and children seeking urgent treatment.“I am very grateful to the Chinese doctors who attended to me as soon as the ambulance rushed me to the clinic where I received urgent treatment;they have really saved my life,”Tembo told ChinAfrica.But not all residents in her community are as lucky as her.Many in the densely populated slums die every day due to the area’s poor sanitation-one of the major causes of the cholera outbreak.展开更多
Aiming at addressing the problem of manoeuvring decision-making in UAV air combat,this study establishes a one-to-one air combat model,defines missile attack areas,and uses the non-deterministic policy Soft-Actor-Crit...Aiming at addressing the problem of manoeuvring decision-making in UAV air combat,this study establishes a one-to-one air combat model,defines missile attack areas,and uses the non-deterministic policy Soft-Actor-Critic(SAC)algorithm in deep reinforcement learning to construct a decision model to realize the manoeuvring process.At the same time,the complexity of the proposed algorithm is calculated,and the stability of the closed-loop system of air combat decision-making controlled by neural network is analysed by the Lyapunov function.This study defines the UAV air combat process as a gaming process and proposes a Parallel Self-Play training SAC algorithm(PSP-SAC)to improve the generalisation performance of UAV control decisions.Simulation results have shown that the proposed algorithm can realize sample sharing and policy sharing in multiple combat environments and can significantly improve the generalisation ability of the model compared to independent training.展开更多
Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain info...Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.展开更多
With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce ...With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce casualties and maintain military combat effectiveness,is widely developed.This paper systematically reviewed various PPE based on individual combat through literature research and comprehensive discussion,and introduced in detail the latest application progress of PPE in terms of material and technology from three aspects:individual integrated protection system,traditional protection equipment,and intelligent protection equipment,respectively,and discussed in depth the functional improvement and optimization status brought by advanced technology for PPE,focusing on the achievements of individual equipment technology application.Finally,the problems and technical bottlenecks in the development of PPE were analyzed and summarized,and the development trend of PPE were pointed out.The results of the review will provide a forward-looking reference for the current development of individual PPE,and are important guidance for the design and technological innovation of advanced equipment based on the future technological battlefield.展开更多
Background: In recent years, we have established an entry-level Forward Surgical Team (FST) training program in a Chinese military medical university for the 5th grade undergraduates, who would be deployed to differen...Background: In recent years, we have established an entry-level Forward Surgical Team (FST) training program in a Chinese military medical university for the 5th grade undergraduates, who would be deployed to different military medical services as primary combat surgeons. This study aimed to assess the role of this pre-service training in improving their confidence with combat medical skills, after several years since they received the training. Methods: We conducted a nationwide survey of 239 primary combat surgeons who have ever participated in an entry-level FST training program before deployment between June 2016 and June 2020, which was for evaluating on a 5-point Likert scale the benefits of entry-level FST training and conventional surgery training in improving their confidence with combat medical skills. The difference in scores was compared using the student t-test. Significance was considered as P Results: The total score was significantly higher for entry-level FST training than that for conventional surgery training (30.76 ± 4.33 vs. 28.95 ± 4.80, P There was no significant difference between the training for surgical skills confidence scores (18.03 ± 8.04 vs. 17.51 ± 8.30, P = 0.098), but for non-technical skills, the score of entry-level FST training was significantly higher than that of conventional surgery training (12.73 ± 5.39 vs. 11.44 ± 5.62, P The distributions of confidence scores were different under various subgroups by demographics. There were no significant differences in scores between the two training in all specific surgical skill sets except “life-saving surgery” (P = 0.011). Scores of all 4 non-technical skill sets were significantly higher for entry-level FST than those for conventional surgery training (P Conclusions: The training should be considered as an essential strategy to improve confidence in combat medical skills, especially life-saving surgery and non-technical skills, for primary combat surgeons.展开更多
文摘Reinforcement learning has been applied to air combat problems in recent years,and the idea of curriculum learning is often used for reinforcement learning,but traditional curriculum learning suffers from the problem of plasticity loss in neural networks.Plasticity loss is the difficulty of learning new knowledge after the network has converged.To this end,we propose a motivational curriculum learning distributed proximal policy optimization(MCLDPPO)algorithm,through which trained agents can significantly outperform the predictive game tree and mainstream reinforcement learning methods.The motivational curriculum learning is designed to help the agent gradually improve its combat ability by observing the agent's unsatisfactory performance and providing appropriate rewards as a guide.Furthermore,a complete tactical maneuver is encapsulated based on the existing air combat knowledge,and through the flexible use of these maneuvers,some tactics beyond human knowledge can be realized.In addition,we designed an interruption mechanism for the agent to increase the frequency of decisionmaking when the agent faces an emergency.When the number of threats received by the agent changes,the current action is interrupted in order to reacquire observations and make decisions again.Using the interruption mechanism can significantly improve the performance of the agent.To simulate actual air combat better,we use digital twin technology to simulate real air battles and propose a parallel battlefield mechanism that can run multiple simulation environments simultaneously,effectively improving data throughput.The experimental results demonstrate that the agent can fully utilize the situational information to make reasonable decisions and provide tactical adaptation in the air combat,verifying the effectiveness of the algorithmic framework proposed in this paper.
基金This work was supported by the National Natural Science Foundation of China(62003359).
文摘Today’s air combat has reached a high level of uncertainty where continuous or discrete variables with crisp values cannot be properly represented using fuzzy sets. With a set of membership functions, fuzzy logic is well-suited to tackle such complex states and actions. However, it is not necessary to fuzzify the variables that have definite discrete semantics.Hence, the aim of this study is to improve the level of model abstraction by proposing multiple levels of cascaded hierarchical structures from the perspective of function, namely, the functional decision tree. This method is developed to represent behavioral modeling of air combat systems, and its metamodel,execution mechanism, and code generation can provide a sound basis for function-based behavioral modeling. As a proof of concept, an air combat simulation is developed to validate this method and the results show that the fighter Alpha built using the proposed framework provides better performance than that using default scripts.
基金National Key R&D Program of China(Grant No.2021YFA1000402)National Natural Science Foundation of China(Grant No.72071159)to provide fund for conducting experiments。
文摘In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.
文摘Lying in her makeshift hospital bed,Joyce Tembo thanked medical personnel for evacuating her to the designated national cholera treatment centre,6 km north of Zambia’s capital Lusaka.She was recently diagnosed with diarrhoeal disease.Tembo,43,commended the medical sta!stationed at the treatment centre for their great service to thousands of patients,especially women and children seeking urgent treatment.“I am very grateful to the Chinese doctors who attended to me as soon as the ambulance rushed me to the clinic where I received urgent treatment;they have really saved my life,”Tembo told ChinAfrica.But not all residents in her community are as lucky as her.Many in the densely populated slums die every day due to the area’s poor sanitation-one of the major causes of the cholera outbreak.
基金National Natural Science Foundation of China,Grant/Award Number:62003267Fundamental Research Funds for the Central Universities,Grant/Award Number:G2022KY0602+1 种基金Technology on Electromagnetic Space Operations and Applications Laboratory,Grant/Award Number:2022ZX0090Key Core Technology Research Plan of Xi'an,Grant/Award Number:21RGZN0016。
文摘Aiming at addressing the problem of manoeuvring decision-making in UAV air combat,this study establishes a one-to-one air combat model,defines missile attack areas,and uses the non-deterministic policy Soft-Actor-Critic(SAC)algorithm in deep reinforcement learning to construct a decision model to realize the manoeuvring process.At the same time,the complexity of the proposed algorithm is calculated,and the stability of the closed-loop system of air combat decision-making controlled by neural network is analysed by the Lyapunov function.This study defines the UAV air combat process as a gaming process and proposes a Parallel Self-Play training SAC algorithm(PSP-SAC)to improve the generalisation performance of UAV control decisions.Simulation results have shown that the proposed algorithm can realize sample sharing and policy sharing in multiple combat environments and can significantly improve the generalisation ability of the model compared to independent training.
基金supported by the National Natural Science Foundation of China(Grant No.61933010 and 61903301)Shaanxi Aerospace Flight Vehicle Design Key Laboratory。
文摘Cooperative autonomous air combat of multiple unmanned aerial vehicles(UAVs)is one of the main combat modes in future air warfare,which becomes even more complicated with highly changeable situation and uncertain information of the opponents.As such,this paper presents a cooperative decision-making method based on incomplete information dynamic game to generate maneuver strategies for multiple UAVs in air combat.Firstly,a cooperative situation assessment model is presented to measure the overall combat situation.Secondly,an incomplete information dynamic game model is proposed to model the dynamic process of air combat,and a dynamic Bayesian network is designed to infer the tactical intention of the opponent.Then a reinforcement learning framework based on multiagent deep deterministic policy gradient is established to obtain the perfect Bayes-Nash equilibrium solution of the air combat game model.Finally,a series of simulations are conducted to verify the effectiveness of the proposed method,and the simulation results show effective synergies and cooperative tactics.
基金supported by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Projects No.52202012)the National Natural Science Foundation of China(Projects No.51834007)。
文摘With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce casualties and maintain military combat effectiveness,is widely developed.This paper systematically reviewed various PPE based on individual combat through literature research and comprehensive discussion,and introduced in detail the latest application progress of PPE in terms of material and technology from three aspects:individual integrated protection system,traditional protection equipment,and intelligent protection equipment,respectively,and discussed in depth the functional improvement and optimization status brought by advanced technology for PPE,focusing on the achievements of individual equipment technology application.Finally,the problems and technical bottlenecks in the development of PPE were analyzed and summarized,and the development trend of PPE were pointed out.The results of the review will provide a forward-looking reference for the current development of individual PPE,and are important guidance for the design and technological innovation of advanced equipment based on the future technological battlefield.
文摘Background: In recent years, we have established an entry-level Forward Surgical Team (FST) training program in a Chinese military medical university for the 5th grade undergraduates, who would be deployed to different military medical services as primary combat surgeons. This study aimed to assess the role of this pre-service training in improving their confidence with combat medical skills, after several years since they received the training. Methods: We conducted a nationwide survey of 239 primary combat surgeons who have ever participated in an entry-level FST training program before deployment between June 2016 and June 2020, which was for evaluating on a 5-point Likert scale the benefits of entry-level FST training and conventional surgery training in improving their confidence with combat medical skills. The difference in scores was compared using the student t-test. Significance was considered as P Results: The total score was significantly higher for entry-level FST training than that for conventional surgery training (30.76 ± 4.33 vs. 28.95 ± 4.80, P There was no significant difference between the training for surgical skills confidence scores (18.03 ± 8.04 vs. 17.51 ± 8.30, P = 0.098), but for non-technical skills, the score of entry-level FST training was significantly higher than that of conventional surgery training (12.73 ± 5.39 vs. 11.44 ± 5.62, P The distributions of confidence scores were different under various subgroups by demographics. There were no significant differences in scores between the two training in all specific surgical skill sets except “life-saving surgery” (P = 0.011). Scores of all 4 non-technical skill sets were significantly higher for entry-level FST than those for conventional surgery training (P Conclusions: The training should be considered as an essential strategy to improve confidence in combat medical skills, especially life-saving surgery and non-technical skills, for primary combat surgeons.