This paper examines the effect of the microstructure and electrical conductivity(EC)on the swelling ratio and pressure in red-bed mudstone sampled from arid areas in the Xining region in the northeastern Tibetan Plate...This paper examines the effect of the microstructure and electrical conductivity(EC)on the swelling ratio and pressure in red-bed mudstone sampled from arid areas in the Xining region in the northeastern Tibetan Plateau.A series of laboratory tests,including swelling experiments,X-ray diffraction(XRD),and scanning electron microscope(SEM),was carried out for mechanical and microstructural analysis.The coupled influence of the EC and microstructural parameters on the expansion ratio and pressure was investigated,and the weight coefficients were discussed by the entropy weight method.The results revealed an increasing exponential trend in EC,and the maximum swelling speed occurred at an EC of approximately 10 μS/cm.In addition,a method for predicting the expansion potential is proposed based on the microstructure,and its reliability is verified by comparing with swelling experimental results.In addition,according to the image analysis results,the ranges of the change in the clay minerals content(CMC),the fractal dimension(FD),the average diameter(AD)of pores,and the plane porosity(PP)are 23.75%-53%,1.08-1.17,7.53-22.45 mm,and 0.62%-1.25%,respectively.Moreover,mudstone swelling is negatively correlated with the plane porosity,fractal dimension and average diameter and is linearly correlated with the clay mineral content.Furthermore,the weight values prove that the microstructural characteristics,including FD,AD,and PP,are the main factors influencing the expansion properties of red-bed mudstones in the Xining region.Based on the combination of macro and micro-analyses,a quantitative analysis of the swelling process of mudstones can provide a better reference for understanding the mechanism of expansion behavior.展开更多
In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its in...In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.展开更多
The swelling behavior of red-bed rocks is a significant factor in the abnormal uplift of subgrades for high-speed railways constructed on the red stratum in the Sichuan Basin,China.The prime objective of this paper is...The swelling behavior of red-bed rocks is a significant factor in the abnormal uplift of subgrades for high-speed railways constructed on the red stratum in the Sichuan Basin,China.The prime objective of this paper is to investigate the impact of mineralogical composition,moisture content,and overburden load on the time-dependent unconfined and oedometric swelling behavior of red-bed siltstone in the context of differences in the slake durability.Twenty samples were prepared for the swelling test,with eleven used for the unconfined swelling and slake index tests and nine for the oedometric swelling test.The temporal dependency of swelling is characterized by the viscosity coefficient of water absorption in a proposed swelling model.Results indicate that the swelling deformation of red-bed rocks is due to a combination of hydration swelling within the rock matrix and crack expansion caused by air breakage.In the unconfined swelling test,the final axial swelling strain of red-bed rocks decreases linearly with increasing slake index,while the viscosity coefficient increases exponentially with the slake index.In the oedometric swelling test,red-bed rocks with lower slake durability show greater sensitivity to lateral constraint and overburden load compared to those with higher slake durability.展开更多
Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective struc...Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content.展开更多
Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been...Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been considered in current analytical permeability models.This study introduces a normalized sorption non-equilibrium index(SNEI)to characterize the sorption status,quantify the dynamical variations of matrix swelling accumulation and internal swelling partition,and formulate the sorption swelling switch model.The incorporation of this index into the extended total effective stress concept leads to an analytical transient coal permeability model.Model results show that the sorption swelling switch itself results in the permeability switch under stress-constrained conditions,while the confined bulk swelling suppresses the permeability recovery to the continuous reduction under displacement-constrained conditions.Model verifications show that current experimental observations correspond to the early stages of the transient process,and they could be extended to the whole process with these models.This study demonstrates the importance of the sorption swelling switch in determining permeability evolution using simple boundary conditions.It provides new insights into experimentally revealing the sorption swelling switch in the future,and underscores the requirement of a rigorous model for complex coupled processes in large-scale coal seams.展开更多
Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))data...Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature.展开更多
In this study,the axial swelling strain of red-bed mudstone under different vertical stresses are measured by swell-under-load method,and the microstructure of mudstone after hygroscopic swelling is studied by mercury...In this study,the axial swelling strain of red-bed mudstone under different vertical stresses are measured by swell-under-load method,and the microstructure of mudstone after hygroscopic swelling is studied by mercury intrusion porosimetry(MIP).The weakening coefficient and Weibull distribution function are introduced into the coupling model of mudstone moisture diffusion-swelling deformation-fracture based on finite-discrete element method(FDEM).The weakening effect of moisture on mudstone's mechanical parameters,as well as the heterogeneity of swelling deformation and stress distribution,is considered.The microcrack behavior and energy evolution of mudstone during hygroscopic swelling deformation under different vertical stresses are studied.The results show that the axial swelling strain of mudstone decreases with increase of the vertical stress.At low vertical stresses,moisture absorption in mudstone leads to formation of cracks caused by hydration-induced expansion.Under high vertical stresses,a muddy sealing zone forms on the mudstone surface,preventing further water infiltration.The simulation results of mudstone swelling deformation also demonstrate that it involves both swelling of the mudstone matrix and swelling caused by crack expansion.Notably,crack expansion plays a dominant role in mudstone swelling.With increasing vertical stress,the cracks in mudstone change from tensile cracks to shear cracks,resulting in a significant reduction in the total number of cracks.While the evolution of mudstone kinetic energy shows similarities under different vertical stresses,the evolution of strain energy varies significantly due to the presence of different types of cracks in the mudstone.The findings provide a theoretical basis for understanding the hygroscopic swelling deformation mechanism of red-bed mudstone at various depths.展开更多
Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to...Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks.展开更多
In the high-level radioactive waste(HLW)deep geological repository,bentonite is compacted uniaxially,and then arranged vertically in engineered barriers.The assembly scheme induces the initial anisotropy,and with hydr...In the high-level radioactive waste(HLW)deep geological repository,bentonite is compacted uniaxially,and then arranged vertically in engineered barriers.The assembly scheme induces the initial anisotropy,and with hydration,it develops more evidently under chemical conditions.To investigate the anisotropic swelling of compacted Gaomiaozi(GMZ)bentonite and the further response to saline effects,a series of constant-volume swelling pressure tests were performed.Results showed that dry density enhanced the bentonite swelling and raised the final anisotropy,whereas saline inhibited the bentonite swelling but still promoted the final anisotropy.The final anisotropy coefficient(ratio of radial to axial pressure)obeyed the Boltzmann sigmoid attenuation function,decreasing with concentration and dry density,converging to a minimum value of 0.76.The staged evolution of anisotropy coefficient was discovered,that saline inhibited the rise of the anisotropy coefficient(Dd)in the isotropic process greater than the valley(d1)in the anisotropic process,leading to the final anisotropy increasing.The isotropic stage amplified the impact of soil structure rearrangement on the macro-swelling pressure values.Thus,a new method for predicting swelling pressures of compacted bentonite was proposed,by expanding the equations of Gouy-Chapman theory with a dissipative wedge term.An evolutionary function was constructed,revealing the correlation between the occurrence time and the pressure value due to the structure rearrangement and the former crystalline swelling.Accordingly,a design reference for dry density was given,based on the chemical conditions around the pre-site in Beishan,China.The anisotropy promoted by saline would cause a greater drop of radial pressure,making the previous threshold on axial swelling fail.展开更多
Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,p...Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,potassium persulfate(KPS)as the initiator to generate free radicals,and N,N`-methylenebisacrylamide(MBA)as cross-linking agent for cross-linking reaction.Simutaneously,the influence of individual factors on the water absorption is investigated,and these factors are mainly AA,AM,KPS,MBA,HPMC,and reaction temperature.The optimized conditions are obtained by the experiment repeating for several times.The water absorption multiplicity and salt absorption multiplicity under the conditions are 782.4 and 132.5 g/g,respectivity.Furthermore,the effects of different temperatures and salt concentrations on its water absorption,as well as the swelling kinetics of SAR are studied.It is indicated the water-absorbing swelling process is mainly caused by the difference in water osmotic pressure and Na+concentration inside and outside the cross-linked molecular structure of the resin,which is not only consistent with the quasi-secondary kinetic model,but also with the Fick diffusion model.展开更多
Vulvar Crohn’s disease (VCD) is a rare complication of Crohn’s disease, especially in pediatric population. An early diagnosis can result difficult if the complication does not present in conjunction with the classi...Vulvar Crohn’s disease (VCD) is a rare complication of Crohn’s disease, especially in pediatric population. An early diagnosis can result difficult if the complication does not present in conjunction with the classic gastrointestinal symptoms that characterize this disease. In this study we present the case of a 12-year-old girl whose initial symptom of Crohn’s disease was a symptomatic vulvar swelling promoted by a rectovaginal fistula. We also provide an overview of Crohn’s disease and the vulvar changes found in the course of this disease.展开更多
Objective:To observe the clinical effect of traditional Chinese medicine(TCM)on reducing swelling and pain in patients with mixed hemorrhoids.Methods:Sixty patients with mixed hemorrhoids who were admitted to the Hosp...Objective:To observe the clinical effect of traditional Chinese medicine(TCM)on reducing swelling and pain in patients with mixed hemorrhoids.Methods:Sixty patients with mixed hemorrhoids who were admitted to the Hospital of Traditional Chinese Medicine of Qiqihar from January 2023 to January 2024 were selected and divided into two groups.The treatment group(n=30)was treated with mixed hemorrhoid ligation combined with traditional Chinese swelling and pain medicine,and the control group(n=30)was only treated with mixed hemorrhoid ligation.The pain level,edema score,and prognosis of the two groups after the intervention were analyzed.The clinical efficacy was used as the evaluation criterion to compare the clinical effects of different treatment options.Results:After the treatment,the pain score,edema score,and prognostic wound score of the treatment group were all lower than those of the control group(P 0.05).The total clinical effectiveness of the treatment group(100%)was higher than that of the control group(76.67%),(χ^(2)=4.2857,P<0.05).Conclusion:The application of traditional Chinese swelling and pain medicine in treating patients with mixed hemorrhoids effectively reduced the patient’s pain,reduced the degree of wound edema,promoted wound healing,and improved the patient’s prognosis.The curative effect was significant and had a positive impact.展开更多
Poly(methacrylic acid co-poloxamer) hydrogel networks were synthesized by free radical solution polymerization and their equilibrium swelling and solute permeation properties were characterized. These gels exhibited p...Poly(methacrylic acid co-poloxamer) hydrogel networks were synthesized by free radical solution polymerization and their equilibrium swelling and solute permeation properties were characterized. These gels exhibited pH dependant swelling and solute diffusivity due to the formation or disruption of hydrogen bonded complexation between methacrylic acid (MAA) and etheric (EO). In neutral and basic conditions (above the swelling transition pH), the copolymer swelling was greatly higher than acid condition. In complexed hydrogels, the diffusion coefficients of vitamin B12 (VB12) were in the range of 10-10 to 10-7 cm2s-1; While in uncomplexed hydrogels, the values were about 210-6 cm2s-1. The comonomer composition and synthesis conditions have great effect on the structure, and thereby, swelling and solute diffusion characteristics of the resultant hydrogels. For the copolymers with composition of less than or more than 1:1 MAA/EO molar ratio, the plot of lnD vs 1/H-1 followed two different linear equations of 慺ree volume theory? respectively.展开更多
This paper studies the swelling of highly consolidated mudstones by theoretical considerations and laboratory experiments. A key assumption was made that saturated and uncemented clays behave as heavily dense colloid ...This paper studies the swelling of highly consolidated mudstones by theoretical considerations and laboratory experiments. A key assumption was made that saturated and uncemented clays behave as heavily dense colloid without direct contacts among solid particles. It leads to an important conclusion that the swelling pressure acting on adsorbed interparticle water-films is equivalent to the effective stress, This so-called clay-colloid concept is validated by various swelling experiments on two kinds of mudstones, the Callovo-Oxfordian argillite in France and the Opalinus clay in Switzerland. In the tests, water adsorption-desorption, swelling pressure and strain were measured on the samples at various suctions and load-controlled conditions. Results suggest that: (1) the mudstones can take up great amounts of water from the humid environment, much more than the water content in the natural and saturated states; (2) the swelling pressure increases with water uptake to high levels of the overburden stresses at the sampling depths of 230 to 500 m, indicating that the adsorbed water-films are capable of carrying the lithostatic stress; and (3) the large amount of water uptake causes a significant expansion of mudstones even under the lithostatic stresses.展开更多
The effect of various dosages of dolomites on the reduction swelling property of iron ore pellets was studied. Experimental results show that the reduction swelling index(RSI) decreases from 13.35% to 4.0%, while the ...The effect of various dosages of dolomites on the reduction swelling property of iron ore pellets was studied. Experimental results show that the reduction swelling index(RSI) decreases from 13.35% to 4.0%, while the porosity of roasted pellets increases from 35% to 40% with increasing the dolomite dosage from 0 to 10.5%. Meanwhile, the content of magnesium ferrite with high melting temperature, as well as the stability of magnetite(Fe3 O4) in the roasted pellets, increases with increasing the magnesium oxide(MgO) content from dolomite. The reasons for the decrease of RSI rely on the absence of crystal transformation from Fe2 O3 to Fe3 O4, the increased porosity of roasted pellet, and the suppression of phase transition of 2CaO·SiO2 resulted from the incorporation of magnesium into calcium silicate.展开更多
Swelling property of acrylamide hydrogels,prepared from aqueous solutions of acrylamide monomer havingconcentrations in the range of 10-60 wt% by ray irradiation method using a Co-60 gamma radiation source at dosesran...Swelling property of acrylamide hydrogels,prepared from aqueous solutions of acrylamide monomer havingconcentrations in the range of 10-60 wt% by ray irradiation method using a Co-60 gamma radiation source at dosesranging 1-30.0 kGy,has been investigated under various swelling media.These swelling media were basically solvents(solutions),produced by dissolving methanol,ethanol,glucose,sucrose,sodium chloride and sodium persulfate individuallywith distilled water,and solutions prepared with pHs=3,7 and 10.The investigation was performed in order to observe theeffect of these solvents and pHs as well as the influence of monomer concentrations,radiation doses and times on swellingbehavior of hydrogels.Swelling values were found higher for hydrogels prepared with lower monomer concentrations(ca.20 wt%)and radiation doses(ca.5 kGy)and showed a leveling off tendency within 24 h.The glucose solvent and the buffersolution of pH=10 revealed significant increase of swelling of hydrogels as compared to other solutions.Results areexplained based on crosslinking density in hydrogel,polymer-solvent/polymer-polymer interactions in solutions,permeability of molecules in solutions and ionization capacity of hydrogel in pH.展开更多
This paper performs molecular dynamics simulations to investigate the role of the monovalent cations K, Na and the divalent cation Ca on the stability and swelling of montmorillonite. The recently developed CLAYFF for...This paper performs molecular dynamics simulations to investigate the role of the monovalent cations K, Na and the divalent cation Ca on the stability and swelling of montmorillonite. The recently developed CLAYFF force field is used to predict the basal spacing as a function of the water content in the interlayer. The simulations reproduced the swelling pattern of these montmorillonites, suggesting a mechanism of their hydration different (K+ 〈 Na+ 〈 Ca2+) from that of K+-, Na+-, and Ca2+-montmorillonites. In particular, these results indicate that the valence of the cations has the larger impact on the behaviour of clay water systems. It also finds that the differences in size and hydration energy of K+, Na+ and Ca2+ ions have strong implications for the structure of interlayer. This leads to the differences in the layer spacings of the simulated K+-, Na+-, and Ca2+-montmorillonites. Furthermore, these simulations show that the K cations interact strongly with the clay sheets for the dehydrated clay sheets, but for the hydrated clays the Ca cations interact clearly strongly with the clay sheets.展开更多
Fouling resistance of ultrafiltration(UF) membranes is critical for their long-term usages in terms of stable performance, so convenient approaches to prepare fouling-resistant membranes are always anticipated. Herein...Fouling resistance of ultrafiltration(UF) membranes is critical for their long-term usages in terms of stable performance, so convenient approaches to prepare fouling-resistant membranes are always anticipated. Herein, we demonstrate the facile fabrication of antifouling polysulfone-block-poly(ethylene glycol)(PSF-b-PEG, SFEG)composite membranes. SFEG layer was coated onto macroporous supports and cavitated by immerging them in acetone/n-propanol following the mechanism of selective swelling induced pore generation. Thus-produced SFEG membranes possessed high permeance and excellent mechanical strength. Meanwhile, the structures and separation performances of the SFEG layers can be continuously tuned through simply changing swelling durations. More importantly, the hydrophilic PEG chains were spontaneously enriched onto the pore walls through swelling treatment, endowing intrinsic antifouling property to the SFEG membranes. Bovine serum albumin(BSA)/humic acid(HA) fouling tests proved the prominent fouling resistance of SFEG membranes, and the fouling resistance is expected to be long-standing because of the firm connection between PEG chains and PSF matrix by covalent bonding.展开更多
Wood heat treatment has increased signifi- cantly in recent years and is still growing as an industrial process to improve some wood properties. We studied the change of swellingand surface roughness of common alder ...Wood heat treatment has increased signifi- cantly in recent years and is still growing as an industrial process to improve some wood properties. We studied the change of swellingand surface roughness of common alder (Alnus glutinosa (L.) Gaertn. ssp.glutinosa) and wych elm (Ulmus glabra Huds.) woods after heat treatment at two different temperatures and durations. The temperatures were 180 and 200 ℃ and the durations were 2 and 4 h. A stylus method was employed to evaluate the surface char- acteristics of the samples. Roughness measurements by the stylus method were made in the direction perpendicular to the fiber on the wood surface. Four main roughness parameters, mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), root mean square roughness (Rq), and maximum roughness (Ry) were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Swelling and surface roughness parameters (Ra, Rz, Ry, and Rq) differed significantly for two temper- atures and two durations of heat treatment. Swelling and surface roughness values decreased with increasing treat- ment temperature and treatment times.展开更多
The volume expansion of SU-8 resist brings serious dimensional errors to electroformed structures.Two approaches have been proposed to reduce resist distortions during electroforming:electroforming at room temperature...The volume expansion of SU-8 resist brings serious dimensional errors to electroformed structures.Two approaches have been proposed to reduce resist distortions during electroforming:electroforming at room temperature and adding auxiliary features for mask patterns.However,the former method induces higher internal stresses in the electroformed metal layers.And the latter method makes it difficult to predict the expansion behaviors of the resists.In the paper,the thermal expansion of the SU-8 mould is calculated by ANSYS firstly,and the lower thermal expansion value indicates that hygroscopic swelling plays a leading role in SU-8 mould distortions.An original technique is presented to reduce SU-8 hygroscopic swelling by ultrasonic treatment.The dimensional errors of the electroformed structure fabricated on the ultrasonic treatment mould are 50% lower than the one without ultrasonic treatment.Simulation of hygroscopic swelling is conducted by finite element analysis,and the results indicate that the hygroscopic strain ε of SU-8 after electroforming is declined from 6.8% to 3.1% because of ultrasonic.The measurements show that ultrasonic treatment increased the water contact angle of cured SU-8 from 70.8?to 74.9?.Based on these results,the mechanism of ultrasonic effect on hygroscopic swelling is proposed from the view of ultrasonic vibration decreasing the number of hydroxyl groups in SU-8.The research presents a novel method to improve the precisions of electroformed structures.It has no influence on the internal stresses of final structures and does not increase the complexities of mask layouts.展开更多
基金the funding support from National Natural Science Foundation of China(Grant No.42077271)Sichuan Science and Technology Program,China(Grant No.2023YFS0364)Chengdu Science and Technology Program(Grant No.2022-YF05-00340-SN).
文摘This paper examines the effect of the microstructure and electrical conductivity(EC)on the swelling ratio and pressure in red-bed mudstone sampled from arid areas in the Xining region in the northeastern Tibetan Plateau.A series of laboratory tests,including swelling experiments,X-ray diffraction(XRD),and scanning electron microscope(SEM),was carried out for mechanical and microstructural analysis.The coupled influence of the EC and microstructural parameters on the expansion ratio and pressure was investigated,and the weight coefficients were discussed by the entropy weight method.The results revealed an increasing exponential trend in EC,and the maximum swelling speed occurred at an EC of approximately 10 μS/cm.In addition,a method for predicting the expansion potential is proposed based on the microstructure,and its reliability is verified by comparing with swelling experimental results.In addition,according to the image analysis results,the ranges of the change in the clay minerals content(CMC),the fractal dimension(FD),the average diameter(AD)of pores,and the plane porosity(PP)are 23.75%-53%,1.08-1.17,7.53-22.45 mm,and 0.62%-1.25%,respectively.Moreover,mudstone swelling is negatively correlated with the plane porosity,fractal dimension and average diameter and is linearly correlated with the clay mineral content.Furthermore,the weight values prove that the microstructural characteristics,including FD,AD,and PP,are the main factors influencing the expansion properties of red-bed mudstones in the Xining region.Based on the combination of macro and micro-analyses,a quantitative analysis of the swelling process of mudstones can provide a better reference for understanding the mechanism of expansion behavior.
基金supported by the Australian Research Council(Grant No.DP200101293)supported by the UWA-China Joint Scholarships(201906430030).
文摘In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered.
基金financial support received from the National Natural Science Foundation of China(No.51578230).
文摘The swelling behavior of red-bed rocks is a significant factor in the abnormal uplift of subgrades for high-speed railways constructed on the red stratum in the Sichuan Basin,China.The prime objective of this paper is to investigate the impact of mineralogical composition,moisture content,and overburden load on the time-dependent unconfined and oedometric swelling behavior of red-bed siltstone in the context of differences in the slake durability.Twenty samples were prepared for the swelling test,with eleven used for the unconfined swelling and slake index tests and nine for the oedometric swelling test.The temporal dependency of swelling is characterized by the viscosity coefficient of water absorption in a proposed swelling model.Results indicate that the swelling deformation of red-bed rocks is due to a combination of hydration swelling within the rock matrix and crack expansion caused by air breakage.In the unconfined swelling test,the final axial swelling strain of red-bed rocks decreases linearly with increasing slake index,while the viscosity coefficient increases exponentially with the slake index.In the oedometric swelling test,red-bed rocks with lower slake durability show greater sensitivity to lateral constraint and overburden load compared to those with higher slake durability.
基金financially supported by the National Key R&D Program of China (Grant No. 2019YFC1509901)。
文摘Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content.
基金supported by the Australian Research Council(Grant No.DP200101293)the National Natural Science Foundation of China(Grant No.42202286)the Zhejiang Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards(Grant No.PCMGH-2017-Z-02).
文摘Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been considered in current analytical permeability models.This study introduces a normalized sorption non-equilibrium index(SNEI)to characterize the sorption status,quantify the dynamical variations of matrix swelling accumulation and internal swelling partition,and formulate the sorption swelling switch model.The incorporation of this index into the extended total effective stress concept leads to an analytical transient coal permeability model.Model results show that the sorption swelling switch itself results in the permeability switch under stress-constrained conditions,while the confined bulk swelling suppresses the permeability recovery to the continuous reduction under displacement-constrained conditions.Model verifications show that current experimental observations correspond to the early stages of the transient process,and they could be extended to the whole process with these models.This study demonstrates the importance of the sorption swelling switch in determining permeability evolution using simple boundary conditions.It provides new insights into experimentally revealing the sorption swelling switch in the future,and underscores the requirement of a rigorous model for complex coupled processes in large-scale coal seams.
基金great gratitude to National Key Research and Development Project(Grant No.2019YFC1509800)for their financial supportNational Nature Science Foundation of China(Grant No.12172211)for their financial support.
文摘Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature.
基金funded by the National Natural Science Foundation of China(No.42172308)the Youth Innovation Promotion Association CAS(No.2022331).
文摘In this study,the axial swelling strain of red-bed mudstone under different vertical stresses are measured by swell-under-load method,and the microstructure of mudstone after hygroscopic swelling is studied by mercury intrusion porosimetry(MIP).The weakening coefficient and Weibull distribution function are introduced into the coupling model of mudstone moisture diffusion-swelling deformation-fracture based on finite-discrete element method(FDEM).The weakening effect of moisture on mudstone's mechanical parameters,as well as the heterogeneity of swelling deformation and stress distribution,is considered.The microcrack behavior and energy evolution of mudstone during hygroscopic swelling deformation under different vertical stresses are studied.The results show that the axial swelling strain of mudstone decreases with increase of the vertical stress.At low vertical stresses,moisture absorption in mudstone leads to formation of cracks caused by hydration-induced expansion.Under high vertical stresses,a muddy sealing zone forms on the mudstone surface,preventing further water infiltration.The simulation results of mudstone swelling deformation also demonstrate that it involves both swelling of the mudstone matrix and swelling caused by crack expansion.Notably,crack expansion plays a dominant role in mudstone swelling.With increasing vertical stress,the cracks in mudstone change from tensile cracks to shear cracks,resulting in a significant reduction in the total number of cracks.While the evolution of mudstone kinetic energy shows similarities under different vertical stresses,the evolution of strain energy varies significantly due to the presence of different types of cracks in the mudstone.The findings provide a theoretical basis for understanding the hygroscopic swelling deformation mechanism of red-bed mudstone at various depths.
基金supported by the National Natural Science Foundation of China(Grant No.41972265)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-57)+1 种基金the Gansu Province Science Foundation(Grant No.20JR10RA492)Special thanks to the Environmental Research and Education Foundation for supporting the first author(Y.Tan)through a fellowship for his study at the University of Wisconsin-Madison.
文摘Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks.
基金supported by the National Science Fund for Distinguished Young Scholars of China(Grant No.42125701)Innovation Program of Shanghai Municipal Education Commission(Grant No.2023ZKZD26)the Fundamental Research Funds for the Central Universities,and Top Discipline Plan of Shanghai Universities-Class I.
文摘In the high-level radioactive waste(HLW)deep geological repository,bentonite is compacted uniaxially,and then arranged vertically in engineered barriers.The assembly scheme induces the initial anisotropy,and with hydration,it develops more evidently under chemical conditions.To investigate the anisotropic swelling of compacted Gaomiaozi(GMZ)bentonite and the further response to saline effects,a series of constant-volume swelling pressure tests were performed.Results showed that dry density enhanced the bentonite swelling and raised the final anisotropy,whereas saline inhibited the bentonite swelling but still promoted the final anisotropy.The final anisotropy coefficient(ratio of radial to axial pressure)obeyed the Boltzmann sigmoid attenuation function,decreasing with concentration and dry density,converging to a minimum value of 0.76.The staged evolution of anisotropy coefficient was discovered,that saline inhibited the rise of the anisotropy coefficient(Dd)in the isotropic process greater than the valley(d1)in the anisotropic process,leading to the final anisotropy increasing.The isotropic stage amplified the impact of soil structure rearrangement on the macro-swelling pressure values.Thus,a new method for predicting swelling pressures of compacted bentonite was proposed,by expanding the equations of Gouy-Chapman theory with a dissipative wedge term.An evolutionary function was constructed,revealing the correlation between the occurrence time and the pressure value due to the structure rearrangement and the former crystalline swelling.Accordingly,a design reference for dry density was given,based on the chemical conditions around the pre-site in Beishan,China.The anisotropy promoted by saline would cause a greater drop of radial pressure,making the previous threshold on axial swelling fail.
基金Funded by National Natural Science Foundation of China(No.52174206)Shaanxi Provincial Department of Education Youth Innovation Team Construction Scientific Research Plan Project(No.21JP074)Shaanxi Provincial Department of Education Youth Innovation Team Scientific Research Plan Project(No.22JP047)。
文摘Super absorbent resin(SAR)is prepared by aqueous high temperature polymerization using hydroxypropyl methylcellulose(HPMC)as monomer backbone material,acrylic acid(AA)and acrylamide(AM)as the graft copolymer monomer,potassium persulfate(KPS)as the initiator to generate free radicals,and N,N`-methylenebisacrylamide(MBA)as cross-linking agent for cross-linking reaction.Simutaneously,the influence of individual factors on the water absorption is investigated,and these factors are mainly AA,AM,KPS,MBA,HPMC,and reaction temperature.The optimized conditions are obtained by the experiment repeating for several times.The water absorption multiplicity and salt absorption multiplicity under the conditions are 782.4 and 132.5 g/g,respectivity.Furthermore,the effects of different temperatures and salt concentrations on its water absorption,as well as the swelling kinetics of SAR are studied.It is indicated the water-absorbing swelling process is mainly caused by the difference in water osmotic pressure and Na+concentration inside and outside the cross-linked molecular structure of the resin,which is not only consistent with the quasi-secondary kinetic model,but also with the Fick diffusion model.
文摘Vulvar Crohn’s disease (VCD) is a rare complication of Crohn’s disease, especially in pediatric population. An early diagnosis can result difficult if the complication does not present in conjunction with the classic gastrointestinal symptoms that characterize this disease. In this study we present the case of a 12-year-old girl whose initial symptom of Crohn’s disease was a symptomatic vulvar swelling promoted by a rectovaginal fistula. We also provide an overview of Crohn’s disease and the vulvar changes found in the course of this disease.
基金Innovation Incentive Project:Science and Technology Innovation Incentive Project of Qiqihar City,Heilongjiang Province(No.CSFGG-2023210)。
文摘Objective:To observe the clinical effect of traditional Chinese medicine(TCM)on reducing swelling and pain in patients with mixed hemorrhoids.Methods:Sixty patients with mixed hemorrhoids who were admitted to the Hospital of Traditional Chinese Medicine of Qiqihar from January 2023 to January 2024 were selected and divided into two groups.The treatment group(n=30)was treated with mixed hemorrhoid ligation combined with traditional Chinese swelling and pain medicine,and the control group(n=30)was only treated with mixed hemorrhoid ligation.The pain level,edema score,and prognosis of the two groups after the intervention were analyzed.The clinical efficacy was used as the evaluation criterion to compare the clinical effects of different treatment options.Results:After the treatment,the pain score,edema score,and prognostic wound score of the treatment group were all lower than those of the control group(P 0.05).The total clinical effectiveness of the treatment group(100%)was higher than that of the control group(76.67%),(χ^(2)=4.2857,P<0.05).Conclusion:The application of traditional Chinese swelling and pain medicine in treating patients with mixed hemorrhoids effectively reduced the patient’s pain,reduced the degree of wound edema,promoted wound healing,and improved the patient’s prognosis.The curative effect was significant and had a positive impact.
文摘Poly(methacrylic acid co-poloxamer) hydrogel networks were synthesized by free radical solution polymerization and their equilibrium swelling and solute permeation properties were characterized. These gels exhibited pH dependant swelling and solute diffusivity due to the formation or disruption of hydrogen bonded complexation between methacrylic acid (MAA) and etheric (EO). In neutral and basic conditions (above the swelling transition pH), the copolymer swelling was greatly higher than acid condition. In complexed hydrogels, the diffusion coefficients of vitamin B12 (VB12) were in the range of 10-10 to 10-7 cm2s-1; While in uncomplexed hydrogels, the values were about 210-6 cm2s-1. The comonomer composition and synthesis conditions have great effect on the structure, and thereby, swelling and solute diffusion characteristics of the resultant hydrogels. For the copolymers with composition of less than or more than 1:1 MAA/EO molar ratio, the plot of lnD vs 1/H-1 followed two different linear equations of 慺ree volume theory? respectively.
基金Supported by the German Federal Ministry of Economics and Technology(BMWi)(02E10377)
文摘This paper studies the swelling of highly consolidated mudstones by theoretical considerations and laboratory experiments. A key assumption was made that saturated and uncemented clays behave as heavily dense colloid without direct contacts among solid particles. It leads to an important conclusion that the swelling pressure acting on adsorbed interparticle water-films is equivalent to the effective stress, This so-called clay-colloid concept is validated by various swelling experiments on two kinds of mudstones, the Callovo-Oxfordian argillite in France and the Opalinus clay in Switzerland. In the tests, water adsorption-desorption, swelling pressure and strain were measured on the samples at various suctions and load-controlled conditions. Results suggest that: (1) the mudstones can take up great amounts of water from the humid environment, much more than the water content in the natural and saturated states; (2) the swelling pressure increases with water uptake to high levels of the overburden stresses at the sampling depths of 230 to 500 m, indicating that the adsorbed water-films are capable of carrying the lithostatic stress; and (3) the large amount of water uptake causes a significant expansion of mudstones even under the lithostatic stresses.
基金Project(50725416) supported by the National Natural Science for Distinguished Young Scholars of China
文摘The effect of various dosages of dolomites on the reduction swelling property of iron ore pellets was studied. Experimental results show that the reduction swelling index(RSI) decreases from 13.35% to 4.0%, while the porosity of roasted pellets increases from 35% to 40% with increasing the dolomite dosage from 0 to 10.5%. Meanwhile, the content of magnesium ferrite with high melting temperature, as well as the stability of magnetite(Fe3 O4) in the roasted pellets, increases with increasing the magnesium oxide(MgO) content from dolomite. The reasons for the decrease of RSI rely on the absence of crystal transformation from Fe2 O3 to Fe3 O4, the increased porosity of roasted pellet, and the suppression of phase transition of 2CaO·SiO2 resulted from the incorporation of magnesium into calcium silicate.
文摘Swelling property of acrylamide hydrogels,prepared from aqueous solutions of acrylamide monomer havingconcentrations in the range of 10-60 wt% by ray irradiation method using a Co-60 gamma radiation source at dosesranging 1-30.0 kGy,has been investigated under various swelling media.These swelling media were basically solvents(solutions),produced by dissolving methanol,ethanol,glucose,sucrose,sodium chloride and sodium persulfate individuallywith distilled water,and solutions prepared with pHs=3,7 and 10.The investigation was performed in order to observe theeffect of these solvents and pHs as well as the influence of monomer concentrations,radiation doses and times on swellingbehavior of hydrogels.Swelling values were found higher for hydrogels prepared with lower monomer concentrations(ca.20 wt%)and radiation doses(ca.5 kGy)and showed a leveling off tendency within 24 h.The glucose solvent and the buffersolution of pH=10 revealed significant increase of swelling of hydrogels as compared to other solutions.Results areexplained based on crosslinking density in hydrogel,polymer-solvent/polymer-polymer interactions in solutions,permeability of molecules in solutions and ionization capacity of hydrogel in pH.
基金Project supported by the Key Laboratory of Mountain Hazards and Earth Surface Processes, the Chinese Academy of Sciences
文摘This paper performs molecular dynamics simulations to investigate the role of the monovalent cations K, Na and the divalent cation Ca on the stability and swelling of montmorillonite. The recently developed CLAYFF force field is used to predict the basal spacing as a function of the water content in the interlayer. The simulations reproduced the swelling pattern of these montmorillonites, suggesting a mechanism of their hydration different (K+ 〈 Na+ 〈 Ca2+) from that of K+-, Na+-, and Ca2+-montmorillonites. In particular, these results indicate that the valence of the cations has the larger impact on the behaviour of clay water systems. It also finds that the differences in size and hydration energy of K+, Na+ and Ca2+ ions have strong implications for the structure of interlayer. This leads to the differences in the layer spacings of the simulated K+-, Na+-, and Ca2+-montmorillonites. Furthermore, these simulations show that the K cations interact strongly with the clay sheets for the dehydrated clay sheets, but for the hydrated clays the Ca cations interact clearly strongly with the clay sheets.
基金Supported by the National Natural Science Foundation of China(21776126)the National Basic Research Program of China(2015CB655301)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20150063)partially supported by the Open Fund of State Key Laboratory of Separation Membranes and Membrane Processes(M1-201702).
文摘Fouling resistance of ultrafiltration(UF) membranes is critical for their long-term usages in terms of stable performance, so convenient approaches to prepare fouling-resistant membranes are always anticipated. Herein, we demonstrate the facile fabrication of antifouling polysulfone-block-poly(ethylene glycol)(PSF-b-PEG, SFEG)composite membranes. SFEG layer was coated onto macroporous supports and cavitated by immerging them in acetone/n-propanol following the mechanism of selective swelling induced pore generation. Thus-produced SFEG membranes possessed high permeance and excellent mechanical strength. Meanwhile, the structures and separation performances of the SFEG layers can be continuously tuned through simply changing swelling durations. More importantly, the hydrophilic PEG chains were spontaneously enriched onto the pore walls through swelling treatment, endowing intrinsic antifouling property to the SFEG membranes. Bovine serum albumin(BSA)/humic acid(HA) fouling tests proved the prominent fouling resistance of SFEG membranes, and the fouling resistance is expected to be long-standing because of the firm connection between PEG chains and PSF matrix by covalent bonding.
文摘Wood heat treatment has increased signifi- cantly in recent years and is still growing as an industrial process to improve some wood properties. We studied the change of swellingand surface roughness of common alder (Alnus glutinosa (L.) Gaertn. ssp.glutinosa) and wych elm (Ulmus glabra Huds.) woods after heat treatment at two different temperatures and durations. The temperatures were 180 and 200 ℃ and the durations were 2 and 4 h. A stylus method was employed to evaluate the surface char- acteristics of the samples. Roughness measurements by the stylus method were made in the direction perpendicular to the fiber on the wood surface. Four main roughness parameters, mean arithmetic deviation of profile (Ra), mean peak-to-valley height (Rz), root mean square roughness (Rq), and maximum roughness (Ry) were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Swelling and surface roughness parameters (Ra, Rz, Ry, and Rq) differed significantly for two temper- atures and two durations of heat treatment. Swelling and surface roughness values decreased with increasing treat- ment temperature and treatment times.
基金supported by the National Natural Science Foundation of China (No:50675025 and 51075057)
文摘The volume expansion of SU-8 resist brings serious dimensional errors to electroformed structures.Two approaches have been proposed to reduce resist distortions during electroforming:electroforming at room temperature and adding auxiliary features for mask patterns.However,the former method induces higher internal stresses in the electroformed metal layers.And the latter method makes it difficult to predict the expansion behaviors of the resists.In the paper,the thermal expansion of the SU-8 mould is calculated by ANSYS firstly,and the lower thermal expansion value indicates that hygroscopic swelling plays a leading role in SU-8 mould distortions.An original technique is presented to reduce SU-8 hygroscopic swelling by ultrasonic treatment.The dimensional errors of the electroformed structure fabricated on the ultrasonic treatment mould are 50% lower than the one without ultrasonic treatment.Simulation of hygroscopic swelling is conducted by finite element analysis,and the results indicate that the hygroscopic strain ε of SU-8 after electroforming is declined from 6.8% to 3.1% because of ultrasonic.The measurements show that ultrasonic treatment increased the water contact angle of cured SU-8 from 70.8?to 74.9?.Based on these results,the mechanism of ultrasonic effect on hygroscopic swelling is proposed from the view of ultrasonic vibration decreasing the number of hydroxyl groups in SU-8.The research presents a novel method to improve the precisions of electroformed structures.It has no influence on the internal stresses of final structures and does not increase the complexities of mask layouts.