Evaluation of assessment of the metal processes governing the metals distribution in soil and dust samples is very significant and protects the health of human and ecological system. Recently, special attention has gi...Evaluation of assessment of the metal processes governing the metals distribution in soil and dust samples is very significant and protects the health of human and ecological system. Recently, special attention has given to the assessment of metals pollution impact on soil and dust within industrial areas. This study aims to assess the metal contamination levels in the topsoil and street dust around the cement factory in Qadissiya area, southern Jordan. The levels of seven metals (namely Fe, Zn, Cu, Pb, Cr, Cd, and Mn) were analyzed using Flame Atomic Absorption Spec-trophotometer (FAAS) to monitor, evaluate, and to compare topsoil and road dust pollution values of metals of the different types of urban area. The physicochemical parameters which believed to affect the mobility of metals in the soil of the study area were determined such as pH, EC, TOM, CaCO3 and CEC. The levels of metal in soil samples are greater on the surface but decrease in the lower part as a result of the basic nature of soil. The mean values of the metals in soil can be arranged in the following order: Zn > Pb > Mn > Fe > Cu > Cr > Cd. The relatively high concentration of metals in the soil sample was attributed to anthropogenic activities such as traffic emissions, cement factory and agricultural activities. Correlation coefficient analysis and the spatial distribution of indices and the results of statistical analysis indicate three groups of metals: Fe and Mn result by natural origin, Zn, Pb, Cu and Zn result by anthropogenic origin (mainly motor vehicle traffic and abrasion of tires) while Cd is mixed origin. The higher content level values of metals of anthropogenic source in soil samples indicate that it is a source of contamination of air in the studied area. .展开更多
Objective: The main objective of this study was to assess the degree of contamination of surface waters by heavy metals and pesticides. Method: To this end, data were collected in December 2022 from four specific samp...Objective: The main objective of this study was to assess the degree of contamination of surface waters by heavy metals and pesticides. Method: To this end, data were collected in December 2022 from four specific sampling stations: Okpara, Térou, Affon and Adjiro. Levels of heavy metals, including cadmium, chromium, copper, iron, mercury, nickel and lead, were measured and subjected to in-depth statistical analysis using graphical summation models. In addition, the concentrations of pesticide active ingredients present in the samples were interpreted and evaluated. The statistical data collected during this study were processed using R software, version 3.5.0. Results: The values obtained at the different stations Okpara, Térou, Affon and Adjiro are respectively Arsenic (2 × 10<sup>-4</sup> mg/L;2.2 × 10<sup>-1</sup> mg/L;1.2 × 10<sup>-4</sup> mg/L;2 × 10<sup>-4</sup> mg/L), Cadmium (4.4 × 10<sup>-5</sup> mg/L;1.1 × 10<sup>-2</sup> mg/L;10<sup>-4</sup> mg/L;4 × 10<sup>-4</sup> mg/L). Then Copper (7 × 10<sup>-4</sup> mg/L;3 × 10<sup>-3</sup> mg/L;7 × 10<sup>-4</sup> mg/L;1 × 10<sup>-4</sup> mg/L), Iron (1.51 mg/L;6.4 × 10<sup>-1</sup> mg/L;2.0012 mg/L;2.9 × 10<sup>-1</sup> mg/L), Lead (0 mg/L;0 mg/L;1.5 × 10<sup>-3</sup> mg/L;1.5 × 10<sup>-3</sup> mg/L). Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (Cadmium, Chromium, Copper, Iron, Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (cadmium, chromium, copper, iron, mercury, nickel and lead) were all below the guideline standards set by the WHO in 2006 for uncontaminated surface waters. This indicates that the surface waters of the Upper Ouémé were below acceptable contamination thresholds in terms of heavy metals. However, the presence of pesticide active ingredients such as cyfluthrin, endosulfan-alpha, endosulfan-beta, profenosfos, tihan, atrazine, gala super and glycel clearly indicates that these surface waters are subject to agricultural contamination.展开更多
Current globalization trends and important breakthroughs globally need a complete study of heavy metal contamination, its causes, its impacts on human and environmental health, and different remediation strategies. He...Current globalization trends and important breakthroughs globally need a complete study of heavy metal contamination, its causes, its impacts on human and environmental health, and different remediation strategies. Heavy metal pollution is mostly produced by urbanization and industry, which threatens ecosystems and human health. Herein, we discuss a sustainable environmental restoration strategy employing phytoremediation for heavy metal pollution, the carcinogenic, mutagenic, and cytotoxic effects of heavy metals such as cadmium, copper, mercury, selenium, zinc, arsenic, chromium, lead, nickel, and silver, which may be fatal. Phytoremediation, which was prioritized, uses plants to remove, accumulate, and depollute pollutants. This eco-friendly method may safely collect, accumulate, and detoxify toxins using plants, making it popular. This study covers phytostabilization, phytodegradation, rhizodegradation, phytoextraction, phytovolatilization, and rhizofiltration. A phytoremediation process’s efficiency in varied environmental circumstances depends on these components’ complex interplay. This paper also introduces developing phytoremediation approaches including microbe-assisted, chemical-assisted, and organic or bio-char use. These advancements attempt to overcome conventional phytoremediation’s limitations, such as limited suitable plant species, location problems, and sluggish remediation. Current research includes machine learning techniques and computer modeling, biostimulation, genetic engineering, bioaugmentation, and hybrid remediation. These front-line solutions show that phytoremediation research is developing towards transdisciplinary efficiency enhancement. We acknowledge phytoremediation’s promise but also its drawbacks, such as site-specific variables, biomass buildup, and sluggish remediation, as well as ongoing research to address them. In conclusion, heavy metal pollution threatens the ecology and public health and must be reduced. Phytoremediation treats heavy metal pollution in different ways. Over time, phytoremediation systems have developed unique ways that improve efficiency. Despite difficulties like site-specificity, sluggish remediation, and biomass buildup potential, phytoremediation is still a vital tool for environmental sustainability.展开更多
Crude oil spills have inflicted extensive disruption upon the Niger Delta ecosystem, resulting in crop loss and severe environmental damage. Such spills exacerbate heavy metal concentration within soil due to the pres...Crude oil spills have inflicted extensive disruption upon the Niger Delta ecosystem, resulting in crop loss and severe environmental damage. Such spills exacerbate heavy metal concentration within soil due to the presence of metallic ions. The Okpare-Olomu community has borne the brunt of crude oil pollution from illicit bunkering, sabotage, and equipment malfunction. This study targets an evaluation of ecological hazards linked to heavy metals (HMs) in crude oil impacted agriculturally soils within Okpare-Olomu in Ughelli South LGA of Delta State. In this study, 24 topsoil samples were obtained from areas affected by crude oil pollution;the heavy metal content was evaluated through atomic absorption spectrometry. The concentration ranges for HMs (mg/kg) in soil were: 24.1 - 23,174 (Cu);0.54 - 37.1 (Cd);9.05 - 54 (Cr);12 - 174 (Ni);18.5 - 8611 (Pb);and 148 - 9078 (Zn) at a soil depth of 0 - 15 cm. Notably, metal concentrations were recorded to be above permissible World Health Organization limits. Predominantly, Zn and Pb recorded higher heavy metal concentration when compared to other heavy metals analysed, notably at sampling points PT7 through PT24. Zinc and Pb contamination exhibited highly significant contamination factors, and contamination severity was evidenced across all sample points, signifying a grave risk level. Pollution load indices indicated pervasive extreme pollution levels. Geoaccumulation indices signaled moderate to strong pollution, mainly by Pb and Zn. Ecological risk assessments revealed variable levels of heavy metal contamination, from low to very high, with potential ecological risk reflecting markedly elevated levels. This study underscores the imperative for soil remediation to rectify ecological imbalances in agriculturally affected soil constituents.展开更多
Heavy metal contaminated water sources pose serious health risks for humans,animals,and plants.Exposure to and ingestion of heavy metals have been associated to liver,kidney,and brain function.Objective:The aim of thi...Heavy metal contaminated water sources pose serious health risks for humans,animals,and plants.Exposure to and ingestion of heavy metals have been associated to liver,kidney,and brain function.Objective:The aim of this research is to comparatively examine the metal removal efficacy of three solid bidentate chemicals and four plant materials.Study Design&Methods:Standard solutions of zinc(II)and lead(II)ions with concentrations of 1,000 ppm were respectively treated with OA(Oxalic Acid),dibasic bidentate ligands(sodium hydrogen phosphate and sodium carbonate).Then,the solutions were placed on a shaker for 15 h,centrifuged,and the supernatant was analyzed using ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry).Results:All the solid bidentate adsorbents were very effective in removing zinc and lead(>90%).However,more lead than zinc was removed across all adsorbents except for lemon where equal percent of zinc and lead(49%)were removed.OA and Na2HPO4 removed about equal amount of lead(>99%).The plant materials(SP(Spinach),bell pepper and GBP(Green Bell Pepper)),respectively and preferentially removed more lead(98.9%,98.3%,81.5%)than zinc(91.7%,46%,46%).Conclusion:Although plant materials have gained attraction for the remediation of heavy metal,however,some bidentate chemical ligands such as OA,sodium carbonate and sodium hydrogen phosphates are even more effective in removing these metals from contaminated water.Furthermore,heavier metals are preferentially removed than lighter metals.展开更多
Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining,...Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining, industrial activities, improper usage of fertilizers and pesticides, and indiscriminate open waste disposal bring about an increase in the presence of heavy metals in the environment. In the Keffi Metropolis, different elements lead to land contamination which debilitates soil quality, plant survival, human well-being, and the environment as a result of extensive dispersion or quantity of heavy metals in the soil and water. In recent years, biochar has emerged as a promising soil amendment for mitigating heavy metal pollution due to its unique physicochemical properties. This paper provides the effects of softwood pellet biochar on the retention of heavy metals in contaminated soils. A microcosm experiment was carried out to investigate the effects of biochar on the retention of heavy metals in contaminated soils. This research aimed to give an overview of the effects of softwood biochar at different temperatures (550˚C and 700˚C) on the retention of heavy metals and metalloids released from the soil during water inundation. The results show that the addition of organic matter (grass chippings) minimizes heavy metal mobilization. Also, biochar at high temperatures is more effective than those at low temperatures. The expected outcome of the research analysis includes providing insights into the role of biochar in retaining heavy metal contamination and further understanding the use of biochar as a sorbent for the management of contaminated soil.展开更多
Chifeng is a concentrated mining area for non-ferrous metal minerals,as well as a key prevention and control area for heavyduty enterprises.This situation necessitates an efective ecological and human health risk asse...Chifeng is a concentrated mining area for non-ferrous metal minerals,as well as a key prevention and control area for heavyduty enterprises.This situation necessitates an efective ecological and human health risk assessment of heavy metal(loid)s driven by the wide distribution of metal ore processing,mining,and smelting factories in Hexigten Banner and Bairin Left Banner.We conducted surveys to assess the levels of heavy metal(loid)s(Cr,As,Pb,Cd,and Hg)in the topsoil and groundwater of the areas.The results indicated that the concentrations of As,Cd,and Pb in partial soil samples exceeded the environmental quality standards of Grade II.Based on contamination assessments,such as geoaccumulation indices and pollution indices,we inferred that Cd,Pb,and As were primary pollutants in topsoil.Potential ecological risks when considered as part of the average risk indices(RI)are up to 1626.40 and 2818.76,respectively,in the two areas.Comparative analysis revealed that Cd posed a very high potential ecological risk,followed by As.Moreover,the evaluation showed that the three exposure pathways of carcinogenic and non-carcinogenic risk followed a descending order:inhalation>ingestion>dermal contact,except for Pb.Arsenic in topsoil posed a potential non-carcinogenic risk to human health,while there were no adverse efects of As in groundwater.In addition,the average total carcinogenic risk for As in the two areas,as well as the risk of Pb in the topsoil of Bairin Left Banner and all the fve heavy metal(loid)s in groundwater,exceeded human tolerance.Pb–Zn mines caused higher human health risks.In addition,the tandem contamination of heavy metal(loid)s in soil and groundwater was not obvious.This research study provides a basis for pollution remediation to control heavy industry-induced ecological and health risks of heavy metal(loid)s.展开更多
In 2019, an investigation by the U.S. House of Representatives revealed major infant food conglomerates had products with high levels of arsenic, lead, cadmium, and mercury, posing concerns for infants’ vulnerability...In 2019, an investigation by the U.S. House of Representatives revealed major infant food conglomerates had products with high levels of arsenic, lead, cadmium, and mercury, posing concerns for infants’ vulnerability to the neurotoxic effects of these metals. Trends of laboratory-detected heavy metals were analyzed in children aged zero to five from 1999-2020, providing insights on heavy metal contamination in infant food products. Utilizing National Health and Nutrition Examination Survey (NHANES) data, mean heavy metal levels in children were calculated, considering gender, race, and income-to-poverty ratio as proxies for assessing associations with increasing heavy metal rates in infant food. Findings indicated an overall decrease in mean concentrations over time, though remaining elevated. Black children exhibited higher lead levels than the overall average, while the Asian subgroup displayed higher levels of total blood mercury and cadmium levels. Lack of internal standards in regulatory bodies, particularly the FDA, exacerbates the issue, with no legally enforceable guidelines or strict maximum levels for heavy metals in infant foods. Urgent FDA interventions are needed, addressing contamination at the sources of raw materials, implementing transparent and extensive product testing, and comprehensive manufacturer labeling to inform consumers about elevated heavy metal levels in infant products.展开更多
The pollution of sediments by inorganic pollutants requires particularly important attention because of their toxicity, their persistence in the environment and their bioaccumulation by animal and plant life. The poll...The pollution of sediments by inorganic pollutants requires particularly important attention because of their toxicity, their persistence in the environment and their bioaccumulation by animal and plant life. The pollution of sediments by inorganic pollutants requires particularly important attention because of their toxicity, their persistence in the environment and their bioaccumulation by animal and plant living beings. This study focuses on the pollution of sediments of the Chari and Logon rivers in the city of N’Djamena by heavy metals. The objective of this study is to evaluate the degree of contamination, the geo-accumulation index and the degree of the Pollutant Loading Index of some heavy metals (Pb, Cr, Cu, Mn and Cd) and iron in the sediments of the sampled sites. The average concentrations of heavy metals and iron in the sediments are: Pb (10.00 ± 00 μg/Kg to 126 ± 16.52 μg/Kg);Cr VI (0.13 ± 00 mg/Kg to 0.21 ± 00 mg/Kg);Cd (trace);Cu (0.08 ± 0.02 mg/kg to 3.23 ± 0.64 mg/kg);Fe (0.25 ± 0.00 mg/kg to 5.79 ± 0.00 mg/kg);and Mn (0.2 ± 0.00 mg/Kg to 1.1 ± 0.00 mg/Kg);in order of highest to lowest abundance: Fe > Mn > Cd > Cu > Cr VI > Pb for the Logon;Fe > Cu > Mn > Cd > Cr VI > Pb for the Chari and Fe > Mn > Cu > Cd > Cr VI > Pb for the Confluent. The contamination factors for all heavy metals range from no contamination to low contamination for the sediments analyzed. The geo-accumulation indices indicate that the sampled sites are not polluted. The same is true for Er and RI which confirm an absence of ecological risks in the analyzed sediments.展开更多
In order to investigate the source,contamination,and risk of heavy metals such as Pb,Zn,Cu,Ni,Co,Fe,Mn,and Cr,twelve(12)stream sediments and ten(10)rock samples were collected from pegmatite mining sites at Olode and ...In order to investigate the source,contamination,and risk of heavy metals such as Pb,Zn,Cu,Ni,Co,Fe,Mn,and Cr,twelve(12)stream sediments and ten(10)rock samples were collected from pegmatite mining sites at Olode and its environs inside Ibadan,Southwestern Nigeria.The average values and order of abundance obtained followed the pattern:Mn(595.09)>Ba(80)>Cr(50.82)>V(45.09)>Zn(29.73)>Cu(13.82)>Co(13.82)>Sr(10.46)>Ni(9.73)>Pb(9.09)>Fe(1.59).These were greater than the background values,indicating that mining has a negative impact on the study area,as indicated by the high coefficient of variation and correlation values(>0.6)for Copper-Lead(0.929),Copper-Vanadium(0.970),Copper-Chromium(0.815),Lead-Vanadium(0.884),and others.On the basis of the enrichment factor(EF),the Olode sediments show extremely high enrichment for Mn and Ba in the research region.Cu and Ni are most likely to blame for the elevated contamination levels,according to CF values.The degree of contamination(CD),pollution load index(PLI),pollution index(PI),and modified pollution index(MPI)all revealed high levels of contamination in all stream sediment samples,whereas Igeo shows that the Olode stream sediments are“practically uncontaminated to extremely contaminated by Ni,Co,and Mn”.Ni and Cu are the major regulating factors that are most likely causing the possible Eri.As a result,these findings give important information for conducting appropriate ecological management research.展开更多
[Objective] Detecting the concentration of metals (lead, cadmium and arsenic) in the rice from one test field was to provide a snapshot of the current status of metal contamination in rice, coming up with a scientif...[Objective] Detecting the concentration of metals (lead, cadmium and arsenic) in the rice from one test field was to provide a snapshot of the current status of metal contamination in rice, coming up with a scientific basis for further research. [Method] The research divided 15 adjacent fields into five groups. Two samples were randomly selected from each field. Metal contamination was evaluated based on GB standards and the overall pollution score (OPS). [Result] The percentages of samples with above-standard levels of the three metals are 83.3%, 100% and 36.7%, respectively. The values of OPSs are ranged from five to seven, with Pb's pollution index constituting the most percentage between three metals in OPS. [Conclusion] A metal contamination in the grown rice of this test field is observed, in which Pb may be the most important factor, and Cd contents in all of the samples exceed the safety value.展开更多
The purpose of this work relates to study on the characteristics of ultra thin gate oxide (2 5nm thickness) and the effect of metal Al,Zr,and Ta contamination on GOI.The controlled metallic contamination experiments...The purpose of this work relates to study on the characteristics of ultra thin gate oxide (2 5nm thickness) and the effect of metal Al,Zr,and Ta contamination on GOI.The controlled metallic contamination experiments are carried out by depositing a few ppm contaminated metal and low pH solutions on the wafers.The maximum metal surface concentration is controlled at about 10 12 cm -2 level in order to simulate metal contamination during ultra clean processing.A ramped current stress for intrinsic charge to breakdown measurements with gate injection mode is used to examine the characteristics of these ultra thin gate oxides and the effect of metal contamination on GOI.It is the first time to investigate the influence of metal Zr and Ta contamination on 2 5nm ultra thin gate oxide.It is demonstrated that there is little effect of Al contamination on GOI,while Zr contamination is the most detrimental to GOI,and early breakdown has happened to wafers contaminated by Ta.展开更多
To study the status of soil quality in an antimony mine, soil samples were collected from different regions and the elements' contents of Sb, Cd, Cr, Cu, Zn, Pb, Hg, Ni and As were analyzed using single factor pollut...To study the status of soil quality in an antimony mine, soil samples were collected from different regions and the elements' contents of Sb, Cd, Cr, Cu, Zn, Pb, Hg, Ni and As were analyzed using single factor pollution index, Nemerow index and potential ecological risk index. The heavy metal contamination of soils were evaluated. The results showed that Nemerow index for each sampled point was less than 0.7, meaning a clean state. When potential ecological risk assessment was conducted, the sampled point was less than 150, belonging to light pollution.展开更多
The issues of acid mine drainage (AMD) and heavy metals contamination in the metal sulfide mine in the add district were explored, through studying the acidification and the heavy metals distribution and evolution o...The issues of acid mine drainage (AMD) and heavy metals contamination in the metal sulfide mine in the add district were explored, through studying the acidification and the heavy metals distribution and evolution of groundwater in the black swan (BS) nickel sulfide mine (Western Australia). The groundwater samples were collected from the drilling holes situated in the vicinity of tailings storage facility (TSF) and in the background of the mine (away from TSF), respectively, and the pH and electric conductivity (Ec) were measured in site and the metal contents were analysed by ICP-MS and ICP-AES, quarterly in one hydrological year. The results disclose that the TSF groundwater is remarkably acidified (.pHmean=5, pHmin=3), and the average contents of heavy metals (Co, Cu, Zn, Cd) and Al, Mn are of 1-2 orders of magnitude higher in TSF groundwater than in background groundwater. It may be due to the percolation of tailings waste water from miU process, which leads the tailings to oxidize and the deep groundwater to acidify and contaminate with heavy metals. Besides, the heavy metals concentration in groundwater may be controlled by pH mainly.展开更多
With the rapid development of mining,the soil heavy metal contamination is increasingly serious in Shaoguan,directly affecting the production of crops. This paper analyzes the farmland soil heavy metal contamination i...With the rapid development of mining,the soil heavy metal contamination is increasingly serious in Shaoguan,directly affecting the production of crops. This paper analyzes the farmland soil heavy metal contamination in the mining area of Shaoguan and the causes of heavy metal contamination in recent years,brings forward the bioremediation measures to control soil heavy metal contamination,and points out the development direction of bioremediation in farmland soil heavy metal contamination in the mining area.展开更多
Encroachment, disposal of untreated domestic and industrial wastewater and dumping of solid wastes have degraded the overall quality of the river Turag, which is located in Dhaka—the Capital City of Bangladesh. The p...Encroachment, disposal of untreated domestic and industrial wastewater and dumping of solid wastes have degraded the overall quality of the river Turag, which is located in Dhaka—the Capital City of Bangladesh. The present study investigated the extent of pollution of sediments of this river and analyzed the regional variability for the concentrations of Cr, Pb, Zn, Cu and Cd—all of concern because of their potential toxicity, using atomic absorption spectrophotometer. As per US EPA sediment quality guideline, metal concentrations ranged between Cd: 0.00 - 0.80, Cr: 32.00 - 75.50, Cu: 46.30 - 60.00, Pb: 28.30 - 36.40, and Zn: 94.60 - 190.10 mg/kg in the Turag river sediments. Cr, Cu, Zn belongs to moderately to highly polluted, Pb and Cd belongs to not polluted for Turag river. The heavy metals contamination in the sediments were also evaluated by applying Index of geo-accumulation (Igeo), contamination factor (Cf), pollution load index (PLI) etc. Toxicity characteristics leaching procedure (TCLP) test (US EPA 1311) for sediment samples have been performed also for metals (Pb, Cd, Cr, Cu and Zn) to determine the readily toxicity level of heavy metals. Sieve analysis of sediment performed in this study to determine the physical characteristic of sediment samples. The metal concentrations are well below the regulated level as per US EPA. This index can be complemented with the contamination index, which allows more site-specific and accurate information on contaminant levels. If the aim of work on contamination evaluation is to assess the overall contamination of a study area, the indices are highly appropriate.展开更多
Urban topsoil is the most frequent interface between human society and natural environment.The accumulation of heavy metals in the urban topsoil has a direct effect on residents'life and health.The geochemical bas...Urban topsoil is the most frequent interface between human society and natural environment.The accumulation of heavy metals in the urban topsoil has a direct effect on residents'life and health.The geochemical baseline of heavy metals is an objective description of the general level of heavy metals in the urban topsoil.Meanwhile,the determination of geochemical baseline is necessary for regional environmental management,especially in coal cities prone to heavy metal pollution.Heavy metal pollution has become an environmental problem in Fuxin City,China for a long time.To establish the geochemical baseline of heavy metals in the topsoil of Fuxin City and to evaluate the ecological risk of the topsoil,we collected 75 topsoil samples(0–20 cm)and analyzed the concentrations of Cu,Ni,Zn,Pb,Cr,Cd,Hg and As through X-ray fluorescence spectrometry,atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry.We determined the geochemical baseline of heavy metals in the topsoil of Fuxin City by using iteration removal,box-whisker plot,cumulative frequency curve and reference metal normalization;evaluated the contamination risk and ecological risk of the topsoil by using the baseline factor index,Nemerow index and Hakanson potential ecological risk index;and identified the source category of heavy metals in the topsoil by using a pedigree clustering heatmap.Results showed that the geochemical baseline values were 42.86,89.34,92.23,60.55,145.21,0.09,0.08 and 4.17 mg/kg for Cu,Ni,Zn,Pb,Cr,Cd,Hg and As,respectively.The results of Nemerow index and Hakanson potential ecological risk index indicated that the urban topsoil in the study area was slightly contaminated and suffering low potential ecological risk.The main contaminated areas dominated in the middle part and northeast part of the study area,especially in the western Haizhou Strip Mine.The result of baseline factor index indicated that Hg and Cd were the major pollution elements.Using a pedigree clustering heatmap,we divided the sources of these heavy metals into three types:type I for Ni and Cr,largely represented the enrichment of heavy metals from natural sources;type II for Cu,Pb,Zn,Cd and As,mainly represented the enrichment of heavy metals from anthropogenic sources;and type III for Hg,represented the form of both natural and anthropogenic inputs.展开更多
A dynamic imaging method for monitoring self-potential data was proposed.Based on the Darcy’s law and Archie’sformulas,a dynamic model was built as a state model to simulate the transportation of metallic ions in po...A dynamic imaging method for monitoring self-potential data was proposed.Based on the Darcy’s law and Archie’sformulas,a dynamic model was built as a state model to simulate the transportation of metallic ions in porous medium,and theNernst equation was used to calculate the redox potential of metallic ions for observation modeling.Then,the state model andobservation model form an extended Kalman filter cycle to perform dynamic imaging.The noise added synthetic data imaging testshows that the extended Kalman filter can effectively fuse the model evolution and observed self-potential data.The further sandboxmonitoring experiment also demonstrates that the self-potential can be used to monitor the activities of metallic ions and exactlyretrieve the dynamic process of metallic contamination.展开更多
Soil characterization and heavy metals in different layers (0 - 15 cm;15 - 30 cm and 30 - 45 cm depth) of automobile mechanic waste dumps were studied. The soils showed remarkably high levels of all the metals above b...Soil characterization and heavy metals in different layers (0 - 15 cm;15 - 30 cm and 30 - 45 cm depth) of automobile mechanic waste dumps were studied. The soils showed remarkably high levels of all the metals above background concentrations with most (Ni, Cu, Fe, Cr and Cd) decreasing with soil depth. The distribution pattern were in the following order Fe > Cu > Zn > Pb > Cr > Ni > Cd. Across all the sampling locations and profiles, Fe and Cd showed the highest (476.4 μg·g-1) and least (37.5 μg·g-1) mean concentrations respectively. Pollution load index (PLI) and index of geoaccumulation (Igeo) revealed overall high and moderate contamination respectively but the enrichment factors (EFs) for Pb Ni and Cd are severe. The inter-element relationship revealed the identical source of elements in the soils of the studied area. The accuracy of the results has been cheeked using the standard reference material;SRM (PACS-2). The mechanic waste dumps represent potential sources of heavy metal pollution to environment. The elevated levels of heavy metals in these soil profiles constitute a serious threat to both surface and groundwater.展开更多
The effect of different metal contamination levels of catalysts for Deep Catalytic Cracking(DCC) on the distribution and selectivity of DCC products was investigated in a FCC pilot unit. The pilot test results showed ...The effect of different metal contamination levels of catalysts for Deep Catalytic Cracking(DCC) on the distribution and selectivity of DCC products was investigated in a FCC pilot unit. The pilot test results showed that the effects of the metal contamination level of catalyst on the propylene yield,the coke yield,the LPG yield,the gasoline yield,the selectivity of low carbon olefins,and coke selectivity was significant,and that the influence of metal contamination level on the conversion and dry gas yield was minor.展开更多
文摘Evaluation of assessment of the metal processes governing the metals distribution in soil and dust samples is very significant and protects the health of human and ecological system. Recently, special attention has given to the assessment of metals pollution impact on soil and dust within industrial areas. This study aims to assess the metal contamination levels in the topsoil and street dust around the cement factory in Qadissiya area, southern Jordan. The levels of seven metals (namely Fe, Zn, Cu, Pb, Cr, Cd, and Mn) were analyzed using Flame Atomic Absorption Spec-trophotometer (FAAS) to monitor, evaluate, and to compare topsoil and road dust pollution values of metals of the different types of urban area. The physicochemical parameters which believed to affect the mobility of metals in the soil of the study area were determined such as pH, EC, TOM, CaCO3 and CEC. The levels of metal in soil samples are greater on the surface but decrease in the lower part as a result of the basic nature of soil. The mean values of the metals in soil can be arranged in the following order: Zn > Pb > Mn > Fe > Cu > Cr > Cd. The relatively high concentration of metals in the soil sample was attributed to anthropogenic activities such as traffic emissions, cement factory and agricultural activities. Correlation coefficient analysis and the spatial distribution of indices and the results of statistical analysis indicate three groups of metals: Fe and Mn result by natural origin, Zn, Pb, Cu and Zn result by anthropogenic origin (mainly motor vehicle traffic and abrasion of tires) while Cd is mixed origin. The higher content level values of metals of anthropogenic source in soil samples indicate that it is a source of contamination of air in the studied area. .
文摘Objective: The main objective of this study was to assess the degree of contamination of surface waters by heavy metals and pesticides. Method: To this end, data were collected in December 2022 from four specific sampling stations: Okpara, Térou, Affon and Adjiro. Levels of heavy metals, including cadmium, chromium, copper, iron, mercury, nickel and lead, were measured and subjected to in-depth statistical analysis using graphical summation models. In addition, the concentrations of pesticide active ingredients present in the samples were interpreted and evaluated. The statistical data collected during this study were processed using R software, version 3.5.0. Results: The values obtained at the different stations Okpara, Térou, Affon and Adjiro are respectively Arsenic (2 × 10<sup>-4</sup> mg/L;2.2 × 10<sup>-1</sup> mg/L;1.2 × 10<sup>-4</sup> mg/L;2 × 10<sup>-4</sup> mg/L), Cadmium (4.4 × 10<sup>-5</sup> mg/L;1.1 × 10<sup>-2</sup> mg/L;10<sup>-4</sup> mg/L;4 × 10<sup>-4</sup> mg/L). Then Copper (7 × 10<sup>-4</sup> mg/L;3 × 10<sup>-3</sup> mg/L;7 × 10<sup>-4</sup> mg/L;1 × 10<sup>-4</sup> mg/L), Iron (1.51 mg/L;6.4 × 10<sup>-1</sup> mg/L;2.0012 mg/L;2.9 × 10<sup>-1</sup> mg/L), Lead (0 mg/L;0 mg/L;1.5 × 10<sup>-3</sup> mg/L;1.5 × 10<sup>-3</sup> mg/L). Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (Cadmium, Chromium, Copper, Iron, Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (cadmium, chromium, copper, iron, mercury, nickel and lead) were all below the guideline standards set by the WHO in 2006 for uncontaminated surface waters. This indicates that the surface waters of the Upper Ouémé were below acceptable contamination thresholds in terms of heavy metals. However, the presence of pesticide active ingredients such as cyfluthrin, endosulfan-alpha, endosulfan-beta, profenosfos, tihan, atrazine, gala super and glycel clearly indicates that these surface waters are subject to agricultural contamination.
文摘Current globalization trends and important breakthroughs globally need a complete study of heavy metal contamination, its causes, its impacts on human and environmental health, and different remediation strategies. Heavy metal pollution is mostly produced by urbanization and industry, which threatens ecosystems and human health. Herein, we discuss a sustainable environmental restoration strategy employing phytoremediation for heavy metal pollution, the carcinogenic, mutagenic, and cytotoxic effects of heavy metals such as cadmium, copper, mercury, selenium, zinc, arsenic, chromium, lead, nickel, and silver, which may be fatal. Phytoremediation, which was prioritized, uses plants to remove, accumulate, and depollute pollutants. This eco-friendly method may safely collect, accumulate, and detoxify toxins using plants, making it popular. This study covers phytostabilization, phytodegradation, rhizodegradation, phytoextraction, phytovolatilization, and rhizofiltration. A phytoremediation process’s efficiency in varied environmental circumstances depends on these components’ complex interplay. This paper also introduces developing phytoremediation approaches including microbe-assisted, chemical-assisted, and organic or bio-char use. These advancements attempt to overcome conventional phytoremediation’s limitations, such as limited suitable plant species, location problems, and sluggish remediation. Current research includes machine learning techniques and computer modeling, biostimulation, genetic engineering, bioaugmentation, and hybrid remediation. These front-line solutions show that phytoremediation research is developing towards transdisciplinary efficiency enhancement. We acknowledge phytoremediation’s promise but also its drawbacks, such as site-specific variables, biomass buildup, and sluggish remediation, as well as ongoing research to address them. In conclusion, heavy metal pollution threatens the ecology and public health and must be reduced. Phytoremediation treats heavy metal pollution in different ways. Over time, phytoremediation systems have developed unique ways that improve efficiency. Despite difficulties like site-specificity, sluggish remediation, and biomass buildup potential, phytoremediation is still a vital tool for environmental sustainability.
文摘Crude oil spills have inflicted extensive disruption upon the Niger Delta ecosystem, resulting in crop loss and severe environmental damage. Such spills exacerbate heavy metal concentration within soil due to the presence of metallic ions. The Okpare-Olomu community has borne the brunt of crude oil pollution from illicit bunkering, sabotage, and equipment malfunction. This study targets an evaluation of ecological hazards linked to heavy metals (HMs) in crude oil impacted agriculturally soils within Okpare-Olomu in Ughelli South LGA of Delta State. In this study, 24 topsoil samples were obtained from areas affected by crude oil pollution;the heavy metal content was evaluated through atomic absorption spectrometry. The concentration ranges for HMs (mg/kg) in soil were: 24.1 - 23,174 (Cu);0.54 - 37.1 (Cd);9.05 - 54 (Cr);12 - 174 (Ni);18.5 - 8611 (Pb);and 148 - 9078 (Zn) at a soil depth of 0 - 15 cm. Notably, metal concentrations were recorded to be above permissible World Health Organization limits. Predominantly, Zn and Pb recorded higher heavy metal concentration when compared to other heavy metals analysed, notably at sampling points PT7 through PT24. Zinc and Pb contamination exhibited highly significant contamination factors, and contamination severity was evidenced across all sample points, signifying a grave risk level. Pollution load indices indicated pervasive extreme pollution levels. Geoaccumulation indices signaled moderate to strong pollution, mainly by Pb and Zn. Ecological risk assessments revealed variable levels of heavy metal contamination, from low to very high, with potential ecological risk reflecting markedly elevated levels. This study underscores the imperative for soil remediation to rectify ecological imbalances in agriculturally affected soil constituents.
文摘Heavy metal contaminated water sources pose serious health risks for humans,animals,and plants.Exposure to and ingestion of heavy metals have been associated to liver,kidney,and brain function.Objective:The aim of this research is to comparatively examine the metal removal efficacy of three solid bidentate chemicals and four plant materials.Study Design&Methods:Standard solutions of zinc(II)and lead(II)ions with concentrations of 1,000 ppm were respectively treated with OA(Oxalic Acid),dibasic bidentate ligands(sodium hydrogen phosphate and sodium carbonate).Then,the solutions were placed on a shaker for 15 h,centrifuged,and the supernatant was analyzed using ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry).Results:All the solid bidentate adsorbents were very effective in removing zinc and lead(>90%).However,more lead than zinc was removed across all adsorbents except for lemon where equal percent of zinc and lead(49%)were removed.OA and Na2HPO4 removed about equal amount of lead(>99%).The plant materials(SP(Spinach),bell pepper and GBP(Green Bell Pepper)),respectively and preferentially removed more lead(98.9%,98.3%,81.5%)than zinc(91.7%,46%,46%).Conclusion:Although plant materials have gained attraction for the remediation of heavy metal,however,some bidentate chemical ligands such as OA,sodium carbonate and sodium hydrogen phosphates are even more effective in removing these metals from contaminated water.Furthermore,heavier metals are preferentially removed than lighter metals.
文摘Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining, industrial activities, improper usage of fertilizers and pesticides, and indiscriminate open waste disposal bring about an increase in the presence of heavy metals in the environment. In the Keffi Metropolis, different elements lead to land contamination which debilitates soil quality, plant survival, human well-being, and the environment as a result of extensive dispersion or quantity of heavy metals in the soil and water. In recent years, biochar has emerged as a promising soil amendment for mitigating heavy metal pollution due to its unique physicochemical properties. This paper provides the effects of softwood pellet biochar on the retention of heavy metals in contaminated soils. A microcosm experiment was carried out to investigate the effects of biochar on the retention of heavy metals in contaminated soils. This research aimed to give an overview of the effects of softwood biochar at different temperatures (550˚C and 700˚C) on the retention of heavy metals and metalloids released from the soil during water inundation. The results show that the addition of organic matter (grass chippings) minimizes heavy metal mobilization. Also, biochar at high temperatures is more effective than those at low temperatures. The expected outcome of the research analysis includes providing insights into the role of biochar in retaining heavy metal contamination and further understanding the use of biochar as a sorbent for the management of contaminated soil.
基金the National Natural Science Foundation of China(No.42072284,No.42027801,No.41877186)the National Key R&D Program of China(2021YFC2902004)+1 种基金the Major Science and Technology Projects of Inner Mongolia Autonomous Region(2020ZD0020-4)the Fundamental Research Funds for the Central Universities(2022YQSH01,2020YJSSH01,2021YJSSH01)。
文摘Chifeng is a concentrated mining area for non-ferrous metal minerals,as well as a key prevention and control area for heavyduty enterprises.This situation necessitates an efective ecological and human health risk assessment of heavy metal(loid)s driven by the wide distribution of metal ore processing,mining,and smelting factories in Hexigten Banner and Bairin Left Banner.We conducted surveys to assess the levels of heavy metal(loid)s(Cr,As,Pb,Cd,and Hg)in the topsoil and groundwater of the areas.The results indicated that the concentrations of As,Cd,and Pb in partial soil samples exceeded the environmental quality standards of Grade II.Based on contamination assessments,such as geoaccumulation indices and pollution indices,we inferred that Cd,Pb,and As were primary pollutants in topsoil.Potential ecological risks when considered as part of the average risk indices(RI)are up to 1626.40 and 2818.76,respectively,in the two areas.Comparative analysis revealed that Cd posed a very high potential ecological risk,followed by As.Moreover,the evaluation showed that the three exposure pathways of carcinogenic and non-carcinogenic risk followed a descending order:inhalation>ingestion>dermal contact,except for Pb.Arsenic in topsoil posed a potential non-carcinogenic risk to human health,while there were no adverse efects of As in groundwater.In addition,the average total carcinogenic risk for As in the two areas,as well as the risk of Pb in the topsoil of Bairin Left Banner and all the fve heavy metal(loid)s in groundwater,exceeded human tolerance.Pb–Zn mines caused higher human health risks.In addition,the tandem contamination of heavy metal(loid)s in soil and groundwater was not obvious.This research study provides a basis for pollution remediation to control heavy industry-induced ecological and health risks of heavy metal(loid)s.
文摘In 2019, an investigation by the U.S. House of Representatives revealed major infant food conglomerates had products with high levels of arsenic, lead, cadmium, and mercury, posing concerns for infants’ vulnerability to the neurotoxic effects of these metals. Trends of laboratory-detected heavy metals were analyzed in children aged zero to five from 1999-2020, providing insights on heavy metal contamination in infant food products. Utilizing National Health and Nutrition Examination Survey (NHANES) data, mean heavy metal levels in children were calculated, considering gender, race, and income-to-poverty ratio as proxies for assessing associations with increasing heavy metal rates in infant food. Findings indicated an overall decrease in mean concentrations over time, though remaining elevated. Black children exhibited higher lead levels than the overall average, while the Asian subgroup displayed higher levels of total blood mercury and cadmium levels. Lack of internal standards in regulatory bodies, particularly the FDA, exacerbates the issue, with no legally enforceable guidelines or strict maximum levels for heavy metals in infant foods. Urgent FDA interventions are needed, addressing contamination at the sources of raw materials, implementing transparent and extensive product testing, and comprehensive manufacturer labeling to inform consumers about elevated heavy metal levels in infant products.
文摘The pollution of sediments by inorganic pollutants requires particularly important attention because of their toxicity, their persistence in the environment and their bioaccumulation by animal and plant life. The pollution of sediments by inorganic pollutants requires particularly important attention because of their toxicity, their persistence in the environment and their bioaccumulation by animal and plant living beings. This study focuses on the pollution of sediments of the Chari and Logon rivers in the city of N’Djamena by heavy metals. The objective of this study is to evaluate the degree of contamination, the geo-accumulation index and the degree of the Pollutant Loading Index of some heavy metals (Pb, Cr, Cu, Mn and Cd) and iron in the sediments of the sampled sites. The average concentrations of heavy metals and iron in the sediments are: Pb (10.00 ± 00 μg/Kg to 126 ± 16.52 μg/Kg);Cr VI (0.13 ± 00 mg/Kg to 0.21 ± 00 mg/Kg);Cd (trace);Cu (0.08 ± 0.02 mg/kg to 3.23 ± 0.64 mg/kg);Fe (0.25 ± 0.00 mg/kg to 5.79 ± 0.00 mg/kg);and Mn (0.2 ± 0.00 mg/Kg to 1.1 ± 0.00 mg/Kg);in order of highest to lowest abundance: Fe > Mn > Cd > Cu > Cr VI > Pb for the Logon;Fe > Cu > Mn > Cd > Cr VI > Pb for the Chari and Fe > Mn > Cu > Cd > Cr VI > Pb for the Confluent. The contamination factors for all heavy metals range from no contamination to low contamination for the sediments analyzed. The geo-accumulation indices indicate that the sampled sites are not polluted. The same is true for Er and RI which confirm an absence of ecological risks in the analyzed sediments.
文摘In order to investigate the source,contamination,and risk of heavy metals such as Pb,Zn,Cu,Ni,Co,Fe,Mn,and Cr,twelve(12)stream sediments and ten(10)rock samples were collected from pegmatite mining sites at Olode and its environs inside Ibadan,Southwestern Nigeria.The average values and order of abundance obtained followed the pattern:Mn(595.09)>Ba(80)>Cr(50.82)>V(45.09)>Zn(29.73)>Cu(13.82)>Co(13.82)>Sr(10.46)>Ni(9.73)>Pb(9.09)>Fe(1.59).These were greater than the background values,indicating that mining has a negative impact on the study area,as indicated by the high coefficient of variation and correlation values(>0.6)for Copper-Lead(0.929),Copper-Vanadium(0.970),Copper-Chromium(0.815),Lead-Vanadium(0.884),and others.On the basis of the enrichment factor(EF),the Olode sediments show extremely high enrichment for Mn and Ba in the research region.Cu and Ni are most likely to blame for the elevated contamination levels,according to CF values.The degree of contamination(CD),pollution load index(PLI),pollution index(PI),and modified pollution index(MPI)all revealed high levels of contamination in all stream sediment samples,whereas Igeo shows that the Olode stream sediments are“practically uncontaminated to extremely contaminated by Ni,Co,and Mn”.Ni and Cu are the major regulating factors that are most likely causing the possible Eri.As a result,these findings give important information for conducting appropriate ecological management research.
文摘[Objective] Detecting the concentration of metals (lead, cadmium and arsenic) in the rice from one test field was to provide a snapshot of the current status of metal contamination in rice, coming up with a scientific basis for further research. [Method] The research divided 15 adjacent fields into five groups. Two samples were randomly selected from each field. Metal contamination was evaluated based on GB standards and the overall pollution score (OPS). [Result] The percentages of samples with above-standard levels of the three metals are 83.3%, 100% and 36.7%, respectively. The values of OPSs are ranged from five to seven, with Pb's pollution index constituting the most percentage between three metals in OPS. [Conclusion] A metal contamination in the grown rice of this test field is observed, in which Pb may be the most important factor, and Cd contents in all of the samples exceed the safety value.
文摘The purpose of this work relates to study on the characteristics of ultra thin gate oxide (2 5nm thickness) and the effect of metal Al,Zr,and Ta contamination on GOI.The controlled metallic contamination experiments are carried out by depositing a few ppm contaminated metal and low pH solutions on the wafers.The maximum metal surface concentration is controlled at about 10 12 cm -2 level in order to simulate metal contamination during ultra clean processing.A ramped current stress for intrinsic charge to breakdown measurements with gate injection mode is used to examine the characteristics of these ultra thin gate oxides and the effect of metal contamination on GOI.It is the first time to investigate the influence of metal Zr and Ta contamination on 2 5nm ultra thin gate oxide.It is demonstrated that there is little effect of Al contamination on GOI,while Zr contamination is the most detrimental to GOI,and early breakdown has happened to wafers contaminated by Ta.
文摘To study the status of soil quality in an antimony mine, soil samples were collected from different regions and the elements' contents of Sb, Cd, Cr, Cu, Zn, Pb, Hg, Ni and As were analyzed using single factor pollution index, Nemerow index and potential ecological risk index. The heavy metal contamination of soils were evaluated. The results showed that Nemerow index for each sampled point was less than 0.7, meaning a clean state. When potential ecological risk assessment was conducted, the sampled point was less than 150, belonging to light pollution.
基金Projects(40972220,40873030) supported by the National Natural Science Foundation of ChinaProject(0991024) supported by the Special Project for Applied Basic Research of Guangxi,China
文摘The issues of acid mine drainage (AMD) and heavy metals contamination in the metal sulfide mine in the add district were explored, through studying the acidification and the heavy metals distribution and evolution of groundwater in the black swan (BS) nickel sulfide mine (Western Australia). The groundwater samples were collected from the drilling holes situated in the vicinity of tailings storage facility (TSF) and in the background of the mine (away from TSF), respectively, and the pH and electric conductivity (Ec) were measured in site and the metal contents were analysed by ICP-MS and ICP-AES, quarterly in one hydrological year. The results disclose that the TSF groundwater is remarkably acidified (.pHmean=5, pHmin=3), and the average contents of heavy metals (Co, Cu, Zn, Cd) and Al, Mn are of 1-2 orders of magnitude higher in TSF groundwater than in background groundwater. It may be due to the percolation of tailings waste water from miU process, which leads the tailings to oxidize and the deep groundwater to acidify and contaminate with heavy metals. Besides, the heavy metals concentration in groundwater may be controlled by pH mainly.
基金Supported by National Natural Science Foundation of China(U1033004-06)Guangxi Key Agricultural Science Planning Project(201528)
文摘With the rapid development of mining,the soil heavy metal contamination is increasingly serious in Shaoguan,directly affecting the production of crops. This paper analyzes the farmland soil heavy metal contamination in the mining area of Shaoguan and the causes of heavy metal contamination in recent years,brings forward the bioremediation measures to control soil heavy metal contamination,and points out the development direction of bioremediation in farmland soil heavy metal contamination in the mining area.
文摘Encroachment, disposal of untreated domestic and industrial wastewater and dumping of solid wastes have degraded the overall quality of the river Turag, which is located in Dhaka—the Capital City of Bangladesh. The present study investigated the extent of pollution of sediments of this river and analyzed the regional variability for the concentrations of Cr, Pb, Zn, Cu and Cd—all of concern because of their potential toxicity, using atomic absorption spectrophotometer. As per US EPA sediment quality guideline, metal concentrations ranged between Cd: 0.00 - 0.80, Cr: 32.00 - 75.50, Cu: 46.30 - 60.00, Pb: 28.30 - 36.40, and Zn: 94.60 - 190.10 mg/kg in the Turag river sediments. Cr, Cu, Zn belongs to moderately to highly polluted, Pb and Cd belongs to not polluted for Turag river. The heavy metals contamination in the sediments were also evaluated by applying Index of geo-accumulation (Igeo), contamination factor (Cf), pollution load index (PLI) etc. Toxicity characteristics leaching procedure (TCLP) test (US EPA 1311) for sediment samples have been performed also for metals (Pb, Cd, Cr, Cu and Zn) to determine the readily toxicity level of heavy metals. Sieve analysis of sediment performed in this study to determine the physical characteristic of sediment samples. The metal concentrations are well below the regulated level as per US EPA. This index can be complemented with the contamination index, which allows more site-specific and accurate information on contaminant levels. If the aim of work on contamination evaluation is to assess the overall contamination of a study area, the indices are highly appropriate.
基金the National Natural Science Foundation of China(41271064)the Foundation of Liaoning Educational Committee,China(L201783640)the PhD Research Startup Foundation of Liaoning University,China(BS2018L014)。
文摘Urban topsoil is the most frequent interface between human society and natural environment.The accumulation of heavy metals in the urban topsoil has a direct effect on residents'life and health.The geochemical baseline of heavy metals is an objective description of the general level of heavy metals in the urban topsoil.Meanwhile,the determination of geochemical baseline is necessary for regional environmental management,especially in coal cities prone to heavy metal pollution.Heavy metal pollution has become an environmental problem in Fuxin City,China for a long time.To establish the geochemical baseline of heavy metals in the topsoil of Fuxin City and to evaluate the ecological risk of the topsoil,we collected 75 topsoil samples(0–20 cm)and analyzed the concentrations of Cu,Ni,Zn,Pb,Cr,Cd,Hg and As through X-ray fluorescence spectrometry,atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry.We determined the geochemical baseline of heavy metals in the topsoil of Fuxin City by using iteration removal,box-whisker plot,cumulative frequency curve and reference metal normalization;evaluated the contamination risk and ecological risk of the topsoil by using the baseline factor index,Nemerow index and Hakanson potential ecological risk index;and identified the source category of heavy metals in the topsoil by using a pedigree clustering heatmap.Results showed that the geochemical baseline values were 42.86,89.34,92.23,60.55,145.21,0.09,0.08 and 4.17 mg/kg for Cu,Ni,Zn,Pb,Cr,Cd,Hg and As,respectively.The results of Nemerow index and Hakanson potential ecological risk index indicated that the urban topsoil in the study area was slightly contaminated and suffering low potential ecological risk.The main contaminated areas dominated in the middle part and northeast part of the study area,especially in the western Haizhou Strip Mine.The result of baseline factor index indicated that Hg and Cd were the major pollution elements.Using a pedigree clustering heatmap,we divided the sources of these heavy metals into three types:type I for Ni and Cr,largely represented the enrichment of heavy metals from natural sources;type II for Cu,Pb,Zn,Cd and As,mainly represented the enrichment of heavy metals from anthropogenic sources;and type III for Hg,represented the form of both natural and anthropogenic inputs.
基金Project(41574123) supported by the National Natural Science Foundation of ChinaProject(2013FY110800) supported by the National Basic Research Scientific Program of China
文摘A dynamic imaging method for monitoring self-potential data was proposed.Based on the Darcy’s law and Archie’sformulas,a dynamic model was built as a state model to simulate the transportation of metallic ions in porous medium,and theNernst equation was used to calculate the redox potential of metallic ions for observation modeling.Then,the state model andobservation model form an extended Kalman filter cycle to perform dynamic imaging.The noise added synthetic data imaging testshows that the extended Kalman filter can effectively fuse the model evolution and observed self-potential data.The further sandboxmonitoring experiment also demonstrates that the self-potential can be used to monitor the activities of metallic ions and exactlyretrieve the dynamic process of metallic contamination.
文摘Soil characterization and heavy metals in different layers (0 - 15 cm;15 - 30 cm and 30 - 45 cm depth) of automobile mechanic waste dumps were studied. The soils showed remarkably high levels of all the metals above background concentrations with most (Ni, Cu, Fe, Cr and Cd) decreasing with soil depth. The distribution pattern were in the following order Fe > Cu > Zn > Pb > Cr > Ni > Cd. Across all the sampling locations and profiles, Fe and Cd showed the highest (476.4 μg·g-1) and least (37.5 μg·g-1) mean concentrations respectively. Pollution load index (PLI) and index of geoaccumulation (Igeo) revealed overall high and moderate contamination respectively but the enrichment factors (EFs) for Pb Ni and Cd are severe. The inter-element relationship revealed the identical source of elements in the soils of the studied area. The accuracy of the results has been cheeked using the standard reference material;SRM (PACS-2). The mechanic waste dumps represent potential sources of heavy metal pollution to environment. The elevated levels of heavy metals in these soil profiles constitute a serious threat to both surface and groundwater.
文摘The effect of different metal contamination levels of catalysts for Deep Catalytic Cracking(DCC) on the distribution and selectivity of DCC products was investigated in a FCC pilot unit. The pilot test results showed that the effects of the metal contamination level of catalyst on the propylene yield,the coke yield,the LPG yield,the gasoline yield,the selectivity of low carbon olefins,and coke selectivity was significant,and that the influence of metal contamination level on the conversion and dry gas yield was minor.