In this study, a three dimensional(3D) numerical model of six-degrees-of-freedom(6DOF) is applied to simulate the water entries of twin spheres side-by-side at different lateral distances and time intervals.The turbul...In this study, a three dimensional(3D) numerical model of six-degrees-of-freedom(6DOF) is applied to simulate the water entries of twin spheres side-by-side at different lateral distances and time intervals.The turbulence structure is described using the shear-stress transport k-ω(SST k-ω) model, and the volume of fluid(VOF) method is used to track the complex air-liquid interface. The motion of spheres during water entry is simulated using an independent overset grid. The numerical model is verified by comparing the cavity evolution results from simulations and experiments. Numerical results reveal that the time interval between the twin water entries evidently affects cavity expansion and contraction behaviors in the radial direction. However, this influence is significantly weakened by increasing the lateral distance between the two spheres. In synchronous water entries, pressure is reduced on the midline of two cavities during surface closure, which is directly related to the cavity volume. The evolution of vortexes inside the two cavities is analyzed using a velocity vector field, which is affected by the lateral distance and time interval of water entries.展开更多
This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive appro...This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive approach that integrates field monitoring,theoretical analysis,and numerical simulation.Theoretical analysis has illuminated the influence of the length of the lateral cantilever beam of the main roof(LCBM)above the roadway on the stability of the gob-side entry behind the panel.Numerical simulations have further revealed that the longer LCBM results in heightened vertical stress within the coal pillar,developed cracks around the roadway,and more pronounced damage to the roadway.Moreover,numerical simulations also demonstrate the potential of roof pre-splitting technology in optimizing the fracture position of the hard roof.This technology significantly reduces the length of the LCBM,thereby alleviating stress concentration in the coal pillars and integrated coal rib while minimizing the destruction of the gob-side entry.Therefore,this manuscript first proposes the use of roof pre-splitting technology to control roadway deformation,and automatically retain the entry within a hard roof LTCC panel.Field implementation has demonstrated that the proposed automatically retained entry by roof pre-splitting technology effectively reduces gob-side entry deformation and achieves automatically retained entry.展开更多
The spike protein(S)of SARS-CoV-2 is responsible for viral attachment and entry,thus a major factor for host suscep-tibility,tissue tropism,virulence and pathogenicity.The S is divided with S1 and S2 region,and the S1...The spike protein(S)of SARS-CoV-2 is responsible for viral attachment and entry,thus a major factor for host suscep-tibility,tissue tropism,virulence and pathogenicity.The S is divided with S1 and S2 region,and the S1 contains the receptor-binding domain(RBD),while the S2 contains the hydrophobic fusion domain for the entry into the host cell.Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various c leavage sites.In this article,we review host proteases including furin,trypsin,transmembrane protease serine 2(TMPRSS2)and cathepsins in the activation of SARS-CoV-2 S.Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin.The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2,and the binding triggers further conformational changes and exposure of the S2'site to proteases such as type Il transmembrane serine proteases(TTPRs)including TMPRSS2.In the presence of TMPRSS2 on the target cells,SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane.In the absence of TMPRSS2,SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry.Additional host proteases involved in the cleavage of the S were discussed.This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2,and discussed the dual roles of such inhibitors in virus replication.展开更多
Objectives To identify the 5'untranslated region of Zika virus(ZIKV 5'UTR)RNA-binding proteins and to investigate the impact of the binding protein on the activity of internal ribosomal entry site(IRES)located...Objectives To identify the 5'untranslated region of Zika virus(ZIKV 5'UTR)RNA-binding proteins and to investigate the impact of the binding protein on the activity of internal ribosomal entry site(IRES)located in ZIKV 5'UTR and virus production.Methods Interacting proteins in U251 cells were captured using tRSA-tagged ZIKV 5'UTR RNA and tRSA-ZIKV 5'UTR RNA-binding proteins were visualized by SDS-PAGE silver staining,Subsequently,liquid chromatographytandem mass spectrometry(LC-MS/MS),bioinformatics analysis,and Western blot were used to identify the candidate proteins binding to ZIKV 5'UTR.Dicistronic expression assay and plaque forming assay were performed to analyze the effect of the binding protein on ZIKV IRES activity and ZIKV production,respecitvely.Results tRSA RNA pull-down assay,LC-MS/MS,and Western blot analysis showed that polypyrimidine tractbinding protein(PTB)bound to the ZIKV 5'UTR.Furthermore,dual luciferase reporter assay revealed that overexpression of PTB significantly enhanced the IRES activity of ZIKV(t=10.220,P<0.001),while PTB knockdown had the opposite effect(t=4.897,P<0.01).Additionally,virus plaque forming assay demonstrated that up-regulation of PTB expression significantly enhanced viral titer(t=6.400,P<0.01),whereas reducing PTB expression level weakened virus infectivity(t=5.055,P<0.01).Conclusion PTB positively interacts with the ZIKV 5'UTR and enhances IRES activity and virus production.展开更多
This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensi...This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.展开更多
The CALPHAD thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material process.The FactSage thermodynamic database can be used to calculate complex phase d...The CALPHAD thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material process.The FactSage thermodynamic database can be used to calculate complex phase diagrams and equilibrium phases involving refractories in industrial process.In this study,the FactSage thermodynamic database relevant to ZrO_(2)-based refractories was reviewed and the application of the database to understanding the corrosion of continuous casting nozzle refractories in steelmaking was presented.展开更多
This paper presents a novel experiment to observe the whole water entry process of a free-falling sphere into a regular wave.A time-accurate synchronizing system modulates the moment elaborately to ensure the sphere i...This paper presents a novel experiment to observe the whole water entry process of a free-falling sphere into a regular wave.A time-accurate synchronizing system modulates the moment elaborately to ensure the sphere impacting onto the water surface at the desirable wave phase.Four high-speed cameras focus locally to measure the high-precision size of the cavity evolution.Meanwhile,the aggregated field view of the camera array covers both the splash above the free surface and the entire cavity in the wave.The detailed methodologies are described and verified for the hardware set-up and the image post-processing.The theoretical maximum deviation is 1.7%on the space scale.The integral morphology of the cavity is captured precisely in the coordinate system during the sphere penetrates through the water at four representative wave phases and the still water.The result shows that the horizontal velocity of the fluid particle in the wave impels the cavity and changes the shape distinctly.Notably,the wave motion causes the cavity to pinch offearlier at the wave trough phase and later at the wave crest phase than in the still water.The wave motion influences the falling process of the sphere slightly in the present parameters.展开更多
The formation of axonal spheroid is a common feature following spinal cord injury.To further understand the source of Ca^(2+)that mediates axonal spheroid formation,we used our previously characterized ex vivo mouse s...The formation of axonal spheroid is a common feature following spinal cord injury.To further understand the source of Ca^(2+)that mediates axonal spheroid formation,we used our previously characterized ex vivo mouse spinal cord model that allows precise perturbation of extracellular Ca^(2+).We performed twophoton excitation imaging of spinal cords isolated from Thy1YFP+transgenic mice and applied the lipophilic dye,Nile red,to record dynamic changes in dorsal column axons and their myelin sheaths respectively.We selectively released Ca^(2+)from internal stores using the Ca^(2+)ionophore ionomycin in the presence or absence of external Ca^(2+).We reported that ionomycin dose-dependently induces pathological changes in myelin and pronounced axonal spheroid formation in the presence of normal 2 m M Ca^(2+)artificial cerebrospinal fluid.In contrast,removal of external Ca^(2+)significantly decreased ionomycin-induced myelin and axonal spheroid formation at 2 hours but not at 1 hour after treatment.Using mice that express a neuron-specific Ca^(2+)indicator in spinal cord axons,we confirmed that ionomycin induced significant increases in intra-axonal Ca^(2+),but not in the absence of external Ca^(2+).Periaxonal swelling and the resultant disruption in the axo-myelinic interface often precedes and is negatively correlated with axonal spheroid formation.Pretreatment with YM58483(500 n M),a well-established blocker of store-operated Ca^(2+)entry,significantly decreased myelin injury and axonal spheroid formation.Collectively,these data reveal that ionomycin-induced depletion of internal Ca^(2+)stores and subsequent external Ca^(2+)entry through store-operated Ca^(2+)entry contributes to pathological changes in myelin and axonal spheroid formation,providing new targets to protect central myelinated fibers.展开更多
We propose an eye-shaped keyboard for high-speed text entry in virtual reality (VR), having the shape of dual eyes with characters arranged along the curved eyelids, which ensures low density and short spacing of the ...We propose an eye-shaped keyboard for high-speed text entry in virtual reality (VR), having the shape of dual eyes with characters arranged along the curved eyelids, which ensures low density and short spacing of the keys. The eye-shaped keyboard references the QWERTY key sequence, allowing the users to benefit from their experience using the QWERTY keyboard. The user interacts with an eye-shaped keyboard using rays controlled with both the hands. A character can be entered in one step by moving the rays from the inner eye regions to regions of the characters. A high-speed auto-complete system was designed for the eye-shaped keyboard. We conducted a pilot study to determine the optimal parameters, and a user study to compare our eye-shaped keyboard with the QWERTY and circular keyboards. For beginners, the eye-shaped keyboard performed significantly more efficiently and accurately with less task load and hand movement than the circular keyboard. Compared with the QWERTY keyboard, the eye-shaped keyboard is more accurate and significantly reduces hand translation while maintaining similar efficiency. Finally, to evaluate the potential of eye-shaped keyboards, we conducted another user study. In this study, the participants were asked to type continuously for three days using the proposed eye-shaped keyboard, with two sessions per day. In each session, participants were asked to type for 20min, and then their typing performance was tested. The eye-shaped keyboard was proven to be efficient and promising, with an average speed of 19.89 words per minute (WPM) and mean uncorrected error rate of 1.939%. The maximum speed reached 24.97 WPM after six sessions and continued to increase.展开更多
为分析空心弹高速入水的机理及其特性,基于雷诺时均Navier-Stokes方程、VOF(volume of fluid)多相流模型、Realizable k-ε湍流模型,引入Schnerr-Sauer空化模型和重叠网格技术对空心弹高速入水进行数值模拟研究,获得了通孔孔径和头部形...为分析空心弹高速入水的机理及其特性,基于雷诺时均Navier-Stokes方程、VOF(volume of fluid)多相流模型、Realizable k-ε湍流模型,引入Schnerr-Sauer空化模型和重叠网格技术对空心弹高速入水进行数值模拟研究,获得了通孔孔径和头部形状对空心弹的空化特性、空泡形态和入水运动特性的影响规律。研究显示数值计算的空泡形态和入水速度、位移曲线与实验结果吻合较好,验证了数值模拟方法的可行性。结果表明:当通孔孔径不同时,通孔孔径越大,空化现象越明显,通孔射流越长,但对空泡半径的影响不大;通孔孔径越小,空泡闭合时间越早,与水面碰撞产生的阻力系数峰值越高,空心弹入水稳定后其阻力系数也越大;无量纲直径在0.575~0.600之间时,空心弹的运动最为稳定。当头部锥角不同时,头部锥角越大,空泡直径越大,空化现象出现得越晚,但空化生成的速度更快;随着头部锥角的增大,阻力系数变大,空心弹的速度衰减变快,相同时间运动的距离较短;头部锥角越大,俯仰角的变化越小,空心弹的运动越稳定。展开更多
空心弹是一种具有通孔结构的新型射弹,与相同口径的实心射弹相比,阻力更小,在同等装药量的条件下具有初速高的优点,其入水时呈现复杂的入水流体动力学和弹道特性.文章基于雷诺时均Navier-Stokes方程、VOF(volume of fluid)多相流模型、S...空心弹是一种具有通孔结构的新型射弹,与相同口径的实心射弹相比,阻力更小,在同等装药量的条件下具有初速高的优点,其入水时呈现复杂的入水流体动力学和弹道特性.文章基于雷诺时均Navier-Stokes方程、VOF(volume of fluid)多相流模型、SST(shear stress transfer)k-ω湍流模型、Schnerr-Sauer空化模型、六自由度模型和重叠网格技术对空心弹高速入水进行了数值模拟,研究了入水速度和角度对空心弹入水空泡、空化、载荷和弹道稳定性的影响.将数值计算结果与实验结果进行对照,空泡形态和质心轨迹曲线与实验结果吻合较好,验证了数值模拟方法的可行性.结果表明:空心弹入水速度对空泡的大小和空泡内空化的程度影响较大,随着入水速度越高,空泡也越大,空化越明显,弹体的速度衰减越快,弹道越不稳定,弹体失稳越早;随着入水速度越低,空心弹的阻力和升力系数越小,弹体运动越稳定.入水角度对空泡的大小及弹体的偏转程度有较大影响,入水角度越大,弹体偏转时刻的空泡越大,空泡内的空化越明显,弹体头部的高压区域越小,阻力、升力和力矩系数越小,相同时间内弹体的偏转角越小,弹体姿态越稳定.入水角度越小,弹体的偏转角增加的越快,弹体运动越不稳定.展开更多
基金China Academy of Launch Vehicle Technology(Grant No.CALT-2022-03)Science and Technology on Underwater Information and Control Laboratory(Grant No.2021-JCJQ-LB-030-05).
文摘In this study, a three dimensional(3D) numerical model of six-degrees-of-freedom(6DOF) is applied to simulate the water entries of twin spheres side-by-side at different lateral distances and time intervals.The turbulence structure is described using the shear-stress transport k-ω(SST k-ω) model, and the volume of fluid(VOF) method is used to track the complex air-liquid interface. The motion of spheres during water entry is simulated using an independent overset grid. The numerical model is verified by comparing the cavity evolution results from simulations and experiments. Numerical results reveal that the time interval between the twin water entries evidently affects cavity expansion and contraction behaviors in the radial direction. However, this influence is significantly weakened by increasing the lateral distance between the two spheres. In synchronous water entries, pressure is reduced on the midline of two cavities during surface closure, which is directly related to the cavity volume. The evolution of vortexes inside the two cavities is analyzed using a velocity vector field, which is affected by the lateral distance and time interval of water entries.
基金Project(52104139)supported by the National Natural Science Foundation of China Youth Science FoundationProject(SKLGDUEK2132)supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology/China University of Mining and Technology-BeijingProjects([2020]2Y030,[2020]2Y019,[2020j3007,[2020]3008,and[2022j0il]supported by the Guizhou Province Science and Technology Planning,China Project(2022B01051)supported by the Key Research and Development Special Tasks of Xinjiang,China。
文摘This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive approach that integrates field monitoring,theoretical analysis,and numerical simulation.Theoretical analysis has illuminated the influence of the length of the lateral cantilever beam of the main roof(LCBM)above the roadway on the stability of the gob-side entry behind the panel.Numerical simulations have further revealed that the longer LCBM results in heightened vertical stress within the coal pillar,developed cracks around the roadway,and more pronounced damage to the roadway.Moreover,numerical simulations also demonstrate the potential of roof pre-splitting technology in optimizing the fracture position of the hard roof.This technology significantly reduces the length of the LCBM,thereby alleviating stress concentration in the coal pillars and integrated coal rib while minimizing the destruction of the gob-side entry.Therefore,this manuscript first proposes the use of roof pre-splitting technology to control roadway deformation,and automatically retain the entry within a hard roof LTCC panel.Field implementation has demonstrated that the proposed automatically retained entry by roof pre-splitting technology effectively reduces gob-side entry deformation and achieves automatically retained entry.
基金National Institutes of Health(NIH)(grants R01 A/130092 and Al161085).
文摘The spike protein(S)of SARS-CoV-2 is responsible for viral attachment and entry,thus a major factor for host suscep-tibility,tissue tropism,virulence and pathogenicity.The S is divided with S1 and S2 region,and the S1 contains the receptor-binding domain(RBD),while the S2 contains the hydrophobic fusion domain for the entry into the host cell.Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various c leavage sites.In this article,we review host proteases including furin,trypsin,transmembrane protease serine 2(TMPRSS2)and cathepsins in the activation of SARS-CoV-2 S.Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin.The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2,and the binding triggers further conformational changes and exposure of the S2'site to proteases such as type Il transmembrane serine proteases(TTPRs)including TMPRSS2.In the presence of TMPRSS2 on the target cells,SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane.In the absence of TMPRSS2,SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry.Additional host proteases involved in the cleavage of the S were discussed.This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2,and discussed the dual roles of such inhibitors in virus replication.
文摘Objectives To identify the 5'untranslated region of Zika virus(ZIKV 5'UTR)RNA-binding proteins and to investigate the impact of the binding protein on the activity of internal ribosomal entry site(IRES)located in ZIKV 5'UTR and virus production.Methods Interacting proteins in U251 cells were captured using tRSA-tagged ZIKV 5'UTR RNA and tRSA-ZIKV 5'UTR RNA-binding proteins were visualized by SDS-PAGE silver staining,Subsequently,liquid chromatographytandem mass spectrometry(LC-MS/MS),bioinformatics analysis,and Western blot were used to identify the candidate proteins binding to ZIKV 5'UTR.Dicistronic expression assay and plaque forming assay were performed to analyze the effect of the binding protein on ZIKV IRES activity and ZIKV production,respecitvely.Results tRSA RNA pull-down assay,LC-MS/MS,and Western blot analysis showed that polypyrimidine tractbinding protein(PTB)bound to the ZIKV 5'UTR.Furthermore,dual luciferase reporter assay revealed that overexpression of PTB significantly enhanced the IRES activity of ZIKV(t=10.220,P<0.001),while PTB knockdown had the opposite effect(t=4.897,P<0.01).Additionally,virus plaque forming assay demonstrated that up-regulation of PTB expression significantly enhanced viral titer(t=6.400,P<0.01),whereas reducing PTB expression level weakened virus infectivity(t=5.055,P<0.01).Conclusion PTB positively interacts with the ZIKV 5'UTR and enhances IRES activity and virus production.
基金Project(WPUKFJJ2019-19)supported by the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining,ChinaProject(51974317)supported by the National Natural Science Foundation of China。
文摘This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.
基金Tata Steel Netherlands,Posco,Hyundai Steel,Nucor Steel,RioTinto,Nippon Steel Corp.,JFE Steel,Voestalpine,RHi-Magnesita,Doosan Enerbility,Seah Besteel,Umicore,Vesuvius and Schott AG are gratefully acknowledged.
文摘The CALPHAD thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material process.The FactSage thermodynamic database can be used to calculate complex phase diagrams and equilibrium phases involving refractories in industrial process.In this study,the FactSage thermodynamic database relevant to ZrO_(2)-based refractories was reviewed and the application of the database to understanding the corrosion of continuous casting nozzle refractories in steelmaking was presented.
基金sponsored by the National Natural Sci-ence Foundation of China(Grant Nos.12102262,U22136010 and 11632012).
文摘This paper presents a novel experiment to observe the whole water entry process of a free-falling sphere into a regular wave.A time-accurate synchronizing system modulates the moment elaborately to ensure the sphere impacting onto the water surface at the desirable wave phase.Four high-speed cameras focus locally to measure the high-precision size of the cavity evolution.Meanwhile,the aggregated field view of the camera array covers both the splash above the free surface and the entire cavity in the wave.The detailed methodologies are described and verified for the hardware set-up and the image post-processing.The theoretical maximum deviation is 1.7%on the space scale.The integral morphology of the cavity is captured precisely in the coordinate system during the sphere penetrates through the water at four representative wave phases and the still water.The result shows that the horizontal velocity of the fluid particle in the wave impels the cavity and changes the shape distinctly.Notably,the wave motion causes the cavity to pinch offearlier at the wave trough phase and later at the wave crest phase than in the still water.The wave motion influences the falling process of the sphere slightly in the present parameters.
文摘The formation of axonal spheroid is a common feature following spinal cord injury.To further understand the source of Ca^(2+)that mediates axonal spheroid formation,we used our previously characterized ex vivo mouse spinal cord model that allows precise perturbation of extracellular Ca^(2+).We performed twophoton excitation imaging of spinal cords isolated from Thy1YFP+transgenic mice and applied the lipophilic dye,Nile red,to record dynamic changes in dorsal column axons and their myelin sheaths respectively.We selectively released Ca^(2+)from internal stores using the Ca^(2+)ionophore ionomycin in the presence or absence of external Ca^(2+).We reported that ionomycin dose-dependently induces pathological changes in myelin and pronounced axonal spheroid formation in the presence of normal 2 m M Ca^(2+)artificial cerebrospinal fluid.In contrast,removal of external Ca^(2+)significantly decreased ionomycin-induced myelin and axonal spheroid formation at 2 hours but not at 1 hour after treatment.Using mice that express a neuron-specific Ca^(2+)indicator in spinal cord axons,we confirmed that ionomycin induced significant increases in intra-axonal Ca^(2+),but not in the absence of external Ca^(2+).Periaxonal swelling and the resultant disruption in the axo-myelinic interface often precedes and is negatively correlated with axonal spheroid formation.Pretreatment with YM58483(500 n M),a well-established blocker of store-operated Ca^(2+)entry,significantly decreased myelin injury and axonal spheroid formation.Collectively,these data reveal that ionomycin-induced depletion of internal Ca^(2+)stores and subsequent external Ca^(2+)entry through store-operated Ca^(2+)entry contributes to pathological changes in myelin and axonal spheroid formation,providing new targets to protect central myelinated fibers.
文摘We propose an eye-shaped keyboard for high-speed text entry in virtual reality (VR), having the shape of dual eyes with characters arranged along the curved eyelids, which ensures low density and short spacing of the keys. The eye-shaped keyboard references the QWERTY key sequence, allowing the users to benefit from their experience using the QWERTY keyboard. The user interacts with an eye-shaped keyboard using rays controlled with both the hands. A character can be entered in one step by moving the rays from the inner eye regions to regions of the characters. A high-speed auto-complete system was designed for the eye-shaped keyboard. We conducted a pilot study to determine the optimal parameters, and a user study to compare our eye-shaped keyboard with the QWERTY and circular keyboards. For beginners, the eye-shaped keyboard performed significantly more efficiently and accurately with less task load and hand movement than the circular keyboard. Compared with the QWERTY keyboard, the eye-shaped keyboard is more accurate and significantly reduces hand translation while maintaining similar efficiency. Finally, to evaluate the potential of eye-shaped keyboards, we conducted another user study. In this study, the participants were asked to type continuously for three days using the proposed eye-shaped keyboard, with two sessions per day. In each session, participants were asked to type for 20min, and then their typing performance was tested. The eye-shaped keyboard was proven to be efficient and promising, with an average speed of 19.89 words per minute (WPM) and mean uncorrected error rate of 1.939%. The maximum speed reached 24.97 WPM after six sessions and continued to increase.
文摘为分析空心弹高速入水的机理及其特性,基于雷诺时均Navier-Stokes方程、VOF(volume of fluid)多相流模型、Realizable k-ε湍流模型,引入Schnerr-Sauer空化模型和重叠网格技术对空心弹高速入水进行数值模拟研究,获得了通孔孔径和头部形状对空心弹的空化特性、空泡形态和入水运动特性的影响规律。研究显示数值计算的空泡形态和入水速度、位移曲线与实验结果吻合较好,验证了数值模拟方法的可行性。结果表明:当通孔孔径不同时,通孔孔径越大,空化现象越明显,通孔射流越长,但对空泡半径的影响不大;通孔孔径越小,空泡闭合时间越早,与水面碰撞产生的阻力系数峰值越高,空心弹入水稳定后其阻力系数也越大;无量纲直径在0.575~0.600之间时,空心弹的运动最为稳定。当头部锥角不同时,头部锥角越大,空泡直径越大,空化现象出现得越晚,但空化生成的速度更快;随着头部锥角的增大,阻力系数变大,空心弹的速度衰减变快,相同时间运动的距离较短;头部锥角越大,俯仰角的变化越小,空心弹的运动越稳定。
文摘空心弹是一种具有通孔结构的新型射弹,与相同口径的实心射弹相比,阻力更小,在同等装药量的条件下具有初速高的优点,其入水时呈现复杂的入水流体动力学和弹道特性.文章基于雷诺时均Navier-Stokes方程、VOF(volume of fluid)多相流模型、SST(shear stress transfer)k-ω湍流模型、Schnerr-Sauer空化模型、六自由度模型和重叠网格技术对空心弹高速入水进行了数值模拟,研究了入水速度和角度对空心弹入水空泡、空化、载荷和弹道稳定性的影响.将数值计算结果与实验结果进行对照,空泡形态和质心轨迹曲线与实验结果吻合较好,验证了数值模拟方法的可行性.结果表明:空心弹入水速度对空泡的大小和空泡内空化的程度影响较大,随着入水速度越高,空泡也越大,空化越明显,弹体的速度衰减越快,弹道越不稳定,弹体失稳越早;随着入水速度越低,空心弹的阻力和升力系数越小,弹体运动越稳定.入水角度对空泡的大小及弹体的偏转程度有较大影响,入水角度越大,弹体偏转时刻的空泡越大,空泡内的空化越明显,弹体头部的高压区域越小,阻力、升力和力矩系数越小,相同时间内弹体的偏转角越小,弹体姿态越稳定.入水角度越小,弹体的偏转角增加的越快,弹体运动越不稳定.