In Mexico, the medicinal plants have been for used since ancient times and still continue to use by rural populations to treat conditions such as infectious diseases (skin, gastrointestinal or respiratory), metabolics...In Mexico, the medicinal plants have been for used since ancient times and still continue to use by rural populations to treat conditions such as infectious diseases (skin, gastrointestinal or respiratory), metabolics, inflammatory problems, among others. This work includes a proposal that initiates the study and development of new biomaterials or vehicles with therapeutic application. The nanomolecular interaction of the organic extract of a plant (EOV) Distictis buccinatoria (dc) with different materials inert supports of inorganic type (bentonite, gel) determining their and combined anti-inflammatory activity is studied individually [1] [2]. The importance of the characterization of biomaterials by scanning electron microscopy (SEM) is ability to analyze the structure on the surface of materials (organic, inorganic and biological) in the micro and nanometrics levels in order to correlate it with the sample surface properties such as roughness, interfacial phenomena, etc. With this technique we can also perform the chemical analysis at different levels (micro and nano) for information on the nature and composition of the materials [3] [4]. The biomaterial shows that higher anti-inflammatory activity is to be generated through the combination of EOV-gel, the nanostructure interaction SEM shows integrated particles agglome-rated form and porous due to the presence of EOV and some flat areas indicated the gel preponderance situation generated by the low interaction between materials of organic type and polar type (gel).展开更多
Curcumin, the medically active component from Curcuma Tonga (Turmeric), is widely used to treat inflammatory diseases. Protein interaction network (PIN) analysis was used to predict its mechanisms of molecular action....Curcumin, the medically active component from Curcuma Tonga (Turmeric), is widely used to treat inflammatory diseases. Protein interaction network (PIN) analysis was used to predict its mechanisms of molecular action. Targets of curcumin were obtained based on ChEMBL and STITCH databases. Protein protein interactions (PPIs) were extracted from the String database. The PIN of curcumin was constructed by Cytoscape and the function modules identified by gene ontology (GO) enrichment analysis based on molecular complex detection (MCODE). A PIN of curcumin with 482 nodes and 1688 interactions was constructed, which has scale-free, small world and modular properties. Based on analysis of these function modules, the mechanism of curcumin is proposed. Two modules were found to be intimately associated with inflammation. With function modules analysis, the anti-inflammatory effects of curcumin were related to SMAD, ERG and mediation by the TLR family. TLR9 may be a potential target of curcumin to treat inflammation. (C) 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.展开更多
Chronic inflammatory responses induced by macrophages play a pivotal role in the progression of atherosclerosis. In the present study, a multifunctional nanocarrier based on poly(ethylene glycol)-block-poly(L-aspar...Chronic inflammatory responses induced by macrophages play a pivotal role in the progression of atherosclerosis. In the present study, a multifunctional nanocarrier based on poly(ethylene glycol)-block-poly(L-aspartic acid) grafted with diethylenetriamine, lysine and cholic acid (PEG-PAsp(DETA)-Lys-CA2) polymer was synthesized for co-delivery of andrographolide and siRNA targeting Notchl gene to alleviate the inflammatory response in macrophages. The nanocarrier exerted low cytotoxicity as well as high performance in drug/siRNA co-delivery. In vitro studies demonstrated the co-delivery of andrographolide and Notchl siRNA not only significantly inhibited lipopolysaccharide (LPS)-activated interleukin-6 (IL-6) and monocytes chemotactic protein 1 (MCP-1) expression as well as blocked nuclear factor-rd3 (NF-rd3) signal activation, but also interfered the Notchl gene expression and increased anti-inflammatory cytokines such as interleukin-10 (IL-10) and arginase-1 expression obviously in macrophages. These results suggested that the combination therapy based on Notchl siRNA and andrographolide co-delivered nanocarrier, i.e. suppressing the expression of proinflammatory cytokines while simultaneously increasing anti-inflammatory factors expression, be a feasible strategy for atherosclerosis treatment.展开更多
文摘In Mexico, the medicinal plants have been for used since ancient times and still continue to use by rural populations to treat conditions such as infectious diseases (skin, gastrointestinal or respiratory), metabolics, inflammatory problems, among others. This work includes a proposal that initiates the study and development of new biomaterials or vehicles with therapeutic application. The nanomolecular interaction of the organic extract of a plant (EOV) Distictis buccinatoria (dc) with different materials inert supports of inorganic type (bentonite, gel) determining their and combined anti-inflammatory activity is studied individually [1] [2]. The importance of the characterization of biomaterials by scanning electron microscopy (SEM) is ability to analyze the structure on the surface of materials (organic, inorganic and biological) in the micro and nanometrics levels in order to correlate it with the sample surface properties such as roughness, interfacial phenomena, etc. With this technique we can also perform the chemical analysis at different levels (micro and nano) for information on the nature and composition of the materials [3] [4]. The biomaterial shows that higher anti-inflammatory activity is to be generated through the combination of EOV-gel, the nanostructure interaction SEM shows integrated particles agglome-rated form and porous due to the presence of EOV and some flat areas indicated the gel preponderance situation generated by the low interaction between materials of organic type and polar type (gel).
基金supported by grants from the National Natural Science Foundation of China(Grant No.81403103)Chinese Medicine Resources(Sichuan Province)Youth Science and Technology Innovation Team(Grant No.2015TD0028)+1 种基金Sichuan Province Science and Technology Support Plan(Grant No.2014SZ0156)Sichuan Province Education Department Project(Grant No.2013SZB0781)
文摘Curcumin, the medically active component from Curcuma Tonga (Turmeric), is widely used to treat inflammatory diseases. Protein interaction network (PIN) analysis was used to predict its mechanisms of molecular action. Targets of curcumin were obtained based on ChEMBL and STITCH databases. Protein protein interactions (PPIs) were extracted from the String database. The PIN of curcumin was constructed by Cytoscape and the function modules identified by gene ontology (GO) enrichment analysis based on molecular complex detection (MCODE). A PIN of curcumin with 482 nodes and 1688 interactions was constructed, which has scale-free, small world and modular properties. Based on analysis of these function modules, the mechanism of curcumin is proposed. Two modules were found to be intimately associated with inflammation. With function modules analysis, the anti-inflammatory effects of curcumin were related to SMAD, ERG and mediation by the TLR family. TLR9 may be a potential target of curcumin to treat inflammation. (C) 2015 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
基金financially supported by the National Natural Science Foundation of China (No. U1401242)National Basic Research Program of China (No. 2015CB755500)+1 种基金the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2013S086)the Fundamental Research Funds for the Central Universities (Nos. 17lgjc01 and 17lgpy08)
文摘Chronic inflammatory responses induced by macrophages play a pivotal role in the progression of atherosclerosis. In the present study, a multifunctional nanocarrier based on poly(ethylene glycol)-block-poly(L-aspartic acid) grafted with diethylenetriamine, lysine and cholic acid (PEG-PAsp(DETA)-Lys-CA2) polymer was synthesized for co-delivery of andrographolide and siRNA targeting Notchl gene to alleviate the inflammatory response in macrophages. The nanocarrier exerted low cytotoxicity as well as high performance in drug/siRNA co-delivery. In vitro studies demonstrated the co-delivery of andrographolide and Notchl siRNA not only significantly inhibited lipopolysaccharide (LPS)-activated interleukin-6 (IL-6) and monocytes chemotactic protein 1 (MCP-1) expression as well as blocked nuclear factor-rd3 (NF-rd3) signal activation, but also interfered the Notchl gene expression and increased anti-inflammatory cytokines such as interleukin-10 (IL-10) and arginase-1 expression obviously in macrophages. These results suggested that the combination therapy based on Notchl siRNA and andrographolide co-delivered nanocarrier, i.e. suppressing the expression of proinflammatory cytokines while simultaneously increasing anti-inflammatory factors expression, be a feasible strategy for atherosclerosis treatment.