期刊文献+
共找到4,105篇文章
< 1 2 206 >
每页显示 20 50 100
Betalains protect various body organs through antioxidant and anti-inflammatory pathways
1
作者 Nilesh Prakash Nirmal Seema Medhe +4 位作者 Merina Dahal Pankaj Koirala Siriwan Nirmal Fahad Al-Asmari Baojun Xu 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1109-1117,共9页
Betalains are natural coloring pigments with betalamic acid as the core structure of all subclasses.Besides their coloring properties,betalains exhibit various biological activities,including antioxidant and anti-infl... Betalains are natural coloring pigments with betalamic acid as the core structure of all subclasses.Besides their coloring properties,betalains exhibit various biological activities,including antioxidant and anti-inflammatory properties,which are highly imperative.Further in-vivo studies reported that betalains protect various body organs,leading to health enhancement.Body organs,including the heart,liver,kidney,lung,etc.,are important for a healthy life.However,these organs can be affected or damaged by various stress factors,toxicants,and harmful substances.Recent studies have claimed that betalains could protect all vital organs of the body through antioxidant and anti-inflammatory mechanisms.This review article described the in-vivo antioxidant and anti-inflammatory activities of betalains in various cell-line or animal models.A comprehensive discussion has been provided on the mechanism of action of betalains in protecting various body organs,including cardio-protective effect,hepato-protective ability,renal protection capacity,repro-protective ability,neuro-protective effect,lung protection,and gut protection ability.Finally,future research directions and conclusions have been outlined. 展开更多
关键词 BETALAINS ANTIOXIDANT anti-inflammatory BIOACTIVITIES Ogans-protection
下载PDF
Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway 被引量:42
2
作者 Xiaojie Liu Zhigang Mei +2 位作者 Jingping Qian Yongbao Zeng Mingzhi Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第34期3203-3215,共13页
Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats.... Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats. Recent findings regarding stroke pathophysiology have recognized that anti-inflammation is an important target for the treatment of ischemic stroke. The cholinergic anti-inflammatory pathway is a highly robust neural-immune mechanism for inflammation control. This study was to investigate whether activating the cholinergic anti-inflammatory pathway can be involved in the mechanism of inhibiting the inflammatory response during puerarin-induced cerebral ischemia/reperfusion in rats. Results showed that puerarin pretreatment (intravenous injection) re- duced the ischemic infarct volume, improved neurological deficit after cerebral ischemia/reperfusion and decreased the levels of interleukin-1β, interleukin-6 and tumor necrosis factor-a in brain tissue. Pretreatment with puerarin (intravenous injection) attenuated the inflammatory response in rats, which was accompanied by janus-activated kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) activation and nuclear factor kappa B (NF-KB) inhibition. These observa- tions were inhibited by the alpha7 nicotinic acetylcholine receptor (a7nAchR) antagonist a-bungarotoxin (a-BGT). In addition, puerarin pretreatment increased the expression of a7nAchR mRNA in ischemic cerebral tissue. These data demonstrate that puerarin pretreatment strongly protects the brain against cerebral ischemia/reperfusion injury and inhibits the inflammatory re- sponse. Our results also indicated that the anti-inflammatory effect of puerarin may partly be medi- ated through the activation of the cholinergic anti-inflammatory pathway. 展开更多
关键词 neural regeneration cerebral ischemia/reperfusion inflammation cholinergic anti-inflammatory pathway alpha7 nicotinicacetylcholine receptors nuclear factor kappa B janus-activated kinase 2 signal transducers and activators of transcription 3 grants-supported paper NEUROREGENERATION
下载PDF
Exploitation of the nicotinic anti-inflammatory pathway for the treatment of epithelial inflammatory diseases 被引量:8
3
作者 David A Scott Michael Martin 《World Journal of Gastroenterology》 SCIE CAS CSCD 2006年第46期7451-7459,共9页
Discoveries in the first few years of the 21st century have led to an understanding of important interactions between the nervous system and the inflammatory response at the molecular level, most notably the acetylcho... Discoveries in the first few years of the 21st century have led to an understanding of important interactions between the nervous system and the inflammatory response at the molecular level, most notably the acetylcholine (ACh)- triggered,α7-nicotinic acetylcholine receptor (α7nAChR)- dependent nicotinic antinflammatory pathway. Studies using the α7nAChR agonist, nicotine, for the treatment of mucosal inflammation have been undertaken but the efficacy of nicotine as a treatment for inflammatory bowel diseases remains debatable. Further understanding of the nicotinic anti-inflammatory pathway and other endogenous anti-inflammatory mechanisms is required in order to develop refined and specific therapeutic strategies for the treatment of a number of inflammatory diseases and conditions, including periodontitis, psoriasis, sarcoidosis, and ulcerative colitis. 展开更多
关键词 α7-nicotinic acetylcholine receptor Inflammation MUCOSA NICOTINE Nicotinic anti-inflammatory pathway Tobacco smoking
下载PDF
Berberine Relieves Insulin Resistance via the Cholinergic Anti-inflammatory Pathway in HepG2 Cells 被引量:6
4
作者 李芬 赵云斌 +3 位作者 王定坤 邹欣 方珂 王开富 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2016年第1期64-69,共6页
Berberine(BBR) is an isoquinoline alkaloid extracted from Rhizoma coptidis and has been used for treating type 2 diabetes mellitus(T2DM) in China. The development of T2 DM is often associated with insulin resistan... Berberine(BBR) is an isoquinoline alkaloid extracted from Rhizoma coptidis and has been used for treating type 2 diabetes mellitus(T2DM) in China. The development of T2 DM is often associated with insulin resistance and impaired glucose uptake in peripheral tissues. In this study, we examined whether BBR attenuated glucose uptake dysfunction through the cholinergic anti-inflammatory pathway in Hep G2 cells. Cellular glucose uptake, quantified by the 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-2-deoxy-D-glucose(2-NBDG), was inhibited by 21% after Hep G2 cells were incubated with insulin(10-6 mol/L) for 36 h. Meanwhile, the expression of alpha7 nicotinic acetylcholine receptor(α7n ACh R) protein was reduced without the change of acetylcholinesterase(ACh E) activity. The level of interleukin-6(IL-6) in the culture supernatant, the ratio of phosphorylated I-kappa-B kinase-β(IKKβ) Ser181/IKKβ and the expression of nuclear factor-kappa B(NF-κB) p65 protein were also increased. However, the treatment with BBR enhanced the glucose uptake, increased the expression of α7n ACh R protein and inhibited ACh E activity. These changes were also accompanied with the decrease of the ratio of p IKKβ Ser181/IKKβ, NF-κB p65 expression and IL-6 level. Taken together, these results suggest that BBR could enhance glucose uptake, and relieve insulin resistance and inflammation in Hep G2 cells. The mechanism may be related to the cholinergic anti-inflammatory pathway and the inhibition of ACh E activity. 展开更多
关键词 berberine glucose uptake cholinergic anti-inflammatory pathway inflammation alpha7 nicotinic acetylcholine receptor
下载PDF
The Protective Effect of Electroacupuncturing Zusanli Points on Hemorrhagic Shock Rats through Cholinergic Anti-inflammatory Pathway
5
作者 Zhao-Hui DU Jian-Guo LI Yan-Lin WANG Zhou-Quan PENG, Xiao-Feng YE(Department of ICU, Zhongnan Hospital, Wuhan University,Wuhan 430071,China) 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2005年第S1期151-152,共2页
关键词 EA The Protective Effect of Electroacupuncturing Zusanli Points on Hemorrhagic Shock Rats through Cholinergic anti-inflammatory pathway
下载PDF
Comparative study of anti-inflammatory effects of different processed products through the COX-2/PGE2 signaling pathway: based on network pharmacology and molecular docking
6
作者 Ping Chen Yun-Yun Quan +2 位作者 An-Qi Zeng Ying Dai Jin Zeng 《Pharmacology Discovery》 2024年第2期32-45,共14页
Background:Radix Aconiti Lateralis Preparata(Fu-zi)is a traditional Chinese medicinal herb,which has been widely used in the clinic and has potent anti-inflammatory activities.we aimed to explore the mechanisms of ext... Background:Radix Aconiti Lateralis Preparata(Fu-zi)is a traditional Chinese medicinal herb,which has been widely used in the clinic and has potent anti-inflammatory activities.we aimed to explore the mechanisms of extract containing alkaloids from different Fu-zi Processed Products(FPP)in treating inflammation,especially rheumatoid arthritis(RA).Methods:Firstly,using network pharmacology technology,the ingredients,and targets of Fu-zi were obtained by searching and screening,the targets involving RA were acquired,the intersection targets were constructed a"component-target-pathway"network.A comprehensive investigation was conducted on the anti-rheumatoid arthritis mechanisms of 5 FPPs in lipopolysaccharide(LPS)induced RAW264.7 cells,which serve as a model for RA.The production of NO and inflammatory cytokines were measured by ELISA kit.Quantitative Real-time PCR(qRT-PCR)was utilized to measure the mRNA levels.COX-2/PGE2 signaling pathway-associated proteins were determined by western blot.Results:According to a network pharmacological study,16 chemical components and 43 common targets were found in Fu-zi and 6 key targets including PTGS2 were closely related to the mechanism of Fu-zi in treating RA.The in vitro study revealed that the levels of NO,TNF-α,and IL-1βwere substantially decreased by the 5 FPPs.The 5 FPPs significantly suppressed the expression of proteins COX-2,iNOS,and NF-κB,with particularly notable effects observed for PFZ and XFZ.Conclusion:Altogether,these results demonstrated that the 5 PPS containing alkaloids have a good anti-RA-related inflammatory effect,and the mechanism may be related to COX-2/PGE2 signaling pathway,particularly,Fu-zi prepared utilizing a traditional Chinese technique. 展开更多
关键词 Radix Aconiti Lateralis Preparata(Fu-zi) rheumatoid arthritis anti-inflammatory network pharmacology COX-2/PGE2 signaling pathway
下载PDF
Exploring the interaction between the gut microbiota and cyclic adenosine monophosphate-protein kinase A signaling pathway:a potential therapeutic approach for neurodegenerative diseases
7
作者 Fengcheng Deng Dan Yang +6 位作者 Lingxi Qing Yifei Chen Jilian Zou Meiling Jia Qian Wang Runda Jiang Lihua Huang 《Neural Regeneration Research》 SCIE CAS 2025年第11期3095-3112,共18页
The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh... The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases. 展开更多
关键词 cyclic adenosine monophosphate emotional disorders gut microbiota neurodegenerative diseases neurological diseases protein kinase A reciprocal regulation signaling pathway STRATEGY THERAPIES
下载PDF
Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction
8
作者 Said Hashemolhosseini Lea Gessler 《Neural Regeneration Research》 SCIE CAS 2025年第9期2464-2479,共16页
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways... Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review. 展开更多
关键词 canonical Wnt"Wingless-related integration site"pathway beta-catenin(CTNNB1) Hippo pathway MYOGENESIS MYOTUBE neuromuscular junction satellite cell skeletal muscle fiber transcriptional co-activator with PDZ-binding motif(TAZ) T-cell-specific transcription factor/lymphoid enhancer-binding factor(TCF/LEF) TEA domain family member(TEAD) transducin-like enhancer of split(TLE) yes-associated protein 1(YAP1)
下载PDF
Inhibition of the cGAS–STING pathway:contributing to the treatment of cerebral ischemia-reperfusion injury
9
作者 Hang Yang Yulei Xia +4 位作者 Yue Ma Mingtong Gao Shuai Hou Shanshan Xu Yanqiang Wang 《Neural Regeneration Research》 SCIE CAS 2025年第7期1900-1918,共19页
The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically revie... The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed.Here,we outline the components of the cGAS–STING pathway and then analyze its role in autophagy,ferroptosis,cellular pyroptosis,disequilibrium of calcium homeostasis,inflammatory responses,disruption of the blood–brain barrier,microglia transformation,and complement system activation following cerebral ischemia-reperfusion injury.We further analyze the value of cGAS–STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms.Inhibition of the cGAS–STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury. 展开更多
关键词 calcium homeostasis cellular autophagy cerebral ischemia-reperfusion injury cGAS–STING pathway ferroptosis gut–brain–microbiota axis inflammatory light chain 3 microglial cells Syntaxin-17 protein
下载PDF
Netrin-1 signaling pathway mechanisms in neurodegenerative diseases
10
作者 Kedong Zhu Hualong Wang +2 位作者 Keqiang Ye Guiqin Chen Zhaohui Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第4期960-972,共13页
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal sur... Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders. 展开更多
关键词 Alzheimer’s disease axon guidance colorectal cancer Netrin-1 receptors Netrin-1 signaling pathways NETRIN-1 neurodegenerative diseases neuron survival Parkinson’s disease UNC5C
下载PDF
Review on physiological and ecological characteristics and agronomic regulatory pathways of intercropping to delay root and canopy senescence of crops
11
作者 Wen Yin Qiang Chai +8 位作者 Zhilong Fan Falong Hu Lianhao Zhao Hong Fan Wei He Cai Zhao Aizhong Yu Yali Sun Feng Wang 《Journal of Integrative Agriculture》 2025年第1期1-22,共22页
Intercropping has been widely used in arid and semi-arid regions because of its high yield,stable productivity,and efficient utilization of resources.However,in recent years,the high yield of traditional intercropping... Intercropping has been widely used in arid and semi-arid regions because of its high yield,stable productivity,and efficient utilization of resources.However,in recent years,the high yield of traditional intercropping is mainly attributed to the large amount of purchased resources such as water and fertilizer,plastic film,and mechanical power.These lead to a decline in cultivated land quality and exacerbate intercrops'premature root and canopy senescence.So,the application of traditional intercropping faces major challenges in crop production.This paper analyzes the manifestations,occurrence mechanisms,and agronomic regulatory pathways of crop senescence.The physiological and ecological characteristics of intercropping to delay root and canopy senescence of crops are reviewed in this paper.The main agronomic regulatory pathways of intercropping to delay root and canopy senescence of crops are based on above-and blow-ground interactions,including collocation of crop varieties,spatial arrangement,water and fertilizer management,and tillage and mulch practices.Future research fields of intercropping to delay root and canopy senescence should focus on the aspects of selecting and breeding special varieties,application of molecular biology techniques,and developing or applying models to predict and evaluate the root and canopy senescence process of intercrops.Comprehensive analysis and evaluation of different research results could provide a basis for enhancing intercropping delay root and canopy senescence through adopting innovative technologies for regulating the physio-ecological characteristics of intercrops.This would support developing and adopting high-yield,efficient,and sustainable intercropping systems in arid and semi-arid areas with high population density,limited land,and abundant light and heat resources. 展开更多
关键词 INTERCROPPING root and canopy senescence photosynthetic physiology ecological adaptability regulatory pathway
下载PDF
C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 pathway as a therapeutic target and regulatory mechanism for spinal cord injury
12
作者 Xiangzi Wang Xiaofei Niu +4 位作者 Yingkai Wang Yang Liu Cheng Yang Xuyi Chen Zhongquan Qi 《Neural Regeneration Research》 SCIE CAS 2025年第8期2231-2244,共14页
Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand... Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury. 展开更多
关键词 apoptosis C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 pathway C-C motif chemokine receptor 2 antagonists chemokine ligand 2 chemokine receptor 2 inflammation macrophage microglia spinal cord injury therapeutic method
下载PDF
Dapagliflozin exerts anti-apoptotic effects by mitigating macrophage polarization via modulation of the phosphoinositide 3-kinase/protein kinase B signaling pathway
13
作者 Sheng-Xi Xiong Lin-Juan Huang +5 位作者 Han-Shuang Liu Xiao-Xiao Zhang Min Li Yu-Bing Cui Chen Shao Xiao-Lei Hu 《World Journal of Diabetes》 2025年第2期163-174,共12页
BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes criti... BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes critically modulates inflammation and contributes to the progression of diabetic nephropathy.Sodiumglucose cotransporter 2 inhibitors such as dapagliflozin,which are acclaimed for their efficacy in diabetes management,may influence macrophage polarization,thereby ameliorating diabetic nephropathy.This investigation delves into these mechanistic pathways,aiming to elucidate novel therapeutic strategies for diabetes.AIM To investigate the inhibitory effect of dapagliflozin on macrophage M1 polarization and apoptosis and to explore its mechanism of action.METHODS We established a murine model of type 2 diabetes mellitus and harvested peritoneal macrophages following treatment with dapagliflozin.Concurrently,the human monocyte cell line cells were used for in vitro studies.Macrophage viability was assessed in a cell counting kit 8 assay,whereas apoptosis was evaluated by Annexin V/propidium iodide staining.Protein expression was examined through western blotting,and the expression levels of macrophage M1 surface immunosorbent assay,and quantitative real-time polymerase chain reaction analyses.RESULTS Dapagliflozin attenuated M1 macrophage polarization and mitigated apoptosis in the abdominal macrophages of diabetic mice,evidenced by the downregulation of proapoptotic genes(Caspase 3),inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-α,and IL-1β],and M1 surface markers(inducible nitric oxide synthase,and cluster of differentiation 86),as well as the upregulation of the antiapoptotic gene BCL2.Moreover,dapagliflozin suppressed the expression of proteins associated with the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway(PI3K,AKT,phosphorylated protein kinase B).These observations were corroborated in vitro,where we found that the modulatory effects of dapagliflozin were abrogated by 740Y-P,an activator of the PI3K/AKT signaling pathway.CONCLUSION Dapagliflozin attenuates the polarization of macrophages toward the M1 phenotype,thereby mitigating inflammation and promoting macrophage apoptosis.These effects are likely mediated through the inhibition of the PI3K/AKT signaling pathway. 展开更多
关键词 DAPAGLIFLOZIN Macrophage polarization INFLAMMATION Macrophage apoptosis Phosphoinositide 3-kinase/protein kinase B signaling pathway
下载PDF
Reevaluating Calculus bovis:Modulating the liver cancer immune microenvironment via the Wnt/β-catenin pathway
14
作者 Shi-Yue Wang Kai-Juan Wang 《World Journal of Gastroenterology》 2025年第6期107-114,共8页
In this article,we comment on the work published by Huang et al,which explores the mechanisms by which Calculus bovis(CB)modulates the liver cancer immune microenvironment via the Wnt/β-catenin signalling pathway.The... In this article,we comment on the work published by Huang et al,which explores the mechanisms by which Calculus bovis(CB)modulates the liver cancer immune microenvironment via the Wnt/β-catenin signalling pathway.The study demon-strates that active components in CB effectively inhibit the activation of the Wnt/β-catenin pathway,significantly reducing the polarization of M2 tumor-associated macrophages.Both in vivo and in vitro experiments have validated the anti-tumour effects of CB,revealing its complex mechanisms of action through the modulation of immune cell functions within the tumour microenvironment.This article highlights CB’s therapeutic potential in liver cancer treatment and calls for further investigations into its mechanisms and clinical applications to develop safer,more effective options for patients.The study also revealed that key com-ponents of CB,such as bilirubin and bile acids,inhibit tumour cell proliferation and promote apoptosis through multiple pathways.Future research should explore the mechanisms of action of CB and its potential integration with existing treatments to improve the therapeutic outcomes of liver cancer patients.With multidisciplinary collaboration and advanced research,CB could become a key component of comprehensive liver cancer treatment,offering new hope for patients. 展开更多
关键词 Liver cancer Calculus bovis Wnt/β-catenin signalling pathway Tumour-associated macrophages Tumour immune microenvironment Anti-tumour therapy Traditional Chinese medicine
下载PDF
Unlocking the potential of Calculus bovis: A breakthrough in liver cancer treatment via Wnt/β-catenin pathway modulation
15
作者 Farouk Benmediouni 《World Journal of Gastroenterology》 2025年第4期164-168,共5页
Liver cancer remains a significant global health challenge,characterized by high incidence and mortality rates.Despite advancements in medical treatments,the prognosis for liver cancer patients remains poor,highlighti... Liver cancer remains a significant global health challenge,characterized by high incidence and mortality rates.Despite advancements in medical treatments,the prognosis for liver cancer patients remains poor,highlighting the urgent need for novel therapeutic approaches.Traditional Chinese medicine(TCM),particularly Calculus bovis(CB),has shown promise in addressing this need due to its multitarget therapeutic mechanisms.CB refers to natural or synthetic gallstones,traditionally sourced from cattle,and used in TCM for their anti-inflammatory,detoxifying,and therapeutic properties.In modern practice,synthetic CB is often utilized to ensure consistent supply and safety.This article aims to discuss the findings of Huang et al,who investigated the anti-liver cancer properties of CB,focusing on its ability to inhibit M2 tumor-associated macrophage(TAM)polarization via modulation of the Wnt/β-catenin pathway.Huang et al employed a comprehensive approach integrating chemical analysis,animal model testing,and advanced bioinformatics.They identified active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms through network pharmacology,transcriptomics,and molecular docking studies.The study demonstrated that CB significantly inhibited liver tumor growth in vivo,as evidenced by reduced tumor size and weight in treated mice.Histological analyses confirmed signs of tumor regression.CB was found to modulate the tumor microenvironment by inhibiting the polarization of M2 phenotype-TAMs,as shown by reduced expression of M2 markers and downregulation of mRNA levels of C-C motif chemokine 22,arginase-1,transforming growth factor-beta 2,and interleukin-10.The study further revealed that CB’s antineoplastic activity involved the downregulation of Wnt5B andβ-catenin and upregulation of Axin2,thus inhibiting the Wnt/β-catenin signaling pathway.These findings highlight the therapeutic potential of CB in liver cancer treatment through its modulation of the Wnt/β-catenin pathway and suppression of M2 phenotype-TAM polarization.This study underscores the value of integrating TCM with modern therapeutic strategies to develop novel effective treatments for liver cancer. 展开更多
关键词 Calculus bovis Liver cancer M2 phenotype tumor-associated macrophages Wnt/β-catenin pathway Traditional Chinese medicine Tumor microenvironment Antineoplastic therapy
下载PDF
Modified Pulsatilla decoction alleviates 5-fluorouracil-induced intestinal mucositis by modulating the TLR4/MyD88/NF-κB pathway and gut microbiota
16
作者 Yi-Tong Qiu Xin-Yi Luo +6 位作者 Ya-Feng Deng Xue Zheng Jian-Guo Qiu Lin-Sheng Zhang Xiao-Qi Huang Xue-Bao Zheng Hai-Yang Huang 《World Journal of Gastroenterology》 2025年第7期110-129,共20页
BACKGROUND Modified Pulsatilla decoction(PD),a PD with licorice and ejiao,is a classic Traditional Chinese Medicine formula with significant efficacy in treating intestinal mucositis(IM)induced by tumor therapy.Howeve... BACKGROUND Modified Pulsatilla decoction(PD),a PD with licorice and ejiao,is a classic Traditional Chinese Medicine formula with significant efficacy in treating intestinal mucositis(IM)induced by tumor therapy.However,its specific molecular and biological mechanisms remain unclear.AIM To investigate the therapeutic effect and mechanism of modified PD in IM.METHODS This study used an IM mouse model established using 5-fluorouracil injections to investigate the effects of the modified PD(3,6,and 12 g/kg)in IM.The primary chemical components of the modified PD were identified using liquid chromatography-mass spectrometry.Body weight loss,diarrhea scores,intestinal length,histopathological scores,and inflammatory cytokine levels were measured to evaluate the effects of the modified PD in IM.Effects on the TLR4/MyD88/NF-κB pathway were evaluated using western blot analysis.The intestinal microbiota was characterized using Illumina NovaSeq sequencing.RESULTS The results showed that modified PD significantly improved weight loss and diarrhea and shortened the intestines in IM mice.Mechanistically,modified PD suppressed the TLR4/MyD88/NF-κB pathway and downregulated the expression of reactive oxygen species,lipopolysaccharides,and pro-inflammatory cytokines(IL-1β,TNF-α,IFN-γ,IL-6,IL-8,and IL-17),while increasing the expression of the anti-inflammatory cytokine IL-10.Furthermore,modified PD protected the intestinal mucosal barrier by increasing the expression of tight junction proteins(occludin-1,claudin-1,and ZO-1)and mucin-2.Finally,16S rDNA sequencing revealed that modified PD improved intestinal dysbiosis.CONCLUSION Our research offers new insights into the potential mechanism of modified PD in alleviating IM and provides experimental evidence supporting its pharmaceutical application in clinical IM treatment. 展开更多
关键词 Modified Pulsatilla decoction Intestinal mucositis Oxidative stress Gut microbiota TLR4/MyD88/NF-κB pathway Inflammatory response
下载PDF
Bone marrow mesenchymal stem cells promote uterine healing by activating the PI3K/AKT pathway and modulating inflammation in rat models
17
作者 Jing Yang Jun Yuan +3 位作者 Yan-Qing Wen Li Wu Jiu-Jiang Liao Hong-Bo Qi 《World Journal of Stem Cells》 2025年第1期22-39,共18页
BACKGROUND Uterine injury can cause uterine scarring,leading to a series of complications that threaten women’s health.Uterine healing is a complex process,and there are currently no effective treatments.Although our... BACKGROUND Uterine injury can cause uterine scarring,leading to a series of complications that threaten women’s health.Uterine healing is a complex process,and there are currently no effective treatments.Although our previous studies have shown that bone marrow mesenchymal stem cells(BMSCs)promote uterine damage repair,the underlying mechanisms remain unclear.However,exploring the specific regulatory roles of BMSCs in uterine injury treatment is crucial for further understanding their functions and enhancing therapeutic efficacy.AIM To investigate the underlying mechanism by which BMSCs promote the process of uterine healing.METHODS In in vivo experiments,we established a model of full-thickness uterine injury and injected BMSCs into the uterine wound.Transcriptome sequencing was per-formed to determine the enrichment of differentially expressed genes at the wound site.In in vitro experiments,we isolated rat uterine smooth muscle cells(USMCs)and cocultured them with BMSCs to observe the interaction between BMSCs and USMCs in the microenvironment.RESULTS We found that the differentially expressed genes were mainly related to cell growth,tissue repair,and angiogenesis,while the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)pathway was highly enriched.Quantitative reverse-transcription polymerase chain reaction was used to validate differentially expressed genes,and the results demonstrated that BMSCs can upregulate genes related to regeneration and downregulate genes related to inflammation.Coculturing BMSCs promoted the migration and proliferation of USMCs,and the USMC microenvironment promoted the myogenic differentiation of BMSCs.Finally,we validated the PI3K/AKT pathway in tissues and cells and showed that BMSCs activate the PI3K/AKT pathway to promote the regeneration of uterine smooth muscle both in vivo and in vitro.CONCLUSION BMSCs upregulated uterine wound regeneration and anti-inflammatory factors and enhanced uterine smooth muscle proliferation through the PI3K/AKT pathway both in vivo and in vitro. 展开更多
关键词 Uterine injury Bone marrow mesenchymal stem cells Uterine smooth muscle cells Phosphoinositide 3-kinase/protein kinase B pathway Cell-cell interactions Cell proliferation Immune regulation Wound regeneration
下载PDF
Mesalazine alleviated the symptoms of spontaneous colitis in interleukin-10 knockout mice by regulating the STAT3/NF-κB signaling pathway
18
作者 Qian Chen Ya-Li Zhang +1 位作者 Yong-Quan Shi Lie Zheng 《World Journal of Gastroenterology》 2025年第7期88-97,共10页
BACKGROUND Excessive endoplasmic reticulum(ER)stress in intestinal epithelial cells can lead to damage to the intestinal mucosal barrier,activate the signal transducer and activator of transcription 3(STAT3)/nuclear f... BACKGROUND Excessive endoplasmic reticulum(ER)stress in intestinal epithelial cells can lead to damage to the intestinal mucosal barrier,activate the signal transducer and activator of transcription 3(STAT3)/nuclear factor kappa B(NF-κB)signaling pathway,and exacerbate the inflammatory response,thus participating in the pathogenesis of ulcerative colitis(UC).Mesalazine is a commonly used drug in the clinical treatment of UC.However,further studies are needed to determine whether mesalazine regulates the ER stress of intestinal epithelial cells,downregulates the STAT3/NF-κB pathway to play a role in the treatment of UC.AIM To study the therapeutic effects of mesalazine on spontaneous colitis in interleukin-10(IL-10)-/-mice.METHODS The 24-week-old IL-10-/-mice with spontaneous colitis were divided into the model group and the 5-amino salicylic acid group.Littermates of wild-type mice of the same age group served as the control.There were eight mice in each group,four males and four females.The severity of symptoms of spontaneous colitis in IL-10-/-mice was assessed using disease activity index scores.On day 15,the mice were sacrificed.The colon length was measured,and the histopathological changes and ultrastructure of colonic epithelial cells were detected.The protein expressions of STAT3,p-STAT3,NF-κB,IκB,p-IκB,and glucoseregulated protein 78 were identified using Western blotting.The STAT3 and NF-κB mRNA expressions were identified using real-time polymerase chain reaction.The glucose-regulated protein 78 and C/EBP homologous protein expressions in colon sections were detected using immunofluorescence.RESULTS Mesalazine reduced the symptoms of spontaneous colitis in IL-10 knockout mice and the histopathological damage of colonic tissues,and alleviated the ER stress in epithelial cells of colitis mice.Western blotting and quantitative real-time polymerase chain reaction results showed that the STAT3/NF-κB pathway in the colon tissue of model mice was activated,suggesting that this pathway was involved in the pathogenesis of UC and might become a potential therapeutic target.Mesalazine could down-regulate the protein expressions of p-STAT3,NF-κB and p-IκB,and down-regulate the mRNA expression of STAT3 and NF-κB.CONCLUSION Mesalazine may play a protective role in UC by reducing ER stress by regulating the STAT3/NF-κB signaling pathway. 展开更多
关键词 MESALAZINE Ulcerative colitis Interleukin-10-/-mice Signal transducer and activator of transcription 3/nuclear factor kappa B signaling pathway Endoplasmic reticulum stress Inflammatory bowel disease
下载PDF
Electro-acupuncture regulates the cholinergic anti-inflammatory pathway in a rat model of chronic obstructive pulmonary disease 被引量:42
19
作者 Xin-fang Zhang Shui-ying Xiang +5 位作者 Wen-ye Geng Wen-juan Cong Jing Lu Chuan-wei Jiang Kun Wang Zi-bing Liu 《Journal of Integrative Medicine》 CAS CSCD 2018年第6期418-426,共9页
Objective: Acupuncture has a definite therapeutic effect on chronic obstructive pulmonary disease (COPD), and the cholinergic anti-inflammatory pathway (CAP) has been shown to be involved in regula- tion of infla... Objective: Acupuncture has a definite therapeutic effect on chronic obstructive pulmonary disease (COPD), and the cholinergic anti-inflammatory pathway (CAP) has been shown to be involved in regula- tion of inflammation. In this study, we investigated whether electro-acupuncture (EA) affects the CAP in COPD,Methods: Sprague-Dawley rats were induced into COPD through exposure to cigarette smoke combined with lipopolysaccharide. EA treatment was applied at Zusanli (ST36) and Feishu (BL13) points for 30 min/d for 7 d. Seventy-two rats were randomly divided into six study groups, including normal, normal + EA, normal + α-bungarotoxin (α-BGT) (the antagonist of the nicotinic acetylcholine receptor α7 subunit (α7nAChR)) + EA, COPD, COPD + EA, and COPD + α-BGT + EA. Lung function, pathology and vagus nerve discharge were tested. The levels of acetylcholine (ACh), acetylcholinesterase (ACHE), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-ct) in bronchoalveolar lavage fluid (BALF) and lung tissue were measured by enzyme-linked immunosorbent assay. The mRNA and protein expression and immunoreac- tivity of α7nAChR and its postreceptor inflammation signal pathway, including janus kinase 2 (JAK2), sig- nal transducers and activators of transcription 3 (STAT3), nuclear factor-KB (NF-KB), were observed by quantitative reverse transcription-polymerase chain reaction, Western blot and immunohistochemistry. Results: Compared with normal rats, there were a significant decline in lung function and discharge of the vagus nerve (P 〈 0.01), a marked sign of lung inflammation and an increase of ACh, ACHE, IL-6 and TNF-α level in BALF or lung tissue (P 〈 0.05, P 〈 0.01 ) and higher expression of 0t7nAChR, JAK2, STAT3 and NF-αB (P 〈 0.05, P 〈 0.01) in the COPD rats. In rats receiving EA, the lung function and vagal discharge were enhanced (P 〈 0.01 ), lung inflammation was improved and the levels of ACh, ACHE, IL-6 and TNF-α were decreased (P 〈 0.01). Further, the expression of α7nAChR, JAK2, STAT3 and NF-κB was downregulated (P 〈 0.05, P 〈 0.01 ). However, the above effects of EA were blocked in rats injected with α-BCT (P 〈 0.01 ). Conclusion: EA treatment can reduce the lung inflammatory response and improve lung function in COPD, which may be related to its involvement in the regulation of CAP. 展开更多
关键词 Chronic obstructive pulmonary disease ELECTRO-ACUPUNCTURE α -Bungaratoxin Cholinergic anti-inflammatory pathway Vagus nerve
原文传递
Dexmedetomidine attenuates inflammation and pancreatic injury in a rat model of experimental severe acute pancreatitis via cholinergic anti-inflammatory pathway 被引量:10
20
作者 Dong-Ya Huang Qiang Li +3 位作者 Chen-Yuan Shi Chao-Qun Hou Yi Miao Hong-Bing Shen 《Chinese Medical Journal》 SCIE CAS CSCD 2020年第9期1073-1079,共7页
Background:Excessive inflammatory responses play a critical role in the development of severe acute pancreatitis(SAP),and controlling such inflammation is vital for managing this often fatal disease.Dexmedetomidine ha... Background:Excessive inflammatory responses play a critical role in the development of severe acute pancreatitis(SAP),and controlling such inflammation is vital for managing this often fatal disease.Dexmedetomidine has been reported to possess protective properties in inflammatory diseases.Therefore,this study aimed to investigate whether dexmedetomidine pre-treatment exerts an anti-inflammatory effect in rats with SAP induced by sodium taurocholate,and if so,to determine the potential mechanism.Methods:SAP was induced with sodium taurocholate.Rats received an intraperitoneal injection of dexmedetomidine 30 min before sodium taurocholate administration.α-bungarotoxin,a selective alpha-7 nicotinic acetylcholine receptor(α7nAchR)antagonist,was injected intra-peritoneally 30 min before dexmedetomidine administration.The role of the vagus nerve was evaluated by performing unilateral cervical vagotomy before the administration of dexmedetomidine.Efferent discharge of the vagal nerve was recorded by the BL-420F Data Acquisition&Analysis System.Six hours after onset,serum pro-inflammatory cytokine(tumor necrosis factorα[TNF-α]and interleukin 6[IL-6])levels and amylase levels were determined using an enzyme-linked immunosorbent assay and an automated biochemical analyzer,respectively.Histopathological changes in the pancreas were observed after hematoxylin and eosin staining and scored according to Schmidt criteria.Results:Pre-treatment with dexmedetomidine significantly decreased serum levels of TNF-α,IL-6,and amylase,strongly alleviating pathological pancreatic injury in the rat model of SAP(TNF-α:174.2±30.2 vs.256.1±42.4 pg/ml;IL-6:293.3±46.8 vs.421.7±48.3 pg/ml;amylase:2102.3±165.3 vs.3186.4±245.2 U/L).However,the anti-inflammatory and pancreatic protective effects were abolished after vagotomy or pre-administration ofα-bungarotoxin.Dexmedetomidine also significantly increased the discharge frequency and amplitude of the cervical vagus nerve in the SAP rat model(discharge frequency:456.8±50.3 vs.332.4±25.1 Hz;discharge amplitude:33.4±5.3 vs.20.5±2.9μV).Conclusions:Dexmedetomidine administration attenuated the systemic inflammatory response and local pancreatic injury caused by SAP in rats through the cholinergic anti-inflammatory pathway involving vagus-andα7nAChR-dependent mechanisms. 展开更多
关键词 DEXMEDETOMIDINE Severe acute pancreatitis Cholinergic anti-inflammatory pathway INFLAMMATION Vagus nerve α7nAChR
原文传递
上一页 1 2 206 下一页 到第
使用帮助 返回顶部