The treatment of Alzheimer's disease(AD)is one of the most difficult challenges in neurodegenerative diseases due to the insufficient blood‒brain barrier(BBB)permeability and unsatisfactory intra-brain distributio...The treatment of Alzheimer's disease(AD)is one of the most difficult challenges in neurodegenerative diseases due to the insufficient blood‒brain barrier(BBB)permeability and unsatisfactory intra-brain distribution of drugs.Therefore,we established an ibuprofen and FK506 encapsulated drug co-delivery system(Ibu&FK@RNPs),which can target the receptor of advanced glycation endproducts(RAGE)and response to the high level of reactive oxygen species(ROS)in AD.RAGE is highly and specifically expressed on the lesion neurovascular unit of AD,this property helps to improve targeting specificity of the system and reduce unselective distribution in normal brain.Meanwhile,these two drugs can be specifically released in astrocytes of AD lesion in response to high levels of ROS.As a result,the cognition of AD mice was significantly improved and the quantity of Aβplaques was decreased.Neurotoxicity was also alleviated with structural regeneration and functional recovery of neurons.Besides,the neuroinflammation dominated by NF-κB pathway was significantly inhibited with decreased NF-κB and IL-1βin the brain.Overall,Ibu&FK@RNPs can efficiently and successively target diseased BBB and astrocytes in AD lesion.Thus it significantly enhances intracephalic accumulation of drugs and efficiently treats AD by anti-neuroinflammation and neuroprotection.展开更多
Objective:To investigate the chemical constituents from the leaves of Jatropha curcas and evaluate their inhibition on lipopolysaccharide(LPS)-activated BV-2 microglia cells.Methods:The n-BuOH extract of the leaves of...Objective:To investigate the chemical constituents from the leaves of Jatropha curcas and evaluate their inhibition on lipopolysaccharide(LPS)-activated BV-2 microglia cells.Methods:The n-BuOH extract of the leaves of J.curcas was isolated by macroporous adsorption resin,silica gel,ODS,column chromatography and semi-preparative HPLC.The structures of the compounds were identified by MS,NMR,ECD,and other spectroscopic methods.In addition,anti-neuroinflammatory effects of isolated compounds were evaluated by measuring the production of nitric oxide(NO)in overactivated BV-2 cells.Results:Seventeen compounds,including(7R,8S)-crataegifin A-4-O-β-D-glucopyranoside(1),(8R,8’R)-arctigenin(2),arctigenin-4’-O-β-D-glucopyranoside(3),(-)-syringaresinol(4),syringaresinol-4’-O-β-Dglucopyranoside(5),(-)-pinoresinol(6),pinoresinol-4’-O-β-D-glucopyranoside(7),buddlenol D(8),(2R,3R)-dihydroquercetin(9),(2S,3S)-epicatechin(10),(2R,3S)-catechin(11),isovitexin(12),naringenin-7-O-β-D-glucopyranoside(13),chamaejasmin(14),neochamaejasmin B(15),isoneochamaejasmin A(16),and tomentin-5-O-β-D-glucopyranoside(17)were isolated and identified.Compounds 2,4and 8 significantly inhibited the release of NO in BV-2 microglia activated by LPS,with IC50values of18.34,29.33 and 26.30μmol/L,respectively.Conclusion:Compound 1 is a novel compound,and compounds 2,3,8,14–17 are isolated from Jatropha genus for the first time.In addition,the lignans significantly inhibited NO release and the inhibitory activity was decreased after glycosylation.展开更多
Four new diterpenoids including one cis clerodane-type(1) and three highly oxygenated labdane-type diterpenes(2–4) were isolated from the aerial parts of Leonurus macranthus. Their structures were elucidated on the b...Four new diterpenoids including one cis clerodane-type(1) and three highly oxygenated labdane-type diterpenes(2–4) were isolated from the aerial parts of Leonurus macranthus. Their structures were elucidated on the basis of spectroscopic data(NMR, UV, IR, and MS). Compound 1 represents the first example of cis clerodane-type diterpene in the plants of Leonurus genus. Compounds 1 and 4 exhibited weak inhibition of nitric oxide production in lipopolysaccharide-stimulated BV-2 microglial cells with IC_(50) values of 35.8 ± 3.6 mmol/L and 48.6 ± 4.8 mmol/L,展开更多
基金supported by National Natural Science Foundation of China (81872806, 81961138009)111 Project (B18035, China)+2 种基金the Fundamental of Research Funds for the Central Universities (China)the Open Research Fund of Chengdu University of Traditional Chinese Medicinethe Open Research Fund of Chengdu University of Traditional Chinese Medicine State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China
文摘The treatment of Alzheimer's disease(AD)is one of the most difficult challenges in neurodegenerative diseases due to the insufficient blood‒brain barrier(BBB)permeability and unsatisfactory intra-brain distribution of drugs.Therefore,we established an ibuprofen and FK506 encapsulated drug co-delivery system(Ibu&FK@RNPs),which can target the receptor of advanced glycation endproducts(RAGE)and response to the high level of reactive oxygen species(ROS)in AD.RAGE is highly and specifically expressed on the lesion neurovascular unit of AD,this property helps to improve targeting specificity of the system and reduce unselective distribution in normal brain.Meanwhile,these two drugs can be specifically released in astrocytes of AD lesion in response to high levels of ROS.As a result,the cognition of AD mice was significantly improved and the quantity of Aβplaques was decreased.Neurotoxicity was also alleviated with structural regeneration and functional recovery of neurons.Besides,the neuroinflammation dominated by NF-κB pathway was significantly inhibited with decreased NF-κB and IL-1βin the brain.Overall,Ibu&FK@RNPs can efficiently and successively target diseased BBB and astrocytes in AD lesion.Thus it significantly enhances intracephalic accumulation of drugs and efficiently treats AD by anti-neuroinflammation and neuroprotection.
基金financially supported by National Natural Science Foundation of China(No.81872768,U1903122)Shenyang Young Scientific and Technological Innovators Program(No.RC200408)Doctoral Scientific Research Foundation of Liaoning Province(No.2020-BS-129)。
文摘Objective:To investigate the chemical constituents from the leaves of Jatropha curcas and evaluate their inhibition on lipopolysaccharide(LPS)-activated BV-2 microglia cells.Methods:The n-BuOH extract of the leaves of J.curcas was isolated by macroporous adsorption resin,silica gel,ODS,column chromatography and semi-preparative HPLC.The structures of the compounds were identified by MS,NMR,ECD,and other spectroscopic methods.In addition,anti-neuroinflammatory effects of isolated compounds were evaluated by measuring the production of nitric oxide(NO)in overactivated BV-2 cells.Results:Seventeen compounds,including(7R,8S)-crataegifin A-4-O-β-D-glucopyranoside(1),(8R,8’R)-arctigenin(2),arctigenin-4’-O-β-D-glucopyranoside(3),(-)-syringaresinol(4),syringaresinol-4’-O-β-Dglucopyranoside(5),(-)-pinoresinol(6),pinoresinol-4’-O-β-D-glucopyranoside(7),buddlenol D(8),(2R,3R)-dihydroquercetin(9),(2S,3S)-epicatechin(10),(2R,3S)-catechin(11),isovitexin(12),naringenin-7-O-β-D-glucopyranoside(13),chamaejasmin(14),neochamaejasmin B(15),isoneochamaejasmin A(16),and tomentin-5-O-β-D-glucopyranoside(17)were isolated and identified.Compounds 2,4and 8 significantly inhibited the release of NO in BV-2 microglia activated by LPS,with IC50values of18.34,29.33 and 26.30μmol/L,respectively.Conclusion:Compound 1 is a novel compound,and compounds 2,3,8,14–17 are isolated from Jatropha genus for the first time.In addition,the lignans significantly inhibited NO release and the inhibitory activity was decreased after glycosylation.
基金financially supported by the National Natural Science Foundation of China (Nos. 81573572, 81530097)New Century Excellent Talents in University (No. NCET-13-0693)
文摘Four new diterpenoids including one cis clerodane-type(1) and three highly oxygenated labdane-type diterpenes(2–4) were isolated from the aerial parts of Leonurus macranthus. Their structures were elucidated on the basis of spectroscopic data(NMR, UV, IR, and MS). Compound 1 represents the first example of cis clerodane-type diterpene in the plants of Leonurus genus. Compounds 1 and 4 exhibited weak inhibition of nitric oxide production in lipopolysaccharide-stimulated BV-2 microglial cells with IC_(50) values of 35.8 ± 3.6 mmol/L and 48.6 ± 4.8 mmol/L,