In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive ...In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength, ultimate tensile strain and tensile modulus of elasticity were tested. In addition, ultrasonic method and scanning electron microscope analysis were used to explain the microstructure mechanism. The results show that polypropylene fiberreinforced concrete presents a better performance on crack resistance than ordinary concrete, and the synergism of EVA and polypropylene fiber can improve the anti-cracking ability of concrete further.展开更多
The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack ...The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack propagation characteristics at the age of 24 hours, and effects on the mechanical properties, dry shrinkage of the harden concrete were tested. The experimental results show that the MB value is not related with the limestone dust content of MS, but in direct proportion to clay content. With the increase of MB value, the concrete workability decreases, and the flexural strength and 7 d compressive strength reduce markedly, whearas the 28 d compressive strength is not affected. When the MB-value is less than or equal to 1.35, the change of the MB-value has a little influence on early plastic cracking and dry shrinkage property of concrete, but when the MB-value is more than 1.35, the tendency of plastic cracking and dry shrinkage is remarkable.展开更多
The effects of green high performance concrete (GHPC) admixture on the anti-chloride permeability and anti- chloride corrodibility of concrete are studied by a series of experiments designed on the basis of the diffus...The effects of green high performance concrete (GHPC) admixture on the anti-chloride permeability and anti- chloride corrodibility of concrete are studied by a series of experiments designed on the basis of the diffusion principle and electro-chemical principle. The GHPC admixture consists of fly ash, gangue, slag, red mud, etc., of which the mass fraction of industrial residues is over 96 %. The anti-permeabilities and anti-corrodibilities of the tested GHPC and normal concrete (NC) are evaluated by the Diffusion Coefficients of chloride which was obtained by measuring the concentration of chloride in the tested systems by the voltage difference method. It is found that the adoption of GHPC admixture greatly improves the anti-chloride permeability and anti-chloride corrodibility by modifying the inner structure and contracting the porosity of concrete to the reduce considerably the diffusion rate of chloride. The admixture is desirable regarding its engineering performances as well as economical and environmental interests.展开更多
基金Funded by National Key R&D Program(No.2016YFC0701003)of Chinathe Fundamental Research Funds for the Central Universities
文摘In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength, ultimate tensile strain and tensile modulus of elasticity were tested. In addition, ultrasonic method and scanning electron microscope analysis were used to explain the microstructure mechanism. The results show that polypropylene fiberreinforced concrete presents a better performance on crack resistance than ordinary concrete, and the synergism of EVA and polypropylene fiber can improve the anti-cracking ability of concrete further.
基金Funded by the Nationd West Communication Construction Technology Project(No.200331881106)
文摘The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack propagation characteristics at the age of 24 hours, and effects on the mechanical properties, dry shrinkage of the harden concrete were tested. The experimental results show that the MB value is not related with the limestone dust content of MS, but in direct proportion to clay content. With the increase of MB value, the concrete workability decreases, and the flexural strength and 7 d compressive strength reduce markedly, whearas the 28 d compressive strength is not affected. When the MB-value is less than or equal to 1.35, the change of the MB-value has a little influence on early plastic cracking and dry shrinkage property of concrete, but when the MB-value is more than 1.35, the tendency of plastic cracking and dry shrinkage is remarkable.
文摘The effects of green high performance concrete (GHPC) admixture on the anti-chloride permeability and anti- chloride corrodibility of concrete are studied by a series of experiments designed on the basis of the diffusion principle and electro-chemical principle. The GHPC admixture consists of fly ash, gangue, slag, red mud, etc., of which the mass fraction of industrial residues is over 96 %. The anti-permeabilities and anti-corrodibilities of the tested GHPC and normal concrete (NC) are evaluated by the Diffusion Coefficients of chloride which was obtained by measuring the concentration of chloride in the tested systems by the voltage difference method. It is found that the adoption of GHPC admixture greatly improves the anti-chloride permeability and anti-chloride corrodibility by modifying the inner structure and contracting the porosity of concrete to the reduce considerably the diffusion rate of chloride. The admixture is desirable regarding its engineering performances as well as economical and environmental interests.