[Objectives]The anti-tumor activity of fractions from Buddleja officinalis Maxim.by petroleum ether,ethyl acetate,n-butanol and water solvent was studied.[Methods]The ethanol extract from B.officinalis Maxim.was extra...[Objectives]The anti-tumor activity of fractions from Buddleja officinalis Maxim.by petroleum ether,ethyl acetate,n-butanol and water solvent was studied.[Methods]The ethanol extract from B.officinalis Maxim.was extracted and then concentrated with petroleum ether,ethyl acetate,n-butanol and water,respectively,and the extracts were obtained.The inhibitory effects of the four different fractions on the growth of three tumor cell lines in vitro were detected by CCK-8 method,and the median inhibitory concentration(IC 50 value)was calculated.[Results]The four fractions inhibited the growth of the three tumor cell lines in vitro,among which the n-butanol fraction had the best anti-tumor activity.The IC 50 values of the n-butanol fraction on human gastric cancer(SGC-7901),human breast cancer(MCF-7)and human liver cancer(BEL-7404)cell lines were 0.08,1.58 and 0.12 mg/mL,respectively.[Conclusions]Petroleum ether,ethyl acetate,n-butanol and water fractions from the ethanol extract of B.officinalis Maxim.had certain anti-tumor effects,and the n-butanol fraction had the best anti-tumor activity.展开更多
Genetic information is transcribed from genomic DNA to mRNA,which is then translated into threedimensional proteins.mRNAs can undergo various post-transcriptional modifications,including RNA editing that alters mRNA s...Genetic information is transcribed from genomic DNA to mRNA,which is then translated into threedimensional proteins.mRNAs can undergo various post-transcriptional modifications,including RNA editing that alters mRNA sequences,ultimately affecting protein function.In this study,RNA editing was identified at the 499th base(c.499)of human vaccinia-related kinase 2(VRK2).This RNA editing changes the amino acid in the catalytic domain of VRK2 from isoleucine(with adenine base)to valine(with guanine base).Isoleucine-containing VRK2 has higher kinase activity than the valine-containing VRK2,which leads to an increase in tumor cell proliferation.Earlier we reported that VRK2 directly interacts with dystrobrevin-binding protein(dysbindin)and results in reducing its stability.Herein,we demonstrate that isoleucine-containing VRK2 decreases the level of dysbindin than valinecontaining VRK2.Dysbindin interacts with cyclin D and thereby regulates its expression and function.The reduction in the level of dysbindin by isoleucine-containing VRK2 further enhances the cyclin D expression,resulting in increased tumor growth and reduction in survival rates.It has also been observed that in patient samples,VRK2 level was elevated in breast cancer tissue compared to normal breast tissue.Additionally,the isoleucine form of VRK2 exhibited a greater increase in breast cancer tissue.Therefore,it is concluded that VRK2,especially dependent on the 167th variant amino acid,can be one of the indexes of tumor progression and proliferation.展开更多
[Objectives]To explore the anti-tumor activity of the extracts of petroleum ether,ethyl acetate,n-butanol and aqueous solution from Mahoniae caulis.[Methods]The extracts were extracted with petroleum ether,ethyl aceta...[Objectives]To explore the anti-tumor activity of the extracts of petroleum ether,ethyl acetate,n-butanol and aqueous solution from Mahoniae caulis.[Methods]The extracts were extracted with petroleum ether,ethyl acetate,n-butanol and aqueous solution respectively,and then concentrated.The inhibitory effects of these extracts on the growth of three tumor cell lines in vitro were detected by CCK-8 method,and the IC 50 value was calculated.[Results]The four extracts inhibited the growth of the three tumor cell lines in vitro,among which the n-butanol extract had the best anti-tumor activity.The IC 50 values of the n-butanol extract on human gastric cancer(SGC-7901),human breast cancer(MCF-7)and human liver cancer(BEL-7404)cell lines were 0.23,0.25 and 0.58 mg/mL,respectively.[Conclusions]The ethanol extract of Mahoniae caulis under petroleum ether,ethyl acetate,n-butanol and aqueous solution had certain anti-tumor effect,and n-butanol extract had the best anti-tumor activity.展开更多
INTRODUCTIONDendritic cells (DCs) play a key regulatory role inantitumor immunity,especially in its immuneaccessory role via MHC-Ⅰ molecules.We haverecently reported that DCs were able to enhance thekilling activity ...INTRODUCTIONDendritic cells (DCs) play a key regulatory role inantitumor immunity,especially in its immuneaccessory role via MHC-Ⅰ molecules.We haverecently reported that DCs were able to enhance thekilling activity of Lymphokine and PHA activatedkiller (LPAK) cells in vitro.In the presentstudy,we evaluated the effects of GM-CSF andTNF upon antitumor activities of freshly展开更多
To investigate the mechanism of chemotherapy related DIC, a quantitative and comparative study was carried out on the coagulation activities of tumor cells and tumor tissues in three strains of rat ascites hepatoma AH...To investigate the mechanism of chemotherapy related DIC, a quantitative and comparative study was carried out on the coagulation activities of tumor cells and tumor tissues in three strains of rat ascites hepatoma AH109A, AH272 and LY80. The content of thrombo-plastin was expressed as the relative concentration against that in the brain tissue. Ascites hepatoma cell and tissue of each strain obviously have different quantities of coagulants, such as tissue thromboplastin. Coagulation activities of tumor tissues are higher than that of tumor cells. The coagulation activities of tumor tissues and cells of AH272 were higher than that of AH109A and LY80. Our findings suggest that the initiation of DIC not only depend on the tissue thromboplastin, the other factors or the other mechanisms should be considered.展开更多
Plasmacytoid dendritic cells(pDCs)are a pioneer cell type that produces type I interferon(IFN-I)and promotes antiviral immune responses.However,they are tolerogenic and,when recruited to the tumor microenvironment(TME...Plasmacytoid dendritic cells(pDCs)are a pioneer cell type that produces type I interferon(IFN-I)and promotes antiviral immune responses.However,they are tolerogenic and,when recruited to the tumor microenvironment(TME),play complex roles that have long been a research focus.The interactions between p DCs and other components of the TME,whether direct or indirect,can either promote or hinder tumor development;consequently,p DCs are an intriguing target for therapeutic intervention.This review provides a comprehensive overview of p DC crosstalk in the TME,including crosstalk with various cell types,biochemical factors,and microorganisms.An in-depth understanding of p DC crosstalk in TME should facilitate the development of novel p DC-based therapeutic methods.展开更多
Tumor necrosis factor α (TNF-α) and interferon-γ (IFN-γ) are cytokines with strong antitumor activities. They were reacted with a photoactive arylazide-4-azidobenzoic acid, resulting in photoactive TNF-α and ...Tumor necrosis factor α (TNF-α) and interferon-γ (IFN-γ) are cytokines with strong antitumor activities. They were reacted with a photoactive arylazide-4-azidobenzoic acid, resulting in photoactive TNF-α and IFN-γ. The infrared (IR) spectra of these products showed the characteristic absorption of an azido group at 2127 cm^-1. By photo-immobilization, this modified TNF-α and IFN-γ were immobilized on polystyrene membranes for cell culture to prepare biomaterials. The micro-morphology of photoactive cytokines was observed with a scanning electron microscope (SEM). The inhibitory effect on growth of Hela cells and inducing apoptosis activity of these two cytokines were analyzed by growth curve, transmission electron microscope (TEM) and fluorescence active cell sorter (FACS). The results showed that co-immobilization of IFN-γ and TNF-α had significant inhibitory effect on growth of Hela cells, inhibitory rate up to 82%, and IFN-γ had obviously synergistic action.展开更多
Objective: To study the enhancement of the immune functions and autologous tumor killing (ATK) activity by kappa selenocarrageenan (KSC) in mice bearing sarcoma 180. Methods: To measure the effects of KSC and/or Cy...Objective: To study the enhancement of the immune functions and autologous tumor killing (ATK) activity by kappa selenocarrageenan (KSC) in mice bearing sarcoma 180. Methods: To measure the effects of KSC and/or Cyclophosphamide (Cy) on natural killer (NK) activity, lymphokine activated killer (LAK) activity, the produc tion of interleukin 2 (IL 2), ATK activity and the growth of sarcoma 180 (S 180 ). Results: KSC promoted NK activity, LAK activity and ATK activity in vivo , increased IL 2 production at 40 mg/kg/d×9d. It also enhanced the antitumor action of Cy (20 mg/kg/d×9d) and offset the inhibition of Cy on immunocopetent cells. The ATK activity in splenocytes of S 180 bearing mice could be induced and increased by recombinant interleukin 2 (rIL 2) in vitro . Conclusion: KSC has an up regulating effect on the immune functions and ATK activity in tumor bearing mice. It can be used as a biological response modifier (BRM) in cancer biotherapy.展开更多
AIM: To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (D...AIM: To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (Deltapsim). METHODS: Cell culture, cell counting, ELISA assay, TUNEL, flow cytometry, Western blot and fluorometric assay were employed to investigate the effect of JTE-522 on cell proliferation and apoptosis in AGS cells and related molecular mechanism. RESULTS: JTE-522 inhibited the growth of AGS cells and induced the apoptosis. Caspases 8 and 9 were activated during apoptosis as judged by the appearance of cleavage products from procaspase and the caspase activities to cleave specific fluorogenic substrates. To elucidate whether the activation of caspases 8 and 9 was required for the apoptosis induction, we examined the effect of caspase-specific inhibitors on apoptosis. The results showed that caspase inhibitors significantly inhibited the apoptosis induced by JTE-522. In addition, the membrane translocation of Bax and cytosolic release of cytochrome C accompanying with the decrease of the uptake of Rhodamin 123, were detected at an early stage of apoptosis. Furthermore, Bax translocation, cytochrome C release, and caspase 9 activation were blocked by Z-VAD.fmk and Z-IETD-CHO. CONCLUSION: The present data indicate a crucial association between activation of caspases 8, 9, cytochrome C release, membrane translocation of Bax, loss of Deltapsim and JTE-522-induced apoptosis in AGS cells.展开更多
Objective: Gecko active components (GACs), extracted from the powder of whole Gecko, have been reported to be effective against esophageal squamous cell carcinoma (ESCC). Endoplasmic reticulum stress (ERs) has been re...Objective: Gecko active components (GACs), extracted from the powder of whole Gecko, have been reported to be effective against esophageal squamous cell carcinoma (ESCC). Endoplasmic reticulum stress (ERs) has been regarded as an important cause for pathogenesis of esophageal squamous cell carcinoma (ESCC). In this paper, we aimed to study the effect of GACS on apoptosis of human esophageal carcinoma KYSE150 cells and to analyze the underlying signaling pathway. Methods: MTT assay was used to detect the viability of KYSE150 cells, and Flow cytometry was applied to detect reactive oxygen species (ROS), calcium generation, and the level of mitochondrial membrane potential (MMP). Western blot analysis was applied to observe the expression of apoptosis-related proteins and endoplasmic reticulum stress (ERs)-related proteins in KYSE150 cells. Results: The results showed that GACs inhibited KYSE150 cell vitality in a dose- and time-dependent manner. Not only that, GACs could up-regulated ERs-related and apoptosis-related proteins expression, and the content of ROS and calcium were significantly increased, and also, the level of MMP was significantly decreased. Conclusion: The results of this report suggested that induction of apoptosis occurs through the ERs dependent signaling pathways.展开更多
Natural killer(NK)cells are cytotoxic immune cells that can eliminate target cells without prior stimulation.Human induced pluripotent stem cells(iPSCs)provide a robust source of NK cells for safe and effective cell-b...Natural killer(NK)cells are cytotoxic immune cells that can eliminate target cells without prior stimulation.Human induced pluripotent stem cells(iPSCs)provide a robust source of NK cells for safe and effective cell-based immunotherapy against aggressive cancers.In this in vitro study,a feeder-free iPSC differentiation was performed to obtain iPSC-NK cells,and distinct maturational stages of iPSC-NK were characterized.Mature cells of CD56^(bright)CD16^(bright)phenotype showed upregulation of CD56,CD16,and NK cell activation markers NKG2D and NKp46 upon IL-15 exposure,while exposure to aggressive atypical teratoid/rhabdoid tumor(ATRT)cell lines enhanced NKG2D and NKp46 expression.Malignant cell exposure also increased CD107a degranulation markers and stimulated IFN-γsecretion in activated NK cells.CD56^(bright)CD16^(bright)iPSC-NK cells showed a ratio-dependent killing of ATRT cells,and the percentage lysis of CHLA-05-ATRT was higher than that of CHLA-02-ATRT.The iPSC-NK cells were also cytotoxic against other brain,kidney,and lung cancer cell lines.Further NK maturation yielded CD56^(-ve) CD16^(bright)cells,which lacked activation markers even after exposure to interleukins or ATRT cells-indicating diminished cytotoxicity.Generation and characterization of different NK phenotypes from iPSCs,coupled with their promising anti-tumor activity against ATRT in vitro,offer valuable insights into potential immunotherapeutic strategies for brain tumors.展开更多
The objective in this experimental article is to gain evidential proof of near-dead cells, (sick-cells in relapse tumor) responding with recovery growth from special 4n, multi-chromatid chromosomes. Note, near-dead &l...The objective in this experimental article is to gain evidential proof of near-dead cells, (sick-cells in relapse tumor) responding with recovery growth from special 4n, multi-chromatid chromosomes. Note, near-dead </span><i><span style="font-family:Verdana;">normal human cells</span></i><span style="font-family:Verdana;"> with such converted chromosome structure gave rise to proliferative, fitness-gained, diploid </span><i><span style="font-family:Verdana;">first cells</span></i><span style="font-family:Verdana;">,</span><i> </i><span style="font-family:Verdana;">which</span><i> </i><span style="font-family:Verdana;">further gave rise to three different cell shape changed, recovery growth patterns. Previously, two cell shape changes had been recovered from same type normal human cells, transiently exposed to amino acid glutamine deficient growth medium with recovery growths also associated with presence of the special 4n cells. The 4n cell-division had been concluded to be a meiotic-like two-step division system to the fitness-gained diploid cells in numerous experiments. The main characteristi</span><span style="font-family:Verdana;">cs of this division system, was firstly whole genomes without polar oriented bent centromeres moving apart followed by much rarer simple fission division to two or three diploid cells, selectable for first cell proliferatio</span><span style="font-family:Verdana;">n. In general these 4n cells showed metaphase type rosette figures moving apart not in the normal spindle associated mitotic shape with centromeres polar-pointing with sloping arms. This sequence of events induced by glutamine-deficiency, was earlier shown to cause DNA breakage in metabolic studies however, the near-death condition was only assumed from normal fibro-blastic cell-sheet shrinkage. This was rectified by an RNA virus (Coxakie-B3), which virology known is a highly cell killing virus (4+ CPE on their scale). This virus replicates only in replicating cells, which led to recovery growths with progressive phenotypic cell-shape changes (spindle, polygonal and roundness cells), each intervened by “total” cell destruction. These three different growth patterns </span><span style="font-family:Verdana;">had morphologies, indistinguishably from today’s cancer diagnostic morphologies. “Mitotic” analyses of beginning growths for the three phenotypes revealed the special rosette figure separations from special 4n and higher ploidy level cells, and also total absence of spindle type mitoses. Tumorigenesis-relevant </span><span style="font-family:Verdana;">was centromere-puffing with premature chromatid separation, and chromatin compaction, a mechanism, that was suggested to protect the genome from damage (text). We suggest that the multi-chromatid polyploid cells with their genome reductive division system, can be a tractable </span><i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> model system for therapy information, when repeated from a cell-killing agent, producing virus-free recovery growths. Will it be enacted upon? Not likely with profit-greedy industrial Goliath in the helm of cancer research. But, a not for profit cancer organization, could change this appalling situation.展开更多
Genetic and molecular heterogeneity,together with intrinsic and acquired resistance to therapy,represent the major obstacles to the successful treatment of different types of breast carcinoma.Increasing evidence demon...Genetic and molecular heterogeneity,together with intrinsic and acquired resistance to therapy,represent the major obstacles to the successful treatment of different types of breast carcinoma.Increasing evidence demonstrates that SOX transcription factors in breast carcinomas could act both as oncogenes and tumor suppressors and have been associated with tumor stage and grade,poor prognosis,and therapy resistance.Both SOX2 and SOX18 overexpression has been correlated with poor prognosis in breast carcinomas,and these genes are recognized as potential antitumor targets.Our aim was to evaluate the effect of retinoic acid(RA),a well-known cyto-differentiating agent,on breast carcinoma cells in vitro and to investigate the potential of RA treatment to modify the expression of SOX2 and SOX18 genes.By applying various experimental approaches,we evaluated the effect of RA on basic cellular processes in SK-BR-3 and MCF7 breast carcinoma cell lines.We have shown that RA inhibits cell growth,reduces the number of Ki-67 positive cells,and causes cell-cycle arrest.RA effect was more prominent in SK-BR-3 cell line that lacks SOX2 expression,including a higher decrease in cell viability,reduction in colony formation,and significant remodeling of cellular structure.We have shown that RA treatment led to the downregulation of SOX2 expression in MCF7 cells and to the reduction of SOX18 expression in both cell lines.By functional analysis,we showed that the anti-proliferative effect of RA in both cell lines was not based on the activity of stemness marker SOX2,pointing to a SOX2-independent mechanism of action.The ability of RA to reduce SOX2/SOX18 expression raises the possibility that these genes can be used as biomarkers to distinguish RA-responders from non-responders.Together,our study shows that the response of breast carcinoma cell lines to RA treatment may vary,highlighting that the development of RA-based therapy should consider differences in breast carcinoma subtypes.展开更多
Experimental study both in vitro and in vivotogether with clinical trials showed that LAKcells have antitumor and antimetastatic effects(1-5)and that these effects are closely related tothe number of LAK cells transfe...Experimental study both in vitro and in vivotogether with clinical trials showed that LAKcells have antitumor and antimetastatic effects(1-5)and that these effects are closely related tothe number of LAK cells transferred and the ad-ministration of rIL-2(1,6-8).Usually,autologousPBL’s are used as the source of LAK precursorsin the adoptive immunotherapy of cancer patients.But this not only puts an added burden on thecancer patient,it can cause serious side effectsas well(9).Although TIL’s may provide a solu-tion to this problem(10,11),their isolation fromsolid tumors is complex and consumes many rea-gents.We have reported that the isolation oflymphocytes from malignant ascites or from ma-lignant pleural effusions is not only simple展开更多
Summary: Endothelial dysfunction induced by intermittent hypoxia (IH) participates in obstructive sleep apnea syndrome (OSAS)-associated cardiovascular disorders. Myeloid differentiation primary response 88 (My...Summary: Endothelial dysfunction induced by intermittent hypoxia (IH) participates in obstructive sleep apnea syndrome (OSAS)-associated cardiovascular disorders. Myeloid differentiation primary response 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6) regulate nu- merous downstream adaptors like mitogen-activated protein kinases (MAPKs) and the subsequent oxidative stress and inflammatory responses. This study aimed to characterize the role of MyD88/TRAF6 in IH-treated cell function and its associated signaling. Human umbilical vein endo- thelial cells (HUVECs) were randomly exposed to IH or normoxia for 0, 2, 4 and 6 h. Western blot- ting was used to detect the expression pattern of target gene proteins [angiotensin 1 receptor (AT1R), p-ERK1/2, p-p38MAPK, MyD88 and TRAF6], and the relationships among these target genes down-regulated by the corresponding inhibitors were studied. Finally, the influence of these target genes on proliferation of HUVECs was also assessed by EdU analysis. Protein levels of AT1R, TRAF6 and p-ERK1/2 were increased after IH exposure, with a slight rise in MyD88 and a dynamic change in p-p38MAPK. The down-regulation of TRAF6 by siRNA reduced ERK1/2 phosphorylation during IH without any effects on ATIR. Blockade of AT1R with valsartan decreased TRAF6 and p-ERK1/2 protein expression after IH exposure. ERK1/2 inhibition with PD98059 suppressed only AT1R expression. IH promoted HUVECs proliferation, which was significantly suppressed by the in- hibition of TRAF6, AT1R and ERK1/2. The findings demonstrate that TRAF6 regulates the prolifera- tion of HUVECs exposed to short-term IH by modulating cell signaling involving ERK1/2 down- stream of AT1R. Targeting the AT1R-TRAF6-p-ERK1/2 signaling pathway might be helpful in re- storing endothelial function.展开更多
基金Supported by Guangxi Key R&D Project(GuiKeAB18221095)Baise Scientific Research and Technology Development Plan of Baise City(BaiKe20211810)+1 种基金Open Project of Scientific Research in Guangxi Key Laboratory of Molecular Pathology of Hepatobiliary Diseases(GXZDSYS-005)Research Project of High-level Talents in Youjiang Medical University for Nationalities(01002018079).
文摘[Objectives]The anti-tumor activity of fractions from Buddleja officinalis Maxim.by petroleum ether,ethyl acetate,n-butanol and water solvent was studied.[Methods]The ethanol extract from B.officinalis Maxim.was extracted and then concentrated with petroleum ether,ethyl acetate,n-butanol and water,respectively,and the extracts were obtained.The inhibitory effects of the four different fractions on the growth of three tumor cell lines in vitro were detected by CCK-8 method,and the median inhibitory concentration(IC 50 value)was calculated.[Results]The four fractions inhibited the growth of the three tumor cell lines in vitro,among which the n-butanol fraction had the best anti-tumor activity.The IC 50 values of the n-butanol fraction on human gastric cancer(SGC-7901),human breast cancer(MCF-7)and human liver cancer(BEL-7404)cell lines were 0.08,1.58 and 0.12 mg/mL,respectively.[Conclusions]Petroleum ether,ethyl acetate,n-butanol and water fractions from the ethanol extract of B.officinalis Maxim.had certain anti-tumor effects,and the n-butanol fraction had the best anti-tumor activity.
基金supported by the BK21 FOUR funded by the Ministry of Education,Republic of Korea,the National Research Foundation of Korea(NRF-2022R1F1A1066642,RS-2023-00272063)grant funded by the Korean government(MSIT),and POSTECH Basic Science Research Institute Grant(NRF-2021R1A6A1A10042944).Research was also supported by funds donated by Dr.Jae Kyu Lee and Mr.Jason Gim.Following are results of a study on the“Leaders in INdustry-University Cooperation 3.0”Project,supported by the Ministry of Education and National Research Foundation of Korea.
文摘Genetic information is transcribed from genomic DNA to mRNA,which is then translated into threedimensional proteins.mRNAs can undergo various post-transcriptional modifications,including RNA editing that alters mRNA sequences,ultimately affecting protein function.In this study,RNA editing was identified at the 499th base(c.499)of human vaccinia-related kinase 2(VRK2).This RNA editing changes the amino acid in the catalytic domain of VRK2 from isoleucine(with adenine base)to valine(with guanine base).Isoleucine-containing VRK2 has higher kinase activity than the valine-containing VRK2,which leads to an increase in tumor cell proliferation.Earlier we reported that VRK2 directly interacts with dystrobrevin-binding protein(dysbindin)and results in reducing its stability.Herein,we demonstrate that isoleucine-containing VRK2 decreases the level of dysbindin than valinecontaining VRK2.Dysbindin interacts with cyclin D and thereby regulates its expression and function.The reduction in the level of dysbindin by isoleucine-containing VRK2 further enhances the cyclin D expression,resulting in increased tumor growth and reduction in survival rates.It has also been observed that in patient samples,VRK2 level was elevated in breast cancer tissue compared to normal breast tissue.Additionally,the isoleucine form of VRK2 exhibited a greater increase in breast cancer tissue.Therefore,it is concluded that VRK2,especially dependent on the 167th variant amino acid,can be one of the indexes of tumor progression and proliferation.
基金Supported by Guangxi Key Research and Development Plan Project(Gui Ke AB18221095)2023 Innovation Project of Youjiang Medical University for Nationalities Graduate Education(YXCXJH2023009)Scientific Research Project of High-level Talents of Youjiang Medical University for Nationalities(01002018079).
文摘[Objectives]To explore the anti-tumor activity of the extracts of petroleum ether,ethyl acetate,n-butanol and aqueous solution from Mahoniae caulis.[Methods]The extracts were extracted with petroleum ether,ethyl acetate,n-butanol and aqueous solution respectively,and then concentrated.The inhibitory effects of these extracts on the growth of three tumor cell lines in vitro were detected by CCK-8 method,and the IC 50 value was calculated.[Results]The four extracts inhibited the growth of the three tumor cell lines in vitro,among which the n-butanol extract had the best anti-tumor activity.The IC 50 values of the n-butanol extract on human gastric cancer(SGC-7901),human breast cancer(MCF-7)and human liver cancer(BEL-7404)cell lines were 0.23,0.25 and 0.58 mg/mL,respectively.[Conclusions]The ethanol extract of Mahoniae caulis under petroleum ether,ethyl acetate,n-butanol and aqueous solution had certain anti-tumor effect,and n-butanol extract had the best anti-tumor activity.
基金Natural Science Foundation of the Higher Education Office of Guangdong Province,No.19952901
文摘INTRODUCTIONDendritic cells (DCs) play a key regulatory role inantitumor immunity,especially in its immuneaccessory role via MHC-Ⅰ molecules.We haverecently reported that DCs were able to enhance thekilling activity of Lymphokine and PHA activatedkiller (LPAK) cells in vitro.In the presentstudy,we evaluated the effects of GM-CSF andTNF upon antitumor activities of freshly
文摘To investigate the mechanism of chemotherapy related DIC, a quantitative and comparative study was carried out on the coagulation activities of tumor cells and tumor tissues in three strains of rat ascites hepatoma AH109A, AH272 and LY80. The content of thrombo-plastin was expressed as the relative concentration against that in the brain tissue. Ascites hepatoma cell and tissue of each strain obviously have different quantities of coagulants, such as tissue thromboplastin. Coagulation activities of tumor tissues are higher than that of tumor cells. The coagulation activities of tumor tissues and cells of AH272 were higher than that of AH109A and LY80. Our findings suggest that the initiation of DIC not only depend on the tissue thromboplastin, the other factors or the other mechanisms should be considered.
基金supported by grants from the China Postdoctoral Science Foundation(Grant No.2022M712880)the Program of the Major Research Plan of the National Natural Science Foundation of China(Grant No.91942314)the National Natural Science Foundation of China(Grant No.82001659).
文摘Plasmacytoid dendritic cells(pDCs)are a pioneer cell type that produces type I interferon(IFN-I)and promotes antiviral immune responses.However,they are tolerogenic and,when recruited to the tumor microenvironment(TME),play complex roles that have long been a research focus.The interactions between p DCs and other components of the TME,whether direct or indirect,can either promote or hinder tumor development;consequently,p DCs are an intriguing target for therapeutic intervention.This review provides a comprehensive overview of p DC crosstalk in the TME,including crosstalk with various cell types,biochemical factors,and microorganisms.An in-depth understanding of p DC crosstalk in TME should facilitate the development of novel p DC-based therapeutic methods.
基金This work was supported by the China Postdoctoral Science Foundation under grant No.2004035588.
文摘Tumor necrosis factor α (TNF-α) and interferon-γ (IFN-γ) are cytokines with strong antitumor activities. They were reacted with a photoactive arylazide-4-azidobenzoic acid, resulting in photoactive TNF-α and IFN-γ. The infrared (IR) spectra of these products showed the characteristic absorption of an azido group at 2127 cm^-1. By photo-immobilization, this modified TNF-α and IFN-γ were immobilized on polystyrene membranes for cell culture to prepare biomaterials. The micro-morphology of photoactive cytokines was observed with a scanning electron microscope (SEM). The inhibitory effect on growth of Hela cells and inducing apoptosis activity of these two cytokines were analyzed by growth curve, transmission electron microscope (TEM) and fluorescence active cell sorter (FACS). The results showed that co-immobilization of IFN-γ and TNF-α had significant inhibitory effect on growth of Hela cells, inhibitory rate up to 82%, and IFN-γ had obviously synergistic action.
文摘Objective: To study the enhancement of the immune functions and autologous tumor killing (ATK) activity by kappa selenocarrageenan (KSC) in mice bearing sarcoma 180. Methods: To measure the effects of KSC and/or Cyclophosphamide (Cy) on natural killer (NK) activity, lymphokine activated killer (LAK) activity, the produc tion of interleukin 2 (IL 2), ATK activity and the growth of sarcoma 180 (S 180 ). Results: KSC promoted NK activity, LAK activity and ATK activity in vivo , increased IL 2 production at 40 mg/kg/d×9d. It also enhanced the antitumor action of Cy (20 mg/kg/d×9d) and offset the inhibition of Cy on immunocopetent cells. The ATK activity in splenocytes of S 180 bearing mice could be induced and increased by recombinant interleukin 2 (rIL 2) in vitro . Conclusion: KSC has an up regulating effect on the immune functions and ATK activity in tumor bearing mice. It can be used as a biological response modifier (BRM) in cancer biotherapy.
基金National Natural Science Foundation of China,No.39770300,30070873the Overseas Chinese Affairs Office of the State Council Foundation,No.98-33
文摘AIM: To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (Deltapsim). METHODS: Cell culture, cell counting, ELISA assay, TUNEL, flow cytometry, Western blot and fluorometric assay were employed to investigate the effect of JTE-522 on cell proliferation and apoptosis in AGS cells and related molecular mechanism. RESULTS: JTE-522 inhibited the growth of AGS cells and induced the apoptosis. Caspases 8 and 9 were activated during apoptosis as judged by the appearance of cleavage products from procaspase and the caspase activities to cleave specific fluorogenic substrates. To elucidate whether the activation of caspases 8 and 9 was required for the apoptosis induction, we examined the effect of caspase-specific inhibitors on apoptosis. The results showed that caspase inhibitors significantly inhibited the apoptosis induced by JTE-522. In addition, the membrane translocation of Bax and cytosolic release of cytochrome C accompanying with the decrease of the uptake of Rhodamin 123, were detected at an early stage of apoptosis. Furthermore, Bax translocation, cytochrome C release, and caspase 9 activation were blocked by Z-VAD.fmk and Z-IETD-CHO. CONCLUSION: The present data indicate a crucial association between activation of caspases 8, 9, cytochrome C release, membrane translocation of Bax, loss of Deltapsim and JTE-522-induced apoptosis in AGS cells.
文摘Objective: Gecko active components (GACs), extracted from the powder of whole Gecko, have been reported to be effective against esophageal squamous cell carcinoma (ESCC). Endoplasmic reticulum stress (ERs) has been regarded as an important cause for pathogenesis of esophageal squamous cell carcinoma (ESCC). In this paper, we aimed to study the effect of GACS on apoptosis of human esophageal carcinoma KYSE150 cells and to analyze the underlying signaling pathway. Methods: MTT assay was used to detect the viability of KYSE150 cells, and Flow cytometry was applied to detect reactive oxygen species (ROS), calcium generation, and the level of mitochondrial membrane potential (MMP). Western blot analysis was applied to observe the expression of apoptosis-related proteins and endoplasmic reticulum stress (ERs)-related proteins in KYSE150 cells. Results: The results showed that GACs inhibited KYSE150 cell vitality in a dose- and time-dependent manner. Not only that, GACs could up-regulated ERs-related and apoptosis-related proteins expression, and the content of ROS and calcium were significantly increased, and also, the level of MMP was significantly decreased. Conclusion: The results of this report suggested that induction of apoptosis occurs through the ERs dependent signaling pathways.
基金supported by the National Science Foundation(CBET-1652992 and CBET-1917618 to Y.L.).
文摘Natural killer(NK)cells are cytotoxic immune cells that can eliminate target cells without prior stimulation.Human induced pluripotent stem cells(iPSCs)provide a robust source of NK cells for safe and effective cell-based immunotherapy against aggressive cancers.In this in vitro study,a feeder-free iPSC differentiation was performed to obtain iPSC-NK cells,and distinct maturational stages of iPSC-NK were characterized.Mature cells of CD56^(bright)CD16^(bright)phenotype showed upregulation of CD56,CD16,and NK cell activation markers NKG2D and NKp46 upon IL-15 exposure,while exposure to aggressive atypical teratoid/rhabdoid tumor(ATRT)cell lines enhanced NKG2D and NKp46 expression.Malignant cell exposure also increased CD107a degranulation markers and stimulated IFN-γsecretion in activated NK cells.CD56^(bright)CD16^(bright)iPSC-NK cells showed a ratio-dependent killing of ATRT cells,and the percentage lysis of CHLA-05-ATRT was higher than that of CHLA-02-ATRT.The iPSC-NK cells were also cytotoxic against other brain,kidney,and lung cancer cell lines.Further NK maturation yielded CD56^(-ve) CD16^(bright)cells,which lacked activation markers even after exposure to interleukins or ATRT cells-indicating diminished cytotoxicity.Generation and characterization of different NK phenotypes from iPSCs,coupled with their promising anti-tumor activity against ATRT in vitro,offer valuable insights into potential immunotherapeutic strategies for brain tumors.
文摘The objective in this experimental article is to gain evidential proof of near-dead cells, (sick-cells in relapse tumor) responding with recovery growth from special 4n, multi-chromatid chromosomes. Note, near-dead </span><i><span style="font-family:Verdana;">normal human cells</span></i><span style="font-family:Verdana;"> with such converted chromosome structure gave rise to proliferative, fitness-gained, diploid </span><i><span style="font-family:Verdana;">first cells</span></i><span style="font-family:Verdana;">,</span><i> </i><span style="font-family:Verdana;">which</span><i> </i><span style="font-family:Verdana;">further gave rise to three different cell shape changed, recovery growth patterns. Previously, two cell shape changes had been recovered from same type normal human cells, transiently exposed to amino acid glutamine deficient growth medium with recovery growths also associated with presence of the special 4n cells. The 4n cell-division had been concluded to be a meiotic-like two-step division system to the fitness-gained diploid cells in numerous experiments. The main characteristi</span><span style="font-family:Verdana;">cs of this division system, was firstly whole genomes without polar oriented bent centromeres moving apart followed by much rarer simple fission division to two or three diploid cells, selectable for first cell proliferatio</span><span style="font-family:Verdana;">n. In general these 4n cells showed metaphase type rosette figures moving apart not in the normal spindle associated mitotic shape with centromeres polar-pointing with sloping arms. This sequence of events induced by glutamine-deficiency, was earlier shown to cause DNA breakage in metabolic studies however, the near-death condition was only assumed from normal fibro-blastic cell-sheet shrinkage. This was rectified by an RNA virus (Coxakie-B3), which virology known is a highly cell killing virus (4+ CPE on their scale). This virus replicates only in replicating cells, which led to recovery growths with progressive phenotypic cell-shape changes (spindle, polygonal and roundness cells), each intervened by “total” cell destruction. These three different growth patterns </span><span style="font-family:Verdana;">had morphologies, indistinguishably from today’s cancer diagnostic morphologies. “Mitotic” analyses of beginning growths for the three phenotypes revealed the special rosette figure separations from special 4n and higher ploidy level cells, and also total absence of spindle type mitoses. Tumorigenesis-relevant </span><span style="font-family:Verdana;">was centromere-puffing with premature chromatid separation, and chromatin compaction, a mechanism, that was suggested to protect the genome from damage (text). We suggest that the multi-chromatid polyploid cells with their genome reductive division system, can be a tractable </span><i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> model system for therapy information, when repeated from a cell-killing agent, producing virus-free recovery growths. Will it be enacted upon? Not likely with profit-greedy industrial Goliath in the helm of cancer research. But, a not for profit cancer organization, could change this appalling situation.
基金the Ministry of Education,Science and Technological Development of the Republic of Serbia(Agreement No.451-03-9/2021-14/200042)the Serbian Academy of Sciences and Arts(Grant No.F24).
文摘Genetic and molecular heterogeneity,together with intrinsic and acquired resistance to therapy,represent the major obstacles to the successful treatment of different types of breast carcinoma.Increasing evidence demonstrates that SOX transcription factors in breast carcinomas could act both as oncogenes and tumor suppressors and have been associated with tumor stage and grade,poor prognosis,and therapy resistance.Both SOX2 and SOX18 overexpression has been correlated with poor prognosis in breast carcinomas,and these genes are recognized as potential antitumor targets.Our aim was to evaluate the effect of retinoic acid(RA),a well-known cyto-differentiating agent,on breast carcinoma cells in vitro and to investigate the potential of RA treatment to modify the expression of SOX2 and SOX18 genes.By applying various experimental approaches,we evaluated the effect of RA on basic cellular processes in SK-BR-3 and MCF7 breast carcinoma cell lines.We have shown that RA inhibits cell growth,reduces the number of Ki-67 positive cells,and causes cell-cycle arrest.RA effect was more prominent in SK-BR-3 cell line that lacks SOX2 expression,including a higher decrease in cell viability,reduction in colony formation,and significant remodeling of cellular structure.We have shown that RA treatment led to the downregulation of SOX2 expression in MCF7 cells and to the reduction of SOX18 expression in both cell lines.By functional analysis,we showed that the anti-proliferative effect of RA in both cell lines was not based on the activity of stemness marker SOX2,pointing to a SOX2-independent mechanism of action.The ability of RA to reduce SOX2/SOX18 expression raises the possibility that these genes can be used as biomarkers to distinguish RA-responders from non-responders.Together,our study shows that the response of breast carcinoma cell lines to RA treatment may vary,highlighting that the development of RA-based therapy should consider differences in breast carcinoma subtypes.
文摘Experimental study both in vitro and in vivotogether with clinical trials showed that LAKcells have antitumor and antimetastatic effects(1-5)and that these effects are closely related tothe number of LAK cells transferred and the ad-ministration of rIL-2(1,6-8).Usually,autologousPBL’s are used as the source of LAK precursorsin the adoptive immunotherapy of cancer patients.But this not only puts an added burden on thecancer patient,it can cause serious side effectsas well(9).Although TIL’s may provide a solu-tion to this problem(10,11),their isolation fromsolid tumors is complex and consumes many rea-gents.We have reported that the isolation oflymphocytes from malignant ascites or from ma-lignant pleural effusions is not only simple
基金supported by grants from the National Natural Science Foundation of China(No.81070067 and No.81370185)
文摘Summary: Endothelial dysfunction induced by intermittent hypoxia (IH) participates in obstructive sleep apnea syndrome (OSAS)-associated cardiovascular disorders. Myeloid differentiation primary response 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6) regulate nu- merous downstream adaptors like mitogen-activated protein kinases (MAPKs) and the subsequent oxidative stress and inflammatory responses. This study aimed to characterize the role of MyD88/TRAF6 in IH-treated cell function and its associated signaling. Human umbilical vein endo- thelial cells (HUVECs) were randomly exposed to IH or normoxia for 0, 2, 4 and 6 h. Western blot- ting was used to detect the expression pattern of target gene proteins [angiotensin 1 receptor (AT1R), p-ERK1/2, p-p38MAPK, MyD88 and TRAF6], and the relationships among these target genes down-regulated by the corresponding inhibitors were studied. Finally, the influence of these target genes on proliferation of HUVECs was also assessed by EdU analysis. Protein levels of AT1R, TRAF6 and p-ERK1/2 were increased after IH exposure, with a slight rise in MyD88 and a dynamic change in p-p38MAPK. The down-regulation of TRAF6 by siRNA reduced ERK1/2 phosphorylation during IH without any effects on ATIR. Blockade of AT1R with valsartan decreased TRAF6 and p-ERK1/2 protein expression after IH exposure. ERK1/2 inhibition with PD98059 suppressed only AT1R expression. IH promoted HUVECs proliferation, which was significantly suppressed by the in- hibition of TRAF6, AT1R and ERK1/2. The findings demonstrate that TRAF6 regulates the prolifera- tion of HUVECs exposed to short-term IH by modulating cell signaling involving ERK1/2 down- stream of AT1R. Targeting the AT1R-TRAF6-p-ERK1/2 signaling pathway might be helpful in re- storing endothelial function.