Topological slow light and rainbow trapping tend to rely on large-scale interface structure in previous research work,which have restricted further miniaturization.In this work,we propose a method to realize slow ligh...Topological slow light and rainbow trapping tend to rely on large-scale interface structure in previous research work,which have restricted further miniaturization.In this work,we propose a method to realize slow light and rainbow trapping at the zigzag edge of a single valley photonic crystals(VPCs)bounded by air,which is very different from previous studies where rainbow trapping is supported at the interface separating two VPCs with inversion symmetry.By constructing the VPC–air boundaries and VPC–VPC interfaces experimentally,we have observed the topologically protected rainbow trapping simultaneously at the external and internal boundary.This work provides a feasible platform for the miniaturized optical communication devices such as optical buffers,optical storage and optical routing.展开更多
In this paper, the light trapping characteristics of glass substrate with hemisphere pit (HP) arrays in thin film Si solar cells are theoretically studied via a numerical approach. It is found that the HP glass subs...In this paper, the light trapping characteristics of glass substrate with hemisphere pit (HP) arrays in thin film Si solar cells are theoretically studied via a numerical approach. It is found that the HP glass substrate has good antireflection properties. Its surface reflectance can be reduced by - 50% compared with planar glass. The HP arrays can make the unabsorbed light return to the absorbing layer of solar cells, and the ratio of second absorption approximately equals 30%. Thus, the glass substrate with the hemisphere pit arrays (HP glass) can effectively reduce the total reflectivity of a solar celt from 20% to 13%. The lip glass can also prolong the optical path length. The numerical results show that the total optical path length of the thin film Si solar cell covered with the HP glass increases from 2ω to 409. These results are basically consistent with the experimental results.展开更多
Superlattice photonic crystals (SPhCs) possess considerablepotentials as building blocks for constructing high-performancedevices because of their great flexibilities in opticalmanipulation. From the prospective of pr...Superlattice photonic crystals (SPhCs) possess considerablepotentials as building blocks for constructing high-performancedevices because of their great flexibilities in opticalmanipulation. From the prospective of practical applications,scalable fabrication of SPhCs with large-area uniformity and precisegeometrical controllability has been considered as one prerequisitebut still remains a challenge.展开更多
Light trapping photonic crystal(PhC)patterns on the surface of Si solar cells provides a novel opportunity to approach the theoretical efficiency limit of 32.3%,for light-to-electrical power conversion with a single j...Light trapping photonic crystal(PhC)patterns on the surface of Si solar cells provides a novel opportunity to approach the theoretical efficiency limit of 32.3%,for light-to-electrical power conversion with a single junction cell.This is beyond the efficiency limit implied by the Lambertian limit of ray trapping~29%.The interference and slow light effects are harnessed for collecting light even at the long wavelengths near the Si band-gap.We compare two different methods for surface patterning,that can be extended to large area surface patterning:1)laser direct write and 2)step-&-repeat 5×reduction projection lithography.Large area throughput limitations of these methods are compared with the established elec-tron beam lithography(EBL)route,which is conventionally utilised but much slower than the presented methods.Spec-tral characterisation of the PhC light trapping is compared for samples fabricated by different methods.Reflectance of Si etched via laser patterned mask was~7%at visible wavelengths and was comparable with Si patterned via EBL made mask.The later pattern showed a stronger absorbance than the Lambertian limit6.展开更多
Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their appli- cations in enhancing light trapping. Enhanced light trapping can result in more effective absor...Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their appli- cations in enhancing light trapping. Enhanced light trapping can result in more effective absorption in solar cells, thus leading to higher short-circuit current density and conversion efficiency. We develop randomly distributed and modified ZnO nanorods, which are designed and fabricated by the following processes: the deposition of a ZnO seed layer on sub- strate with sputtering, the wet chemical etching of the seed layer to form isolated islands for nanorod growth, the chemical bath deposition of the ZnO nanorods, and the sputtering deposition of a thin Al-doped ZnO (ZnO:Al) layer to improve the ZnO/Si interface. Solar cells employing the modified ZnO nanorod substrate show a considerable increase in solar energy conversion efficiency.展开更多
This paper utilizes multilayer organic light-emitting diodes with a thin layer of dye molecules to study the mech- anism of charge trapping under different electric regimes. It demonstrates that the carrier trapping w...This paper utilizes multilayer organic light-emitting diodes with a thin layer of dye molecules to study the mech- anism of charge trapping under different electric regimes. It demonstrates that the carrier trapping was independent of the current density in devices using fluorescent material as the emitting molecule while this process was exactly opposite when phosphorescent material was used. The triplet-triplet annihilation and dissociation of excitons into free charge carriers was considered to contribute to the decrease in phosphorescent emission under high electric fields. Moreover, the fluorescent dye molecule with a lower energy gap and ionized potential than the host emitter was observed to facilitate the carrier trapping mechanism, and it would produce photon emission.展开更多
Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still inv...Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still involve manual identification of target pests from lots of trapped insects,which is time-consuming,labor-intensive and error-prone,especially in pest peak periods.In this paper,we developed an automatic monitoring system for rice light-trap pests based on machine vision.This system is composed of an itelligent light trap,a computer or mobile phone client platform and a cloud server.The light trap firstly traps,kills and disperses insects,then collects images of trapped insects and sends each image to the cloud server.Five target pests in images are automatically identifed and counted by pest identification models loaded in the server.To avoid light-trap insects piling up,a vibration plate and a moving rotation conveyor belt are adopted to disperse these trapped insects.There was a close correlation(r=0.92)between our automatic and manual identification methods based on the daily pest number of one-year images from one light trap.Field experiments demonstrated the effectiveness and accuracy of our automatic light trap monitoring system.展开更多
Identification and counting of rice light-trap pests are important to monitor rice pest population dynamics and make pest forecast. Identification and counting of rice light-trap pests manually is time-consuming, and ...Identification and counting of rice light-trap pests are important to monitor rice pest population dynamics and make pest forecast. Identification and counting of rice light-trap pests manually is time-consuming, and leads to fatigue and an increase in the error rate. A rice light-trap insect imaging system is developed to automate rice pest identification. This system can capture the top and bottom images of each insect by two cameras to obtain more image features. A method is proposed for removing the background by color difference of two images with pests and non-pests. 156 features including color, shape and texture features of each pest are extracted into an support vector machine (SVM) classifier with radial basis kernel function. The seven-fold cross-validation is used to improve the accurate rate of pest identification. Four species of Lepidoptera rice pests are tested and achieved 97.5% average accurate rate.展开更多
Adult mosquito sampling techniques are essential for monitoring transmission of malaria and other mosquito borne infections. Preference for any sampling technique depends on both its field efficiency and the character...Adult mosquito sampling techniques are essential for monitoring transmission of malaria and other mosquito borne infections. Preference for any sampling technique depends on both its field efficiency and the characteristics of local vector populations. Surveys on adult mosquitoes using Human Landing Catch (HLC) and CO<sub>2</sub>-baited CDC light trap (CDC-LT) techniques were conducted in several knowlesi malaria endemic areas between the months of March to December 2012 in several states of Peninsula Malaysia. These two techniques were relatively compared to determine the preferences of anopheline mosquitoes towards CO<sub>2</sub>-baited CDC-LT technique using HLC technique as the reference method. Cx. gelidus, An. maculates and An. introlatus were the main three species collected by HLC technique, whereas the species collected by CO<sub>2</sub>-baited CDC-LT technique were mostly An. cracens, Ar. durhami and Coquillettidia species. Most of the Anopheles species were collected almost exclusively by the human collectors except for An. cracens and An. introlatus which were collected using both techniques. Anopheles cracens was the most dominant species captured using CO<sub>2</sub>-baited CDC-LT technique. This is the first report showing An. cracens was caught using CO<sub>2</sub>-baited CDC-LT technique in Malaysia.展开更多
This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were crea...This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were created when illuminating by a YAG laser with power 1 mW. These wells with average trapping depth -0.5 μK and volume -74 μm^3 are suitable to trap and manipulate an atomic Bose-Einstein condensation (BEC). Due to a controllable grating implemented by a spatial light modulator, an evolution between a triple-well trap and a single-well one is achievable by adjusting the height of potential barrier between adjacent wells. Based on this novel triple-well potentials, the loading and splitting of BEC, as well as the interference between three freely expanding BECs, are also numerically stimulated within the framework of mean-field treatment. By fitting three cosine functions with three Gaussian envelopes to interference fringe, the information of relative phases among three condensates is extracted.展开更多
This paper proposes a flexible scheme to form various optical multi-well traps for cold atoms or molecules by using a simple optical system composed of an compounded amplitude cosine-only grating and a single lens ill...This paper proposes a flexible scheme to form various optical multi-well traps for cold atoms or molecules by using a simple optical system composed of an compounded amplitude cosine-only grating and a single lens illuminated by a plane light wave or a Gaussian beam. Dynamic manipulation and evolution of multi-well trap can be easily implemented by controlling the modulation frequency of the cosine patterns. It also discusses how to expand this multi-well trap to two-dimensional lattices with single- or multi-well trap by using an orthogonally or non-orthogonally modulated grating, as well as using incoherent multi-beam illumination, and these results show that all the symmetric structures of two-dimensional Bravais lattices can be obtained facilely by using proposed scheme.展开更多
We report our studies on an intense source of cold cesium atoms based on a two-dimensional(2D) magneto–optical trap(MOT) with independent axial cooling and pushing.The new-designed source,proposed as 2D-HP MOT,us...We report our studies on an intense source of cold cesium atoms based on a two-dimensional(2D) magneto–optical trap(MOT) with independent axial cooling and pushing.The new-designed source,proposed as 2D-HP MOT,uses hollow laser beams for axial cooling and a thin pushing laser beam to extract a cold atomic beam.With the independent pushing beam,the atomic flux can be substantially optimized.The total atomic flux maximum obtained in the 2D-HP MOT is4.02 × 1010atoms/s,increased by 60 percent compared to the traditional 2D+MOT in our experiment.Moreover,with the pushing power 10 μW and detuning 0Γ,the 2D-HP MOT can generate a rather intense atomic beam with the concomitant light shift suppressed by a factor of 20.The axial velocity distribution of the cold cesium beams centers at 6.8 m/s with an FMHW of about 2.8 m/s.The dependences of the atomic flux on the pushing power and detuning are studied in detail.The experimental results are in good agreement with the theoretical model.展开更多
During 2009 and 2010, 23 night-time mosquito captures were made at Kanci obora in south-eastern Moravia, Czech Republic. It was used in the Centers for Disease Control and Prevention (CDCP) miniature light traps wit...During 2009 and 2010, 23 night-time mosquito captures were made at Kanci obora in south-eastern Moravia, Czech Republic. It was used in the Centers for Disease Control and Prevention (CDCP) miniature light traps with CO2 (dry ice) and baited lard-can traps in which sentinel animals were replaced with a container filled with CO2 (dry ice). In the observed period, a total of 31,882 female mosquitoes were captured by CDC miniature light traps with CO2. Lard-can traps baited with CO2 captured 995 females under the same conditions, which is just 3.12% of the quantity from the CDC traps. At the same time, there were significant differences in the proportional captures of various species. Compared to CDC miniature light traps, baited lard-can traps much more often captured Aedes cinereus (16.58% of total versus 1.93% in CDC traps), Culex modestus (15.48% versus 4.62%), and Ae. rossicus (6.13% versus 2.67%). On the other hand, capture of female Ae. vexans was proportionally much lower (15.38% versus 36.41%). Capture of Cx. pipiens was more or less the same 14.77% (miniature light traps) and 15.76% (baited lard-can traps). The occurrence of the calamity species Ae. sticticus was proportionally very high in both trap types (30.05% in lard-can traps baited with CO2, 33.58% in CDC miniature light traps). The findings prove that a trap's design itself significantly affects not only the overall capture of mosquitoes but also the proportional representation of individual species.展开更多
枸杞蛀果蛾(Scrobipalpa erichiodes Bidzilya et Li)是枸杞的重要害虫,以幼虫钻蛀枸杞花蕾或果实为害。由于幼虫为害过程和栖息场所隐蔽,仅成虫期暴露,化学防治困难。作者采用便携悬挂式太阳能光控型诱虫试验装置,研究红色、橙色、黄...枸杞蛀果蛾(Scrobipalpa erichiodes Bidzilya et Li)是枸杞的重要害虫,以幼虫钻蛀枸杞花蕾或果实为害。由于幼虫为害过程和栖息场所隐蔽,仅成虫期暴露,化学防治困难。作者采用便携悬挂式太阳能光控型诱虫试验装置,研究红色、橙色、黄色、绿色、青色、蓝色、紫色7种不同波段LED光源对枸杞蛀果蛾的诱集效果,并利用诱捕效果高的紫色光源灯具监测种群发生动态。结果表明,紫色光源灯具诱捕效果显著好于其他6种光源;与紫色光源波长接近的青色和蓝色也有一定的诱捕效果,但远不及紫色光源。紫色是枸杞蛀果蛾的敏感光源。枸杞蛀果蛾2022年越冬代羽出高峰期在4月下旬,诱虫量高;6月初出现第2个高峰,但虫量较小。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12374302)the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQMSX0872).
文摘Topological slow light and rainbow trapping tend to rely on large-scale interface structure in previous research work,which have restricted further miniaturization.In this work,we propose a method to realize slow light and rainbow trapping at the zigzag edge of a single valley photonic crystals(VPCs)bounded by air,which is very different from previous studies where rainbow trapping is supported at the interface separating two VPCs with inversion symmetry.By constructing the VPC–air boundaries and VPC–VPC interfaces experimentally,we have observed the topologically protected rainbow trapping simultaneously at the external and internal boundary.This work provides a feasible platform for the miniaturized optical communication devices such as optical buffers,optical storage and optical routing.
基金Project supported by the National High-Tech Research and Development Program of China(Grant No.2011AA050518)
文摘In this paper, the light trapping characteristics of glass substrate with hemisphere pit (HP) arrays in thin film Si solar cells are theoretically studied via a numerical approach. It is found that the HP glass substrate has good antireflection properties. Its surface reflectance can be reduced by - 50% compared with planar glass. The HP arrays can make the unabsorbed light return to the absorbing layer of solar cells, and the ratio of second absorption approximately equals 30%. Thus, the glass substrate with the hemisphere pit arrays (HP glass) can effectively reduce the total reflectivity of a solar celt from 20% to 13%. The lip glass can also prolong the optical path length. The numerical results show that the total optical path length of the thin film Si solar cell covered with the HP glass increases from 2ω to 409. These results are basically consistent with the experimental results.
文摘Superlattice photonic crystals (SPhCs) possess considerablepotentials as building blocks for constructing high-performancedevices because of their great flexibilities in opticalmanipulation. From the prospective of practical applications,scalable fabrication of SPhCs with large-area uniformity and precisegeometrical controllability has been considered as one prerequisitebut still remains a challenge.
基金project support by Nano-Processing Facility (NPF), AIST, Tsukuba, Japan where we were granted access to photo-lithography stepperARC DP190103284 "Photonic crystals: the key to breaking the silicon-solar cell efficiency barrier" project+1 种基金the visiting professor program at the Institute of Advanced Sciences at Yokohama National University (2018-20)Nanotechnology Ambassador fellowship at MCN (2012-19)
文摘Light trapping photonic crystal(PhC)patterns on the surface of Si solar cells provides a novel opportunity to approach the theoretical efficiency limit of 32.3%,for light-to-electrical power conversion with a single junction cell.This is beyond the efficiency limit implied by the Lambertian limit of ray trapping~29%.The interference and slow light effects are harnessed for collecting light even at the long wavelengths near the Si band-gap.We compare two different methods for surface patterning,that can be extended to large area surface patterning:1)laser direct write and 2)step-&-repeat 5×reduction projection lithography.Large area throughput limitations of these methods are compared with the established elec-tron beam lithography(EBL)route,which is conventionally utilised but much slower than the presented methods.Spec-tral characterisation of the PhC light trapping is compared for samples fabricated by different methods.Reflectance of Si etched via laser patterned mask was~7%at visible wavelengths and was comparable with Si patterned via EBL made mask.The later pattern showed a stronger absorbance than the Lambertian limit6.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CBA00706 and 2011CBA00707)the High-Technology Research and Development Program of China(Grant No.2013AA050302)+2 种基金the Science and Technology Support Program of Tianjin City,China(Grant No.12ZCZDGX03600)the Major Science and Technology Support Project of Tianjin City,China(Grant No.11TXSYGX22100)the Specialized Research Fund for the Ph.D.Program of Higher Education,China(Grant No.20120031110039)
文摘Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their appli- cations in enhancing light trapping. Enhanced light trapping can result in more effective absorption in solar cells, thus leading to higher short-circuit current density and conversion efficiency. We develop randomly distributed and modified ZnO nanorods, which are designed and fabricated by the following processes: the deposition of a ZnO seed layer on sub- strate with sputtering, the wet chemical etching of the seed layer to form isolated islands for nanorod growth, the chemical bath deposition of the ZnO nanorods, and the sputtering deposition of a thin Al-doped ZnO (ZnO:Al) layer to improve the ZnO/Si interface. Solar cells employing the modified ZnO nanorod substrate show a considerable increase in solar energy conversion efficiency.
基金Project supported by the Key Project of Shanghai Education Committee (Grant No. 08ZZ42)Science and Technology Commission of Shanghai Municipal (Grant Nos. 08PJ14053,08DZ1140702 and 08520511200)
文摘This paper utilizes multilayer organic light-emitting diodes with a thin layer of dye molecules to study the mech- anism of charge trapping under different electric regimes. It demonstrates that the carrier trapping was independent of the current density in devices using fluorescent material as the emitting molecule while this process was exactly opposite when phosphorescent material was used. The triplet-triplet annihilation and dissociation of excitons into free charge carriers was considered to contribute to the decrease in phosphorescent emission under high electric fields. Moreover, the fluorescent dye molecule with a lower energy gap and ionized potential than the host emitter was observed to facilitate the carrier trapping mechanism, and it would produce photon emission.
基金Supported by the Fundamental Public Welfare Research Program of Zhejiang Provincial Natural Science Foundation,China(LGN18C140007 and Y20C140024)the National High Technology Research and Development Program of China(863 Program,2013AA102402)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences.
文摘Monitring pest populations in paddy fields is important to effectively implement integrated pest management.Light traps are widely used to monitor field pests all over the world.Most conventional light traps still involve manual identification of target pests from lots of trapped insects,which is time-consuming,labor-intensive and error-prone,especially in pest peak periods.In this paper,we developed an automatic monitoring system for rice light-trap pests based on machine vision.This system is composed of an itelligent light trap,a computer or mobile phone client platform and a cloud server.The light trap firstly traps,kills and disperses insects,then collects images of trapped insects and sends each image to the cloud server.Five target pests in images are automatically identifed and counted by pest identification models loaded in the server.To avoid light-trap insects piling up,a vibration plate and a moving rotation conveyor belt are adopted to disperse these trapped insects.There was a close correlation(r=0.92)between our automatic and manual identification methods based on the daily pest number of one-year images from one light trap.Field experiments demonstrated the effectiveness and accuracy of our automatic light trap monitoring system.
基金support of the National Natural Science Foundation of China (31071678)the Major Scientific and Technological Special of Zhejiang Province, China (2010C12026)+1 种基金the Ningbo Science and Technology Project, China (201002C1011001)Xiangshan Science and Technology Project, China(2010C0001)
文摘Identification and counting of rice light-trap pests are important to monitor rice pest population dynamics and make pest forecast. Identification and counting of rice light-trap pests manually is time-consuming, and leads to fatigue and an increase in the error rate. A rice light-trap insect imaging system is developed to automate rice pest identification. This system can capture the top and bottom images of each insect by two cameras to obtain more image features. A method is proposed for removing the background by color difference of two images with pests and non-pests. 156 features including color, shape and texture features of each pest are extracted into an support vector machine (SVM) classifier with radial basis kernel function. The seven-fold cross-validation is used to improve the accurate rate of pest identification. Four species of Lepidoptera rice pests are tested and achieved 97.5% average accurate rate.
文摘Adult mosquito sampling techniques are essential for monitoring transmission of malaria and other mosquito borne infections. Preference for any sampling technique depends on both its field efficiency and the characteristics of local vector populations. Surveys on adult mosquitoes using Human Landing Catch (HLC) and CO<sub>2</sub>-baited CDC light trap (CDC-LT) techniques were conducted in several knowlesi malaria endemic areas between the months of March to December 2012 in several states of Peninsula Malaysia. These two techniques were relatively compared to determine the preferences of anopheline mosquitoes towards CO<sub>2</sub>-baited CDC-LT technique using HLC technique as the reference method. Cx. gelidus, An. maculates and An. introlatus were the main three species collected by HLC technique, whereas the species collected by CO<sub>2</sub>-baited CDC-LT technique were mostly An. cracens, Ar. durhami and Coquillettidia species. Most of the Anopheles species were collected almost exclusively by the human collectors except for An. cracens and An. introlatus which were collected using both techniques. Anopheles cracens was the most dominant species captured using CO<sub>2</sub>-baited CDC-LT technique. This is the first report showing An. cracens was caught using CO<sub>2</sub>-baited CDC-LT technique in Malaysia.
基金supported by the National Natural Science Foundation of China (Grant Nos.10434060,10674047 and 10804031)the National Key Basic Research and Development Program of China (Grant No.2006CB921604)+2 种基金the Program for Changjiang Scholarand Innovative Research Team and Shanghai Leading Academic Discipline Project (Grant No.B408)the Youth Foundation of Jiangxi Educational Committee (Grant No.GJJ09530)the Scientific Research Foundation of ECIT (Grant No.DSH0417)
文摘This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were created when illuminating by a YAG laser with power 1 mW. These wells with average trapping depth -0.5 μK and volume -74 μm^3 are suitable to trap and manipulate an atomic Bose-Einstein condensation (BEC). Due to a controllable grating implemented by a spatial light modulator, an evolution between a triple-well trap and a single-well one is achievable by adjusting the height of potential barrier between adjacent wells. Based on this novel triple-well potentials, the loading and splitting of BEC, as well as the interference between three freely expanding BECs, are also numerically stimulated within the framework of mean-field treatment. By fitting three cosine functions with three Gaussian envelopes to interference fringe, the information of relative phases among three condensates is extracted.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10434060,10674047 and 10804031)the National Key Basic Research and Development Program of China(Grant No.2006CB921604)+2 种基金the Program for Changjiang Scholar and Innovative Research Team,and Shanghai Leading Academic Discipline Project(Grant No.B408)the Youth Foundation of Jiangxi Educational Committee(Grant No.GJJ09530)the Open Research Fund of State Key Laboratory of Precision Spectroscopy,East China Normal University.
文摘This paper proposes a flexible scheme to form various optical multi-well traps for cold atoms or molecules by using a simple optical system composed of an compounded amplitude cosine-only grating and a single lens illuminated by a plane light wave or a Gaussian beam. Dynamic manipulation and evolution of multi-well trap can be easily implemented by controlling the modulation frequency of the cosine patterns. It also discusses how to expand this multi-well trap to two-dimensional lattices with single- or multi-well trap by using an orthogonally or non-orthogonally modulated grating, as well as using incoherent multi-beam illumination, and these results show that all the symmetric structures of two-dimensional Bravais lattices can be obtained facilely by using proposed scheme.
基金Project supported by the National Natural Science Foundation of China(Grant No.11304177)
文摘We report our studies on an intense source of cold cesium atoms based on a two-dimensional(2D) magneto–optical trap(MOT) with independent axial cooling and pushing.The new-designed source,proposed as 2D-HP MOT,uses hollow laser beams for axial cooling and a thin pushing laser beam to extract a cold atomic beam.With the independent pushing beam,the atomic flux can be substantially optimized.The total atomic flux maximum obtained in the 2D-HP MOT is4.02 × 1010atoms/s,increased by 60 percent compared to the traditional 2D+MOT in our experiment.Moreover,with the pushing power 10 μW and detuning 0Γ,the 2D-HP MOT can generate a rather intense atomic beam with the concomitant light shift suppressed by a factor of 20.The axial velocity distribution of the cold cesium beams centers at 6.8 m/s with an FMHW of about 2.8 m/s.The dependences of the atomic flux on the pushing power and detuning are studied in detail.The experimental results are in good agreement with the theoretical model.
文摘During 2009 and 2010, 23 night-time mosquito captures were made at Kanci obora in south-eastern Moravia, Czech Republic. It was used in the Centers for Disease Control and Prevention (CDCP) miniature light traps with CO2 (dry ice) and baited lard-can traps in which sentinel animals were replaced with a container filled with CO2 (dry ice). In the observed period, a total of 31,882 female mosquitoes were captured by CDC miniature light traps with CO2. Lard-can traps baited with CO2 captured 995 females under the same conditions, which is just 3.12% of the quantity from the CDC traps. At the same time, there were significant differences in the proportional captures of various species. Compared to CDC miniature light traps, baited lard-can traps much more often captured Aedes cinereus (16.58% of total versus 1.93% in CDC traps), Culex modestus (15.48% versus 4.62%), and Ae. rossicus (6.13% versus 2.67%). On the other hand, capture of female Ae. vexans was proportionally much lower (15.38% versus 36.41%). Capture of Cx. pipiens was more or less the same 14.77% (miniature light traps) and 15.76% (baited lard-can traps). The occurrence of the calamity species Ae. sticticus was proportionally very high in both trap types (30.05% in lard-can traps baited with CO2, 33.58% in CDC miniature light traps). The findings prove that a trap's design itself significantly affects not only the overall capture of mosquitoes but also the proportional representation of individual species.
文摘枸杞蛀果蛾(Scrobipalpa erichiodes Bidzilya et Li)是枸杞的重要害虫,以幼虫钻蛀枸杞花蕾或果实为害。由于幼虫为害过程和栖息场所隐蔽,仅成虫期暴露,化学防治困难。作者采用便携悬挂式太阳能光控型诱虫试验装置,研究红色、橙色、黄色、绿色、青色、蓝色、紫色7种不同波段LED光源对枸杞蛀果蛾的诱集效果,并利用诱捕效果高的紫色光源灯具监测种群发生动态。结果表明,紫色光源灯具诱捕效果显著好于其他6种光源;与紫色光源波长接近的青色和蓝色也有一定的诱捕效果,但远不及紫色光源。紫色是枸杞蛀果蛾的敏感光源。枸杞蛀果蛾2022年越冬代羽出高峰期在4月下旬,诱虫量高;6月初出现第2个高峰,但虫量较小。