Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects ...Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively.展开更多
The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents ...The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents of RAP and RAS in asphalt pavement may lead to durability issues,especially the fatigue cracking and thermal cracking.It is necessary to conduct a series of analyses on asphalt mixtures containing high RAP and RAS,and seek methods to enhance their long-term performance.This paper provides a comprehensive over-view of the long-term performance of recycled asphalt mixtures containing high contents of RAP and RAS.The findings in this research show that rutting resistance of high recycled asphalt mixtures is not a concern,whereas their resistance to fatigue and thermal cracking is not conclusive.Recycling agents can be used to improve the thermal cracking resistance of high recycled asphalt mixtures.An optimum decision on recycling agents will improve the durability properties of high recycled asphalt mixtures.It is recommended that to use a balanced mixture design approach with testing of the blended asphalt binders will provide better understanding of long-term performance of recycled asphalt mixtures containing high RAP and RAS.展开更多
In this work,n-pentane catalytic cracking over HZSM-5 zeolites was studied at 650°C under atmosphere pressure.A particular attention was paid to the measurement of n-pentane conversion,light olefins production,pr...In this work,n-pentane catalytic cracking over HZSM-5 zeolites was studied at 650°C under atmosphere pressure.A particular attention was paid to the measurement of n-pentane conversion,light olefins production,product distribution,coke deposit,etc.Several indexes were defined to evaluate the effects of operating conditions on the catalytic performance of HZSM-5 zeolites.It was found that decreasing the weight hourly space velocity,increasing the reactant partial pressure,and increasing the carrier gas flow rate could inhibit C-H bond breaking and enhance the C-C bond breaking and hydride transfer reactions,leading to reduced alkenes selectivity,which suppressed the formation of external coke and alleviated the deactivation of HZSM-5 zeolites.It was deduced that the catalytic stability of HZSM-5 zeolites was improved at the cost of alkenes selectivity.Compared with decreasing the weight hourly space velocity and increasing the reactant partial pressure,increasing the carrier gas flow rate could enhance the diffusion process and protect alkenes from being consumed in coke formation in order to improve the catalytic stability of HZSM-5 zeolites with less reduction of alkenes selectivity.展开更多
The positive-and negative-ion electrospray ionization(ESI)coupled with Fourier transform-ion cyclotron resonance mass spectrometry(FT-ICR MS)was employed to identify the chemical composition of heteroatomic compounds ...The positive-and negative-ion electrospray ionization(ESI)coupled with Fourier transform-ion cyclotron resonance mass spectrometry(FT-ICR MS)was employed to identify the chemical composition of heteroatomic compounds in four distillates of Fushun shale oil,and their catalytic cracking performance was investigated.There are nine classes of basic nitrogen compounds(BNCs)and eleven classes of non-basic heteroatomic compounds(NBHCs)in the different distillates.The dominant BNCs are mainly basic N1 class species.The dominant NBHCs are mainly acidic O2 and O1 class species in the300-350℃,350-400℃,and 400-450℃distillates,while the neutral N1,N1 O1 and N2 compounds become relatively abundant in the>450℃fraction.The basic N1 compounds and acidic O1 and O2 compounds are separated into different distillates by the degree of alkylation(different carbon number)but not by aromaticity(different double-bond equivalent values).The basic N1 O1 and N2 class species and neutral N1 and N2 class species are separated into different distillates by the degrees of both alkylation and aromaticity.After the catalytic cracking of Fushun shale oil,the classes of BNCs in the liquid products remain unchanged,while the classes and relative abundances of NBHCs vary significantly.展开更多
High-performance concrete (HPC) is stronger and more durable than conventional concrete. However, shrinkage and shrinkage cracking are common phenomena in HPC, especially early-age cracking. This study assessed earl...High-performance concrete (HPC) is stronger and more durable than conventional concrete. However, shrinkage and shrinkage cracking are common phenomena in HPC, especially early-age cracking. This study assessed early-age cracking of HPC for two mixtures using restrained ring tests. The two mixtures were produced with water/binder mass ratio (mw/mB) of 0.22 and 0.40, respectively. The results show that, with greater steel thickness, the higher degree of restraint resulted in a higher interface pressure and earlier cracking. With steel thickness of 6 mm, 19 mm, and 30 mm, the age of cracking were, respectively, 12 days, 8 days, and 5.4 days with the mw/mB = 0.22 mixture; and 22.5 days, 12.6 days, and 7.1 days with the mw/mB= 0.40 mixture. Cases of the same steel thickness show that the ring specimens with a thicker concrete wall crack later. With the mw/mB = 0.22 mixture, concrete walls with thicknesses of 37.5 mm, 75 mm, and 112.5 mm cracked at 3.4 days, 8.0 days, and 9.8 days, respectively; with the mw/mB = 0.40 mixture, the ages of cracking were 7.1 days, 12.6 days, and 16.0 days, respectively.展开更多
The cracking performance of semi-flexible pavement(SFP) was investigated by using the semi-circular bending(SCB) test in this paper. Thirteen grouting slurries were prepared. The compressive strength of these material...The cracking performance of semi-flexible pavement(SFP) was investigated by using the semi-circular bending(SCB) test in this paper. Thirteen grouting slurries were prepared. The compressive strength of these materials ranges from 3 to 100 MPa. The relationship between the compressive strength of the grouting slurry and the cracking property of SFP was obtained at different loading rates and different temperatures. The peak load, fracture energy(E), flexible index(FI), and cracking resistance index(CRI) were calculated to determine the material performance. The results show that the compressive strength of the grout influences the cracking behavior. With a higher comprehensive strength grouting slurry, the FI value of SFP decreased initially and then increased slightly at 25 ℃ in 50 mm/min. The CRI value decreased at the same time. E values changed just according to the test temperature and loading rate. The damage paths of SFP are different. The damage path of the SFP sample appears as diffuse damage at 1 mm/min at 60 ℃ or clean damage at 50 mm/min at 25 ℃. These findings indicate that there is a correlation between the compressive strength of grouting slurry and SFP cracking behavior. The cracking form is influenced by loading rate and temperature.展开更多
Energy Performance Contracting was introduced into China in the mid 1990s. Since western energy service companies came to China, their management pattern has undergone major changes. Why did such changes occur? Mainly...Energy Performance Contracting was introduced into China in the mid 1990s. Since western energy service companies came to China, their management pattern has undergone major changes. Why did such changes occur? Mainly because these companies encountered two difficulties in China: tax and financing.展开更多
The physical properties and microstructure of SUF are investigated to develop a highly effective cement matrix crack-patching material for concrete cracks. The SEM and XRD determination of hardened SUF shows that the ...The physical properties and microstructure of SUF are investigated to develop a highly effective cement matrix crack-patching material for concrete cracks. The SEM and XRD determination of hardened SUF shows that the microstructure of SUF is dense and compact with a lot of C-S-H gels and ettringite. Also, the mechanism of shrinkage compensating is discussed.展开更多
An experimental investigation was conducted to identify the characteristics of crack growth in high performance concrete (HPC) subjected to fire, including two parts of work, i.e. crack growth resistance determination...An experimental investigation was conducted to identify the characteristics of crack growth in high performance concrete (HPC) subjected to fire, including two parts of work, i.e. crack growth resistance determinations and cracking observations, using concrete of three strength grades 40 MPa, 70 MPa, and 110 MPa. The crack growth resistance curves (R-curves ) of HPC subjected to high temperatures were determined using notched three-point bend beam specimens of 100 mm×100 mm×300mm. The R-curve (crack growth resistance curve) flattening shows that the crack growth resistance has been significantly reduced by elevated temperature. Concrete with a higher strength grade has a steeper R-curve, with a higher fracture toughness but a shorter critical crack growth. The shorter critical crack growth means that concrete of a higher strength grade has a more brittle behavior. The concrete cracking observations reveal that the consequences of rapid heating are quite different from those of slow heating. For slow heating at a rate of 0.5℃/min, HPC suffered no obvious cracking below 600℃ even if it had a high moisture content. Explosive spalling is an extreme case of the internal cracking driven mainly by vapor pressure. All these results confirmed the vapor pressure mechanism for spading behavior which should be more significant for denser concrete. The crack growth ranges obtained from the R-curve determination results are in good agreement with those measured in the concrete cracking observations.展开更多
Automatic detection and assessment of surface cracks are beneficial for understanding the mechanical performance of ultra-high performance concrete(UHPC).This study detects crack evolution using a novel dynamic mode d...Automatic detection and assessment of surface cracks are beneficial for understanding the mechanical performance of ultra-high performance concrete(UHPC).This study detects crack evolution using a novel dynamic mode decomposition(DMD)method.In this method,the sparse matrix‘determined’from images is used to reconstruct the foreground that contains cracks,and the global threshold method is adopted to extract the crack patterns.The application of the DMD method to the three-point bending test demonstrates the efficiency in inspecting cracks with high accuracy.Accordingly,the geometric features,including the area and its projection in two major directions,are evaluated over time.The relationship between the geometric properties of cracks and load-displacement curves of UHPC is discussed.Due to the irregular shape of cracks in the spatial domain,the cracks are then transformed into the Fourier domain to assess their development.Results indicate that crack patterns in the Fourier domain exhibit a distinct concentration around a central position.Moreover,the power spectral density of cracks exhibits an increasing trend over time.The investigation into crack evolution in both the spatial and Fourier domains contributes significantly to elucidating the mechanical behavior of UHPC.展开更多
Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operat...Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operating point and process constraints, which is related to the margins of design variables. Because of various ciisturbances in chemical processes, some distances must be reserved for fluctuations of process variables and the optimum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achied(ed while that of dynamic optimization can be really achieved. In this study, the steady-state optimizationand dynamic optimization are used, and the potential benefit-is divided into achievable benefit for profit and unachievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected.展开更多
The correlation between Si content (0.1%-0.5%, mass fraction) and pulse laser welding performance of AI-Mn-Mg aluminum alloy sheets was studied. The sheets were fabricated in the laboratory, with gauge of 0.45 mm, H...The correlation between Si content (0.1%-0.5%, mass fraction) and pulse laser welding performance of AI-Mn-Mg aluminum alloy sheets was studied. The sheets were fabricated in the laboratory, with gauge of 0.45 mm, H16 temper by pulse laser welding. It was found that no cracking existed in the welding pool as Si content was below 0.34%. However, when the Si content increased to 0.47%, cracking formed in the welding pool. Microstructure observations indicated that residual eutectic phases distributed at the grain boundaries were discontinuous and appeared to be small particles in lower Si content alloys; the residual eutectic phases distributed at the grain boundaries were partially continuous and appeared to be films in higher Si content alloys. These phenomena could explain why Si content adversely affected the laser welding performance.展开更多
The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix develop...The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.展开更多
Polypropylene fiber and expansive agent are used in airport concrete to improve its shrinkage cracking resistance and mechanical properties.The concrete specimens with amount content of polypropylene fiber or expansiv...Polypropylene fiber and expansive agent are used in airport concrete to improve its shrinkage cracking resistance and mechanical properties.The concrete specimens with amount content of polypropylene fiber or expansive agent or both of them are prepared.The morphology of specimens is observed by scanning electron microscope,the time when the first crack occurred is recorded through slap test,and the mechanical properties such as compressive strength and impact energies of concrete are measured.The results show that polypropylene fiber in concrete can reduce the shrinkage and delay the first crack,improve the impact resistance obviously,and improve the compressive strength slightly.Expansive agent can compensate the shrinkage and reduce cracks of concrete pavement markedly,and improve the mechanical properties of concrete pavement slightly.The study provides recommendations for cracking control of airport concrete pavement in the future.展开更多
Based on the fluidity, strength, heat of hydration and loop crack resistance experiment of multi-powder paste, the components and proportion of multi-powder were optimized and the concrete properties were studied. The...Based on the fluidity, strength, heat of hydration and loop crack resistance experiment of multi-powder paste, the components and proportion of multi-powder were optimized and the concrete properties were studied. The multi-powder consists of limestone powder, slag, fly ash and moderate heat Portland cement (PMH cement). The results show that the compressive strength of the multi-powder paste and mortar is close to those of PMH cement, fly ash paste and mortar currently used in dam concrete, yet the flexural strength is relatively higher. The multi-powder paste is featured by larger fluidity, lower heat of hydration and delayed cracking time. In comparison, less unit water consumption and cement is used in multi-powder concrete, and under premise of equal mechanical performance, deformation, thermal performance and durability, the adiabatic temperature rise at 28 d is reduced by 2 ℃. In this way, the crack resistance is improved and it is feasible both technically and economically to produce HPC for dam concrete.展开更多
Although there are many kinds of fracture tests to choose from in evaluating the crack resistance of asphalt mixture,the semi-circular bending(SCB)test has attracted a lot of attention in the academic road engineering...Although there are many kinds of fracture tests to choose from in evaluating the crack resistance of asphalt mixture,the semi-circular bending(SCB)test has attracted a lot of attention in the academic road engineering community because of its simplicity,stability,and flexibility in testing and evaluation.The SCB test has become a common method to study the cracking resistance of asphalt mixture in recent years.This paper mainly summarizes the overview of the SCB test,summarizes some research results and common characterization parameters of the SCB test method in monotone test and fatigue test in recent years,and predicts and suggests the research direction of the SCB test in the future.It is found that the research on the monotonic SCB test is more comprehensive,and the research on the SCB fatigue test needs to be further improved in the aspects of loading mode,characterization parameter selection,and so on.Researchers can flexibly adjust the geometric dimensions and the test parameters of semi-cylindrical specimens,and conduct comprehensive analysis combined with the results of numerical simulation.The crack resistance of asphalt mixture can be comprehensively evaluated by fracture energy,fracture toughness,stiffness,flexibility index and other fracture indicators,combined with the crack propagation of the specimen.The analysis of numerical simulation can confirm the test results.In order to standardize the setting of fatigue parameters for future application,it is necessary to standardize the setting of bending performance.展开更多
基金the Key Research and Development Program of Hubei Province(2022BCA082 and 2022BCA077).
文摘Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively.
基金supported by National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas) (Grant No.22FAA02811)Pearl River Talent Plan for the Introduction of High-level Talents (Young Top-notch Talents) (Grant No.2021QN02G744)+1 种基金National Natural Science Foundation of China (Grant No.52178426)the Fundamental Research Funds for the Central Universities (Grant No.SCUT 2022ZYGXZR066 and 2023ZYGXZR001).
文摘The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents of RAP and RAS in asphalt pavement may lead to durability issues,especially the fatigue cracking and thermal cracking.It is necessary to conduct a series of analyses on asphalt mixtures containing high RAP and RAS,and seek methods to enhance their long-term performance.This paper provides a comprehensive over-view of the long-term performance of recycled asphalt mixtures containing high contents of RAP and RAS.The findings in this research show that rutting resistance of high recycled asphalt mixtures is not a concern,whereas their resistance to fatigue and thermal cracking is not conclusive.Recycling agents can be used to improve the thermal cracking resistance of high recycled asphalt mixtures.An optimum decision on recycling agents will improve the durability properties of high recycled asphalt mixtures.It is recommended that to use a balanced mixture design approach with testing of the blended asphalt binders will provide better understanding of long-term performance of recycled asphalt mixtures containing high RAP and RAS.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Grant No.21908010)the Education Department of Jilin Province(Grant No.JJKH20191314KJ)the Changchun University of Technology.
文摘In this work,n-pentane catalytic cracking over HZSM-5 zeolites was studied at 650°C under atmosphere pressure.A particular attention was paid to the measurement of n-pentane conversion,light olefins production,product distribution,coke deposit,etc.Several indexes were defined to evaluate the effects of operating conditions on the catalytic performance of HZSM-5 zeolites.It was found that decreasing the weight hourly space velocity,increasing the reactant partial pressure,and increasing the carrier gas flow rate could inhibit C-H bond breaking and enhance the C-C bond breaking and hydride transfer reactions,leading to reduced alkenes selectivity,which suppressed the formation of external coke and alleviated the deactivation of HZSM-5 zeolites.It was deduced that the catalytic stability of HZSM-5 zeolites was improved at the cost of alkenes selectivity.Compared with decreasing the weight hourly space velocity and increasing the reactant partial pressure,increasing the carrier gas flow rate could enhance the diffusion process and protect alkenes from being consumed in coke formation in order to improve the catalytic stability of HZSM-5 zeolites with less reduction of alkenes selectivity.
基金supported by the National Natural Science Foundation of China(21776312)。
文摘The positive-and negative-ion electrospray ionization(ESI)coupled with Fourier transform-ion cyclotron resonance mass spectrometry(FT-ICR MS)was employed to identify the chemical composition of heteroatomic compounds in four distillates of Fushun shale oil,and their catalytic cracking performance was investigated.There are nine classes of basic nitrogen compounds(BNCs)and eleven classes of non-basic heteroatomic compounds(NBHCs)in the different distillates.The dominant BNCs are mainly basic N1 class species.The dominant NBHCs are mainly acidic O2 and O1 class species in the300-350℃,350-400℃,and 400-450℃distillates,while the neutral N1,N1 O1 and N2 compounds become relatively abundant in the>450℃fraction.The basic N1 compounds and acidic O1 and O2 compounds are separated into different distillates by the degree of alkylation(different carbon number)but not by aromaticity(different double-bond equivalent values).The basic N1 O1 and N2 class species and neutral N1 and N2 class species are separated into different distillates by the degrees of both alkylation and aromaticity.After the catalytic cracking of Fushun shale oil,the classes of BNCs in the liquid products remain unchanged,while the classes and relative abundances of NBHCs vary significantly.
文摘High-performance concrete (HPC) is stronger and more durable than conventional concrete. However, shrinkage and shrinkage cracking are common phenomena in HPC, especially early-age cracking. This study assessed early-age cracking of HPC for two mixtures using restrained ring tests. The two mixtures were produced with water/binder mass ratio (mw/mB) of 0.22 and 0.40, respectively. The results show that, with greater steel thickness, the higher degree of restraint resulted in a higher interface pressure and earlier cracking. With steel thickness of 6 mm, 19 mm, and 30 mm, the age of cracking were, respectively, 12 days, 8 days, and 5.4 days with the mw/mB = 0.22 mixture; and 22.5 days, 12.6 days, and 7.1 days with the mw/mB= 0.40 mixture. Cases of the same steel thickness show that the ring specimens with a thicker concrete wall crack later. With the mw/mB = 0.22 mixture, concrete walls with thicknesses of 37.5 mm, 75 mm, and 112.5 mm cracked at 3.4 days, 8.0 days, and 9.8 days, respectively; with the mw/mB = 0.40 mixture, the ages of cracking were 7.1 days, 12.6 days, and 16.0 days, respectively.
基金Funded by National Natural Science Foundation of China (No. 52078241)the Natural Science Foundation of Jiangsu Province (No. BK20210058)。
文摘The cracking performance of semi-flexible pavement(SFP) was investigated by using the semi-circular bending(SCB) test in this paper. Thirteen grouting slurries were prepared. The compressive strength of these materials ranges from 3 to 100 MPa. The relationship between the compressive strength of the grouting slurry and the cracking property of SFP was obtained at different loading rates and different temperatures. The peak load, fracture energy(E), flexible index(FI), and cracking resistance index(CRI) were calculated to determine the material performance. The results show that the compressive strength of the grout influences the cracking behavior. With a higher comprehensive strength grouting slurry, the FI value of SFP decreased initially and then increased slightly at 25 ℃ in 50 mm/min. The CRI value decreased at the same time. E values changed just according to the test temperature and loading rate. The damage paths of SFP are different. The damage path of the SFP sample appears as diffuse damage at 1 mm/min at 60 ℃ or clean damage at 50 mm/min at 25 ℃. These findings indicate that there is a correlation between the compressive strength of grouting slurry and SFP cracking behavior. The cracking form is influenced by loading rate and temperature.
文摘Energy Performance Contracting was introduced into China in the mid 1990s. Since western energy service companies came to China, their management pattern has undergone major changes. Why did such changes occur? Mainly because these companies encountered two difficulties in China: tax and financing.
基金Funded by Railway Ministry Scientific Research Item
文摘The physical properties and microstructure of SUF are investigated to develop a highly effective cement matrix crack-patching material for concrete cracks. The SEM and XRD determination of hardened SUF shows that the microstructure of SUF is dense and compact with a lot of C-S-H gels and ettringite. Also, the mechanism of shrinkage compensating is discussed.
基金The authors gratefully acknowledge the financial support of both the National Natural Science Foundation of China(project No.50108001)the Pandeng Foundation Project of Beijing Jiao Tong University.
文摘An experimental investigation was conducted to identify the characteristics of crack growth in high performance concrete (HPC) subjected to fire, including two parts of work, i.e. crack growth resistance determinations and cracking observations, using concrete of three strength grades 40 MPa, 70 MPa, and 110 MPa. The crack growth resistance curves (R-curves ) of HPC subjected to high temperatures were determined using notched three-point bend beam specimens of 100 mm×100 mm×300mm. The R-curve (crack growth resistance curve) flattening shows that the crack growth resistance has been significantly reduced by elevated temperature. Concrete with a higher strength grade has a steeper R-curve, with a higher fracture toughness but a shorter critical crack growth. The shorter critical crack growth means that concrete of a higher strength grade has a more brittle behavior. The concrete cracking observations reveal that the consequences of rapid heating are quite different from those of slow heating. For slow heating at a rate of 0.5℃/min, HPC suffered no obvious cracking below 600℃ even if it had a high moisture content. Explosive spalling is an extreme case of the internal cracking driven mainly by vapor pressure. All these results confirmed the vapor pressure mechanism for spading behavior which should be more significant for denser concrete. The crack growth ranges obtained from the R-curve determination results are in good agreement with those measured in the concrete cracking observations.
基金The first author would like to acknowledge the support from 2022 Open Project of Failure Mechanics and Engineering Disaster Prevention,Key Laboratory of Sichuan Province,No.FMEDP202204The authors acknowledge the financial support from the National Natural Science Foundation of China(Grant Nos.52108379 and 51908504)+3 种基金Youth Top Talent Program,Education Department of Hebei Province(No.BJK2022047)Natural Science Foundation of Hebei Province(No.E2021210002)Scientific Research Foundation for the Returned Overseas Scholars,Hebei Province(No.C20210307)Innovation Research Group Program of Natural Science,Hebei Province(No.E2021210099).
文摘Automatic detection and assessment of surface cracks are beneficial for understanding the mechanical performance of ultra-high performance concrete(UHPC).This study detects crack evolution using a novel dynamic mode decomposition(DMD)method.In this method,the sparse matrix‘determined’from images is used to reconstruct the foreground that contains cracks,and the global threshold method is adopted to extract the crack patterns.The application of the DMD method to the three-point bending test demonstrates the efficiency in inspecting cracks with high accuracy.Accordingly,the geometric features,including the area and its projection in two major directions,are evaluated over time.The relationship between the geometric properties of cracks and load-displacement curves of UHPC is discussed.Due to the irregular shape of cracks in the spatial domain,the cracks are then transformed into the Fourier domain to assess their development.Results indicate that crack patterns in the Fourier domain exhibit a distinct concentration around a central position.Moreover,the power spectral density of cracks exhibits an increasing trend over time.The investigation into crack evolution in both the spatial and Fourier domains contributes significantly to elucidating the mechanical behavior of UHPC.
基金Supported by the National Natural Science Foundation of China(21006127)the National Basic Research Program of China(2012CB720500)the Science Foundation of China University of Petroleum(KYJJ2012-05-28)
文摘Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operating point and process constraints, which is related to the margins of design variables. Because of various ciisturbances in chemical processes, some distances must be reserved for fluctuations of process variables and the optimum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achied(ed while that of dynamic optimization can be really achieved. In this study, the steady-state optimizationand dynamic optimization are used, and the potential benefit-is divided into achievable benefit for profit and unachievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected.
基金Project(2011KJZD04)supported by the CHINALCO Science and Development Foundation,China
文摘The correlation between Si content (0.1%-0.5%, mass fraction) and pulse laser welding performance of AI-Mn-Mg aluminum alloy sheets was studied. The sheets were fabricated in the laboratory, with gauge of 0.45 mm, H16 temper by pulse laser welding. It was found that no cracking existed in the welding pool as Si content was below 0.34%. However, when the Si content increased to 0.47%, cracking formed in the welding pool. Microstructure observations indicated that residual eutectic phases distributed at the grain boundaries were discontinuous and appeared to be small particles in lower Si content alloys; the residual eutectic phases distributed at the grain boundaries were partially continuous and appeared to be films in higher Si content alloys. These phenomena could explain why Si content adversely affected the laser welding performance.
文摘The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.
基金Supported by the High-Level Talent Funding and Construction System of Jiangsu Province(JZ-010,2013ZD12)the China Post-Doctoral Science Foundation(2014M551588,1301057B)the National High-Tech Research and Development Program of China("863"Program)(2009AA03Z508)
文摘Polypropylene fiber and expansive agent are used in airport concrete to improve its shrinkage cracking resistance and mechanical properties.The concrete specimens with amount content of polypropylene fiber or expansive agent or both of them are prepared.The morphology of specimens is observed by scanning electron microscope,the time when the first crack occurred is recorded through slap test,and the mechanical properties such as compressive strength and impact energies of concrete are measured.The results show that polypropylene fiber in concrete can reduce the shrinkage and delay the first crack,improve the impact resistance obviously,and improve the compressive strength slightly.Expansive agent can compensate the shrinkage and reduce cracks of concrete pavement markedly,and improve the mechanical properties of concrete pavement slightly.The study provides recommendations for cracking control of airport concrete pavement in the future.
基金Project(50879095) supported by the National Natural Science Foundation of China
文摘Based on the fluidity, strength, heat of hydration and loop crack resistance experiment of multi-powder paste, the components and proportion of multi-powder were optimized and the concrete properties were studied. The multi-powder consists of limestone powder, slag, fly ash and moderate heat Portland cement (PMH cement). The results show that the compressive strength of the multi-powder paste and mortar is close to those of PMH cement, fly ash paste and mortar currently used in dam concrete, yet the flexural strength is relatively higher. The multi-powder paste is featured by larger fluidity, lower heat of hydration and delayed cracking time. In comparison, less unit water consumption and cement is used in multi-powder concrete, and under premise of equal mechanical performance, deformation, thermal performance and durability, the adiabatic temperature rise at 28 d is reduced by 2 ℃. In this way, the crack resistance is improved and it is feasible both technically and economically to produce HPC for dam concrete.
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(No.51968006).
文摘Although there are many kinds of fracture tests to choose from in evaluating the crack resistance of asphalt mixture,the semi-circular bending(SCB)test has attracted a lot of attention in the academic road engineering community because of its simplicity,stability,and flexibility in testing and evaluation.The SCB test has become a common method to study the cracking resistance of asphalt mixture in recent years.This paper mainly summarizes the overview of the SCB test,summarizes some research results and common characterization parameters of the SCB test method in monotone test and fatigue test in recent years,and predicts and suggests the research direction of the SCB test in the future.It is found that the research on the monotonic SCB test is more comprehensive,and the research on the SCB fatigue test needs to be further improved in the aspects of loading mode,characterization parameter selection,and so on.Researchers can flexibly adjust the geometric dimensions and the test parameters of semi-cylindrical specimens,and conduct comprehensive analysis combined with the results of numerical simulation.The crack resistance of asphalt mixture can be comprehensively evaluated by fracture energy,fracture toughness,stiffness,flexibility index and other fracture indicators,combined with the crack propagation of the specimen.The analysis of numerical simulation can confirm the test results.In order to standardize the setting of fatigue parameters for future application,it is necessary to standardize the setting of bending performance.