Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
The possible configurations of pyrrole absorbed on a Si(100)surface have been investigated by x-ray photoelectron spectroscopy(XPS)and near-edge x-ray absorption fine structure(NEXAFS)spectra.The C-1s XPS and NEXAFS s...The possible configurations of pyrrole absorbed on a Si(100)surface have been investigated by x-ray photoelectron spectroscopy(XPS)and near-edge x-ray absorption fine structure(NEXAFS)spectra.The C-1s XPS and NEXAFS spectra of these adsorption configurations have been calculated by using the density functional theory(DFT)method and fullcore hole(FCH)approximation to investigate the relationship between the adsorption configurations and the spectra.The result shows that the XPS and NEXAFS spectra are structurally dependent on the configurations of pyrrole absorbed on the Si(100)surface.Compared with the XPS,the NEXAFS spectra are relatively sensitive to the adsorption configurations and can accurately identify them.The NEXAFS decomposition spectra produced by non-equivalent carbon atoms have also been calculated and show that the spectral features vary with the diverse types of carbon atoms and their structural environments.展开更多
Peroxodiphosphate anion (a powerful oxidant) can be formed in a special water-based cleaning agent through an electrochemical reaction on boron-doped diamond electrodes. This electrochemical reaction was applied dur...Peroxodiphosphate anion (a powerful oxidant) can be formed in a special water-based cleaning agent through an electrochemical reaction on boron-doped diamond electrodes. This electrochemical reaction was applied during the oxidation,decomposition, and removal of organic contaminations on a silicon wafer surface, and it was used as the first step in the diamond electrochemical cleaning technique (DECT). The cleaning effects of DECT were compared with the RCA cleaning technique, including the silicon surface chemical composition that was observed with X-ray photoelectron spectroscopy and the morphology observed with atomic force microscopy. The measurement results show that the silicon surface cleaned by DECT has slightly less organic residue and lower micro-roughness,so the new technique is more effective than the RCA cleaning technique.展开更多
Large scale homogenous growth of microcrystalline silicon (μ.c-Si:H) on cheap substrates by inductively coupled plasma (ICP) of Ar diluted Sill4 has been studied. From XRD and Raman spectrum, we find that substr...Large scale homogenous growth of microcrystalline silicon (μ.c-Si:H) on cheap substrates by inductively coupled plasma (ICP) of Ar diluted Sill4 has been studied. From XRD and Raman spectrum, we find that substrates can greatly affect the crystalline orientation, and the μc-Si:H films are comprised of small particles. Thickness detection by surface profilometry shows that the thin μc-Si:H films are homogenous in large scale. Distributions of both ion density and electron temperature are found to be uniform in the vicinity of substrate by means of diagnosis of Langmuir probe. Based on these experimental results, it can be proposed that rough surfaces play important roles in the crystalline network formation and Ar can affect the reaction process and improve the characteristics of μc-Si:H films. Also, ICP reactor can deposit the thin film in large scale.展开更多
Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface ...Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface generation method are poor, because of the high surface recombination caused by deep etching in the conventional surface generation method for BS. In this work, a modified wet chemical etching solution with additives was developed. A homogeneous BS layer with random porous structure was obtained from the modified solution in only one step at room temperature. The BS layer had low reflectivity and shallow etching depth. The additive in the etch solution performs the function of pH-modulation. After 16-min etching, the etching depth in the samples was approximately 200 nm, and the spectrum-weighted-reflectivity in the range from 300 nm to 1200 nm was below 5%. BS solar cells were fabricated in the production line. The decreased etching depth can improve the electrical performance of solar cells because of the decrease in surface recombination. An efficiency of 15.63% for the modified etching BS solar cells was achieved on a large area, p- type single crystalline silicon substrate with a 624.32-mV open circuit voltage and a 77.88% fill factor.展开更多
The surface grinding temperature of the silicon wafer ground by diamond wheels is studied.Rudimentally,the properties of the surface grinding temperature generated by two grinding methods,ground by straight and cup wh...The surface grinding temperature of the silicon wafer ground by diamond wheels is studied.Rudimentally,the properties of the surface grinding temperature generated by two grinding methods,ground by straight and cup wheels respectively,are analyzed.In addition,considering the effects of grain size and grinding depth on surface grinding temperature during these two grinding processes,significant results and conclusions are obtained from experimental research.展开更多
AIM: To prepare a new-type soft intraocular lens (IOL) that silicone intraocular lenses (IOLs) were modified by surface modification technique to assess IOLs biocompatibility. METHODS: With the technique of ion beam c...AIM: To prepare a new-type soft intraocular lens (IOL) that silicone intraocular lenses (IOLs) were modified by surface modification technique to assess IOLs biocompatibility. METHODS: With the technique of ion beam combined with low temperature and low pressure plasma, the surface characteristics of the IOLs including physical and optical properties were determined by the instruments of IOLs resolution, UV/VIS scanning spectrophotometer, contact angle measurement system, electron spectroscopy for chemical analysis (ESCA) and scanning electron microscope (SEM). RESULTS: The color of titanium (Ti) modified IOLs was light yellow and that of titanium nitride (TiN) modified IOLs was light brown. The absorptive degree of ultraviolet rays and the hydrophilicity of the surfaces of modified IOLs were increased, and appeared suitable chemical compositions. The resolution of unmodified and modified IOLs reached normal standard. The surfaces of unmodified and Ti-modified IOLs appeared uniform. The surfaces of TIN-modified IOLs presented fine porcelain structure. CONCLUSION: The optical properties of all IOLs and the surface morphology of the modified IOLs were not affected by modification processes. The surface properties of the modified IOLs were improved.展开更多
High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or micro...High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm^2.This work aims to enrich the variety of HSFLs-containing hierarchical microstructures,by femtosecond laser(pulse duration:457 fs,wavelength:1045 nm,and repetition rate:100 kHz)in liquids(water and acetone)at laser fluence of 1.7 J/cm^2.The period of Si-HSFLs in the range of 110–200 nm is independent of the scanning speeds(0.1,0.5,1 and 2 mm/s),line intervals(5,15 and 20μm)of scanning lines and scanning directions(perpendicular or parallel to light polarization direction).It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization,both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50°as compared to those of normal HSFLSs are found on the microstructures with height gradients.Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs.The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs.On the basis of our findings and previous reports,a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed,including thermal melting with the concomitance of ultrafast cooling in liquids,transformation of the molten layers into ripples and nanotips by surface plasmon polaritons(SPP)and second-harmonic generation(SHG),and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.展开更多
The forms of phosphorus and silicon in the natural grain sizes surface sediments of the southern Bohai Sea were studied. In sediments, the organic matter bound form of phosphorus was the main form of transferable phos...The forms of phosphorus and silicon in the natural grain sizes surface sediments of the southern Bohai Sea were studied. In sediments, the organic matter bound form of phosphorus was the main form of transferable phosphorus and ranged from 0.37 μmol/g to 1.57 μmol/g, accounting for 10.7% of the total phosphorus, others were the carbonate bound form, iron manganese oxide bound form and ion exchange able form; the transferable form of phosphorus accounted for 19.2% of the total phosphorus. Silicon’s carbonate bound form was predominant over others among its transferable forms, and content ranged from 1.55 μmol/g to 8.94 μmol/g, accounting for 0.05% of the total silicon; the total amount of transferable silicon forms accounted for only 0.12% of the total silicon. Therefore, 19.2% of the total phosphorus and 0.12% of the total silicon contained in the surface sediments of the southern Bohai Sea could participate in the biogeochemical cycling.展开更多
Ag island films with different sizes are deposited on hydrogenated amorphous silicon carbide (a-SiC:H) films, and the influences of Ag island films on the optical properties of the tx-SiC:H films are investigated....Ag island films with different sizes are deposited on hydrogenated amorphous silicon carbide (a-SiC:H) films, and the influences of Ag island films on the optical properties of the tx-SiC:H films are investigated. Atomic force microscope images show that Ag nanoislands are formed after Ag coating, and the size of the Ag islands increases with increasing Ag deposition time. The extinction spectra indicate that two resonance absorption peaks which correspond to out-of-plane and in-plane surface plasmon modes of the Ag island films are obtained, and the resonance peak shifts toward longer wavelength with increasing Ag island size. The photoluminescence (PL) enhancement or quenching depends on the size of Ag islands, and PL enhancement by 1.6 times on the main PL band is obtained when the sputtering time is 10 min. Analyses show that the influence of surface plasmons on the PL of a-SiC:H is determined by the competition between the scattering and absorption of Ag islands, and PL enhancement is obtained when scattering is the main interaction between the Ag islands and incident light.展开更多
In the framework of density functional theory (DFT), we have studied the electronic properties of alkene/alkyne- hydrosilylated silicon nanocrystals (Si NCs) in the size range from 0.8 nm to 1.6 nm. Among the alke...In the framework of density functional theory (DFT), we have studied the electronic properties of alkene/alkyne- hydrosilylated silicon nanocrystals (Si NCs) in the size range from 0.8 nm to 1.6 nm. Among the alkenes with all kinds of functional groups considered in this work, only those containing -NH2 and -C4H3S lead to significant hydrosilylation- induced changes in the gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of an Si NC at the ground state. The quantum confinement effect is dominant for all of the alkene- hydrosilylated Si NCs at the ground state. At the excited state, the prevailing effect of surface chemistry only occurs at the smallest (0.8 nm) Si NCs hydrosilylated with alkenes containing -NH2 and -C4H3S. Although the alkyne hydrosilylation gives rise to a more significant surface chemistry effect than alkene hydrosilylation, the quantum confinement effect remains dominant for alkyne-hydrosilylated Si NCs at the ground state. However, at the excited state, the effect of surface chemistry induced by the hydrosilylation with conjugated alkynes is strong enough to prevail over that of quantum confinement.展开更多
In this paper, we extend the concept of back surface recombination through a study of a silicon mono facial solar cell in static regime and under polychromatic illumination. Back surface recombination velocities noted...In this paper, we extend the concept of back surface recombination through a study of a silicon mono facial solar cell in static regime and under polychromatic illumination. Back surface recombination velocities noted Sbe, Sbj and Sbr are determined for which respectively we derived, the power, the fill factor and the conversion efficiency, that become constant whatever the thickness of the solar cell. We have then obtained the expression of the minority carrier’s density in the base from the continuity equation. We then have determined the photocurrent density, the photo voltage, the power, the fill factor and finally the conversion efficiency.展开更多
The curved surface (CS) effect on nanosilicon plays a main role in the activation for emission and photonic manipulation. The CS effect breaks the symmetrical shape of nanosilicon on which some bonds can produce loc...The curved surface (CS) effect on nanosilicon plays a main role in the activation for emission and photonic manipulation. The CS effect breaks the symmetrical shape of nanosilicon on which some bonds can produce localized electron states in the band gap. The investigation in calculation and experiment demonstrates that the different curvatures can form the characteristic electron states for some special bonding on the nanosilicon surface, which are related to a series of peaks in photoluminecience (PL), such as LN, LNO, Lo1, and Lo2 lines in PL spectra due to Si-N, Si-NO, Si=O, and Si-O-Si bonds on curved surface, respectively. Si-Yb bond on curved surface of Si nanostructures can provide the localized states in the band gap deeply and manipulate the emission wavelength into the window of optical communication by the CS effect, which is marked as the Lyb line of electroluminescence (EL) emission.展开更多
The purpose of the present work is to quantify the influences of the discrete nature, the surface effects, and the large deformation on the bending resonant properties of long and ultrathin (100) silicon nanocantile...The purpose of the present work is to quantify the influences of the discrete nature, the surface effects, and the large deformation on the bending resonant properties of long and ultrathin (100) silicon nanocantilevers. We accomplish this by using an analytical semi-continuum Keating model within the framework of nonlinear, finite deformation kinematics. The semi-continuum model shows that the elastic behaviors of the silicon nanocantilevers are size-dependent and surface- dependent, which agrees well with the molecular dynamics results. It also indicates that the dominant effect on the fundamental resonant frequency shift of the silicon nanocantilever is adsorption-induced surface stress, followed by the discrete nature and surface reconstruction, whereas surface relaxation has the least effect. In particular, it is found that a large deformation tends to increase the nonlinear fundamental frequency of the silicon nanocantilever, depending not only on its size but also on the surface effects. Finally, the resonant frequency shifts due to the adsorption-induced surface stress predicted by the current model are quantitatively compared with those obtained from the experimental measurement and the other existing approach. It is noticed that the length-to-thickness ratio is the key parameter that correlates the deviations in the resonant frequencies predicted from the current model and the empirical formula.展开更多
The monochromatic absorption coefficient of silicon, inducing the light penetration depth into the base of the solar cell, is used to determine the optimum thickness necessary for the production of a large photocurren...The monochromatic absorption coefficient of silicon, inducing the light penetration depth into the base of the solar cell, is used to determine the optimum thickness necessary for the production of a large photocurrent. The absorption-generation-diffusion and recombination (bulk and surface) phenomena are taken into account in the excess minority carrier continuity equation. The solution of this equation gives the photocurrent according to ab</span><span style="font-family:Verdana;">sorption and electronic parameters. Then from the obtained short circuit</span><span style="font-family:Verdana;"> photocurrent expression, excess minority carrier back surface recombination velocity is determined, function of the monochromatic absorption coefficient at a given wavelength. This latter plotted versus base thickness yields the optimum thickness of an n</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;">-p-p</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;"> solar cell, for each wavelength, which is in the range close to the energy band gap of the silicon material. This study provides a tool for improvement solar cell manufacture processes, through the mathematical relationship obtained from the thickness limit according to the absorption coefficient that allows base width optimization.展开更多
Silicone coatings have been used in this study. The method adopted was the liquid drop analysis on the coated fabrics. The contact angle between a liquid drop and the fabric surface was measured with two liquids conti...Silicone coatings have been used in this study. The method adopted was the liquid drop analysis on the coated fabrics. The contact angle between a liquid drop and the fabric surface was measured with two liquids continuously and recorded by a computer. The surface energy was calculated by means of Owens method.Kinetic measurement was adopted. The contact angle of liquids on the fabric coated silicone decreased with time was found. A compound solution DX has been found, so that the contact angle of the liquids on the fabric washed with DX becomes constant, and the surface energy of the fabric can be reduced to below 15 mJ/m2.展开更多
New expressions of back surface recombination of excess minority carriers in the base of silicon solar are expressed dependent on both, the thickness and the diffusion coefficient which is in relationship with the dop...New expressions of back surface recombination of excess minority carriers in the base of silicon solar are expressed dependent on both, the thickness and the diffusion coefficient which is in relationship with the doping rate. The optimum thickness thus obtained from the base of the solar cell allows the saving of the amount of material needed in its manufacture without reducing its efficiency.展开更多
In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron dopin...In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron doping in the LBSF, much higher doping concentration was observed for the B-LBSF over the Al-LBSF. Higher doping concentration in the LBSF is expected to lead to better rear passivation and lower rear contact resistance. Based on one thousand pieces of solar cells for each type, it was found that the rear passivated crystalline silicon solar cells with B-LBSF showed statistical improvement in their photovoltaic properties over those with Al-LBSF.展开更多
To improve the weak corrosion resistance of silicon steel to acid solution and alkaline solution with high temperature,a stable hierarchical micro/nanostructure superhydrophobic surface with myriad irregular micro-sca...To improve the weak corrosion resistance of silicon steel to acid solution and alkaline solution with high temperature,a stable hierarchical micro/nanostructure superhydrophobic surface with myriad irregular micro-scale hump and sheet-like nanostructure was successfully prepared on silicon steel by a simple,efficient and facile operation in large-area laser marking treatment.The morphology,composition,wettability of the as-prepared surface were studied.The superhydrophobic performance of the surface was investigated as well.Additionally,the corrosion resistance of the superhydrophobic surface to acidic solutions at room temperature and alkaline solutions at high temperature (80 ℃) was carefully explored.The corrosion resistance mechanism was clarified.Moreover,considering the practical application of the surface in the future,the hardness of the hierarchical micro/nanostructure superhydrophobic surface was studied.The experimental results indicate that the hierarchical micro/nanostructure surface with texture spacing of 100 μm treated at laser scanning speed of 100 mms/ presents superior superhydrophobicity after decreasing surface energy.The contact angle can be as high as 156.6°.Additionally,the superhydrophobic surface provide superior and stable anticorrosive protection for silicon steel in various corrosive environments.More importantly,the prepared structure of the surface shows high hardness,which ensures that the surface of the superhydrophobic surface cannot be destroyed easily.The surface is able to maintain great superhydrophobic performance when it suffers from slight impacting and abrasion.展开更多
Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness...Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness of the film was measured by atomic force microscope (AFM) and the relevant results were analyzed using the surface smoothing mechanism of film deposition. It is shown that an α-Si:H film with smooth surface morphology can be obtained by increasing the PH3/N2 gas flow rate for 10% in a high frequency (HF) mode. For high power, however, the surface morphology of the film will deteriorate when the Sill4 gas flow rate increases. Furthermore, optimized parameters of PECVD for growing the film with smooth surface were obtained to be Sill4:25 sccm (standard cubic centimeters per minute), At: 275 sccm, 10%PH3/N2:2 sccm, HF power: 15 W, pressure: 0.9 Torr and temperature: 350℃. In addition, for in thick fihn deposition on silicon substrate, a N20 and NH3 preprocessing method is proposed to suppress the formation of gas bubbles.展开更多
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金Project supported by the Shandong Provincial Natural Science Foundation,China(Grant Nos.ZR2022MA025 and ZR2020MA077).
文摘The possible configurations of pyrrole absorbed on a Si(100)surface have been investigated by x-ray photoelectron spectroscopy(XPS)and near-edge x-ray absorption fine structure(NEXAFS)spectra.The C-1s XPS and NEXAFS spectra of these adsorption configurations have been calculated by using the density functional theory(DFT)method and fullcore hole(FCH)approximation to investigate the relationship between the adsorption configurations and the spectra.The result shows that the XPS and NEXAFS spectra are structurally dependent on the configurations of pyrrole absorbed on the Si(100)surface.Compared with the XPS,the NEXAFS spectra are relatively sensitive to the adsorption configurations and can accurately identify them.The NEXAFS decomposition spectra produced by non-equivalent carbon atoms have also been calculated and show that the spectral features vary with the diverse types of carbon atoms and their structural environments.
文摘Peroxodiphosphate anion (a powerful oxidant) can be formed in a special water-based cleaning agent through an electrochemical reaction on boron-doped diamond electrodes. This electrochemical reaction was applied during the oxidation,decomposition, and removal of organic contaminations on a silicon wafer surface, and it was used as the first step in the diamond electrochemical cleaning technique (DECT). The cleaning effects of DECT were compared with the RCA cleaning technique, including the silicon surface chemical composition that was observed with X-ray photoelectron spectroscopy and the morphology observed with atomic force microscopy. The measurement results show that the silicon surface cleaned by DECT has slightly less organic residue and lower micro-roughness,so the new technique is more effective than the RCA cleaning technique.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10575039) and the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (No.2004057408).
文摘Large scale homogenous growth of microcrystalline silicon (μ.c-Si:H) on cheap substrates by inductively coupled plasma (ICP) of Ar diluted Sill4 has been studied. From XRD and Raman spectrum, we find that substrates can greatly affect the crystalline orientation, and the μc-Si:H films are comprised of small particles. Thickness detection by surface profilometry shows that the thin μc-Si:H films are homogenous in large scale. Distributions of both ion density and electron temperature are found to be uniform in the vicinity of substrate by means of diagnosis of Langmuir probe. Based on these experimental results, it can be proposed that rough surfaces play important roles in the crystalline network formation and Ar can affect the reaction process and improve the characteristics of μc-Si:H films. Also, ICP reactor can deposit the thin film in large scale.
文摘Currently, a conventional two-step method has been used to generate black silicon (BS) surfaces on silicon substrates for solar cell manufacturing. However, the performances of the solar cell made with such surface generation method are poor, because of the high surface recombination caused by deep etching in the conventional surface generation method for BS. In this work, a modified wet chemical etching solution with additives was developed. A homogeneous BS layer with random porous structure was obtained from the modified solution in only one step at room temperature. The BS layer had low reflectivity and shallow etching depth. The additive in the etch solution performs the function of pH-modulation. After 16-min etching, the etching depth in the samples was approximately 200 nm, and the spectrum-weighted-reflectivity in the range from 300 nm to 1200 nm was below 5%. BS solar cells were fabricated in the production line. The decreased etching depth can improve the electrical performance of solar cells because of the decrease in surface recombination. An efficiency of 15.63% for the modified etching BS solar cells was achieved on a large area, p- type single crystalline silicon substrate with a 624.32-mV open circuit voltage and a 77.88% fill factor.
基金Supported by the Open L ab.Foundation of Educational Ministryof China
文摘The surface grinding temperature of the silicon wafer ground by diamond wheels is studied.Rudimentally,the properties of the surface grinding temperature generated by two grinding methods,ground by straight and cup wheels respectively,are analyzed.In addition,considering the effects of grain size and grinding depth on surface grinding temperature during these two grinding processes,significant results and conclusions are obtained from experimental research.
基金A Foundation for the Author of National Excellent Doctoral Dissertation of PR China(No.10021201)
文摘AIM: To prepare a new-type soft intraocular lens (IOL) that silicone intraocular lenses (IOLs) were modified by surface modification technique to assess IOLs biocompatibility. METHODS: With the technique of ion beam combined with low temperature and low pressure plasma, the surface characteristics of the IOLs including physical and optical properties were determined by the instruments of IOLs resolution, UV/VIS scanning spectrophotometer, contact angle measurement system, electron spectroscopy for chemical analysis (ESCA) and scanning electron microscope (SEM). RESULTS: The color of titanium (Ti) modified IOLs was light yellow and that of titanium nitride (TiN) modified IOLs was light brown. The absorptive degree of ultraviolet rays and the hydrophilicity of the surfaces of modified IOLs were increased, and appeared suitable chemical compositions. The resolution of unmodified and modified IOLs reached normal standard. The surfaces of unmodified and Ti-modified IOLs appeared uniform. The surfaces of TIN-modified IOLs presented fine porcelain structure. CONCLUSION: The optical properties of all IOLs and the surface morphology of the modified IOLs were not affected by modification processes. The surface properties of the modified IOLs were improved.
文摘High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm^2.This work aims to enrich the variety of HSFLs-containing hierarchical microstructures,by femtosecond laser(pulse duration:457 fs,wavelength:1045 nm,and repetition rate:100 kHz)in liquids(water and acetone)at laser fluence of 1.7 J/cm^2.The period of Si-HSFLs in the range of 110–200 nm is independent of the scanning speeds(0.1,0.5,1 and 2 mm/s),line intervals(5,15 and 20μm)of scanning lines and scanning directions(perpendicular or parallel to light polarization direction).It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization,both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50°as compared to those of normal HSFLSs are found on the microstructures with height gradients.Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs.The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs.On the basis of our findings and previous reports,a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed,including thermal melting with the concomitance of ultrafast cooling in liquids,transformation of the molten layers into ripples and nanotips by surface plasmon polaritons(SPP)and second-harmonic generation(SHG),and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.
文摘The forms of phosphorus and silicon in the natural grain sizes surface sediments of the southern Bohai Sea were studied. In sediments, the organic matter bound form of phosphorus was the main form of transferable phosphorus and ranged from 0.37 μmol/g to 1.57 μmol/g, accounting for 10.7% of the total phosphorus, others were the carbonate bound form, iron manganese oxide bound form and ion exchange able form; the transferable form of phosphorus accounted for 19.2% of the total phosphorus. Silicon’s carbonate bound form was predominant over others among its transferable forms, and content ranged from 1.55 μmol/g to 8.94 μmol/g, accounting for 0.05% of the total silicon; the total amount of transferable silicon forms accounted for only 0.12% of the total silicon. Therefore, 19.2% of the total phosphorus and 0.12% of the total silicon contained in the surface sediments of the southern Bohai Sea could participate in the biogeochemical cycling.
基金Project supported by the Key Basic Research Project of Hebei Province, China (Grant No. 12963929D)the Natural Science Foundation of Hebei Province,China (Grant Nos. F2012201007 and F2012201042)
文摘Ag island films with different sizes are deposited on hydrogenated amorphous silicon carbide (a-SiC:H) films, and the influences of Ag island films on the optical properties of the tx-SiC:H films are investigated. Atomic force microscope images show that Ag nanoislands are formed after Ag coating, and the size of the Ag islands increases with increasing Ag deposition time. The extinction spectra indicate that two resonance absorption peaks which correspond to out-of-plane and in-plane surface plasmon modes of the Ag island films are obtained, and the resonance peak shifts toward longer wavelength with increasing Ag island size. The photoluminescence (PL) enhancement or quenching depends on the size of Ag islands, and PL enhancement by 1.6 times on the main PL band is obtained when the sputtering time is 10 min. Analyses show that the influence of surface plasmons on the PL of a-SiC:H is determined by the competition between the scattering and absorption of Ag islands, and PL enhancement is obtained when scattering is the main interaction between the Ag islands and incident light.
基金supported by the National Basic Research Program of China(Grant No.2013CB632101)the National Natural Science Foundation of China forExcellent Young Researchers(Grant No.61222404)+1 种基金the Research and Development Program of Ministry of Education of China(Grant No.62501040202)the 2012 UAlberta MOST Joint Research Laboratories Program,China
文摘In the framework of density functional theory (DFT), we have studied the electronic properties of alkene/alkyne- hydrosilylated silicon nanocrystals (Si NCs) in the size range from 0.8 nm to 1.6 nm. Among the alkenes with all kinds of functional groups considered in this work, only those containing -NH2 and -C4H3S lead to significant hydrosilylation- induced changes in the gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of an Si NC at the ground state. The quantum confinement effect is dominant for all of the alkene- hydrosilylated Si NCs at the ground state. At the excited state, the prevailing effect of surface chemistry only occurs at the smallest (0.8 nm) Si NCs hydrosilylated with alkenes containing -NH2 and -C4H3S. Although the alkyne hydrosilylation gives rise to a more significant surface chemistry effect than alkene hydrosilylation, the quantum confinement effect remains dominant for alkyne-hydrosilylated Si NCs at the ground state. However, at the excited state, the effect of surface chemistry induced by the hydrosilylation with conjugated alkynes is strong enough to prevail over that of quantum confinement.
文摘In this paper, we extend the concept of back surface recombination through a study of a silicon mono facial solar cell in static regime and under polychromatic illumination. Back surface recombination velocities noted Sbe, Sbj and Sbr are determined for which respectively we derived, the power, the fill factor and the conversion efficiency, that become constant whatever the thickness of the solar cell. We have then obtained the expression of the minority carrier’s density in the base from the continuity equation. We then have determined the photocurrent density, the photo voltage, the power, the fill factor and finally the conversion efficiency.
基金Project supported by the National Natural Science Foundation of China(Grant No.11264007)
文摘The curved surface (CS) effect on nanosilicon plays a main role in the activation for emission and photonic manipulation. The CS effect breaks the symmetrical shape of nanosilicon on which some bonds can produce localized electron states in the band gap. The investigation in calculation and experiment demonstrates that the different curvatures can form the characteristic electron states for some special bonding on the nanosilicon surface, which are related to a series of peaks in photoluminecience (PL), such as LN, LNO, Lo1, and Lo2 lines in PL spectra due to Si-N, Si-NO, Si=O, and Si-O-Si bonds on curved surface, respectively. Si-Yb bond on curved surface of Si nanostructures can provide the localized states in the band gap deeply and manipulate the emission wavelength into the window of optical communication by the CS effect, which is marked as the Lyb line of electroluminescence (EL) emission.
基金Project supported by the National Natural Science Foundation of China(Grant No.41075026)the Open Research Fund of Key Laboratory of MEMS of Ministry of Education,Southeast University,China(Grant Nos.2009-03 and 2010-02)+2 种基金the SpecialFund for Meteorology Research in the Public Interest,China(Grant No.GYHY200906037)the Priority Academic ProgramDevelopment of Sensor NetworksModern Meteorological Equipment of Jiangsu Higher Education Institutions,China
文摘The purpose of the present work is to quantify the influences of the discrete nature, the surface effects, and the large deformation on the bending resonant properties of long and ultrathin (100) silicon nanocantilevers. We accomplish this by using an analytical semi-continuum Keating model within the framework of nonlinear, finite deformation kinematics. The semi-continuum model shows that the elastic behaviors of the silicon nanocantilevers are size-dependent and surface- dependent, which agrees well with the molecular dynamics results. It also indicates that the dominant effect on the fundamental resonant frequency shift of the silicon nanocantilever is adsorption-induced surface stress, followed by the discrete nature and surface reconstruction, whereas surface relaxation has the least effect. In particular, it is found that a large deformation tends to increase the nonlinear fundamental frequency of the silicon nanocantilever, depending not only on its size but also on the surface effects. Finally, the resonant frequency shifts due to the adsorption-induced surface stress predicted by the current model are quantitatively compared with those obtained from the experimental measurement and the other existing approach. It is noticed that the length-to-thickness ratio is the key parameter that correlates the deviations in the resonant frequencies predicted from the current model and the empirical formula.
文摘The monochromatic absorption coefficient of silicon, inducing the light penetration depth into the base of the solar cell, is used to determine the optimum thickness necessary for the production of a large photocurrent. The absorption-generation-diffusion and recombination (bulk and surface) phenomena are taken into account in the excess minority carrier continuity equation. The solution of this equation gives the photocurrent according to ab</span><span style="font-family:Verdana;">sorption and electronic parameters. Then from the obtained short circuit</span><span style="font-family:Verdana;"> photocurrent expression, excess minority carrier back surface recombination velocity is determined, function of the monochromatic absorption coefficient at a given wavelength. This latter plotted versus base thickness yields the optimum thickness of an n</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;">-p-p</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;"> solar cell, for each wavelength, which is in the range close to the energy band gap of the silicon material. This study provides a tool for improvement solar cell manufacture processes, through the mathematical relationship obtained from the thickness limit according to the absorption coefficient that allows base width optimization.
文摘Silicone coatings have been used in this study. The method adopted was the liquid drop analysis on the coated fabrics. The contact angle between a liquid drop and the fabric surface was measured with two liquids continuously and recorded by a computer. The surface energy was calculated by means of Owens method.Kinetic measurement was adopted. The contact angle of liquids on the fabric coated silicone decreased with time was found. A compound solution DX has been found, so that the contact angle of the liquids on the fabric washed with DX becomes constant, and the surface energy of the fabric can be reduced to below 15 mJ/m2.
文摘New expressions of back surface recombination of excess minority carriers in the base of silicon solar are expressed dependent on both, the thickness and the diffusion coefficient which is in relationship with the doping rate. The optimum thickness thus obtained from the base of the solar cell allows the saving of the amount of material needed in its manufacture without reducing its efficiency.
基金Funded by the National Natural Science Foundation of China(61366004)the Research Fund for the Doctoral Program of Higher Education(20123601110006)the Jiangxi Provincial Department of Education(KJLD13008)
文摘In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron doping in the LBSF, much higher doping concentration was observed for the B-LBSF over the Al-LBSF. Higher doping concentration in the LBSF is expected to lead to better rear passivation and lower rear contact resistance. Based on one thousand pieces of solar cells for each type, it was found that the rear passivated crystalline silicon solar cells with B-LBSF showed statistical improvement in their photovoltaic properties over those with Al-LBSF.
基金the National Natural Science Foundation of China(No.51875425)。
文摘To improve the weak corrosion resistance of silicon steel to acid solution and alkaline solution with high temperature,a stable hierarchical micro/nanostructure superhydrophobic surface with myriad irregular micro-scale hump and sheet-like nanostructure was successfully prepared on silicon steel by a simple,efficient and facile operation in large-area laser marking treatment.The morphology,composition,wettability of the as-prepared surface were studied.The superhydrophobic performance of the surface was investigated as well.Additionally,the corrosion resistance of the superhydrophobic surface to acidic solutions at room temperature and alkaline solutions at high temperature (80 ℃) was carefully explored.The corrosion resistance mechanism was clarified.Moreover,considering the practical application of the surface in the future,the hardness of the hierarchical micro/nanostructure superhydrophobic surface was studied.The experimental results indicate that the hierarchical micro/nanostructure surface with texture spacing of 100 μm treated at laser scanning speed of 100 mms/ presents superior superhydrophobicity after decreasing surface energy.The contact angle can be as high as 156.6°.Additionally,the superhydrophobic surface provide superior and stable anticorrosive protection for silicon steel in various corrosive environments.More importantly,the prepared structure of the surface shows high hardness,which ensures that the surface of the superhydrophobic surface cannot be destroyed easily.The surface is able to maintain great superhydrophobic performance when it suffers from slight impacting and abrasion.
基金National Natural Science Foundation of China (Nos.60407013,60876081)the Shanghai-Applied Materials Research and Development Fund of China (No.06SA04)the National High Technology Research and Development Program of China (Nos.2009AA04Z317,2007AA04Z354-03)
文摘Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness of the film was measured by atomic force microscope (AFM) and the relevant results were analyzed using the surface smoothing mechanism of film deposition. It is shown that an α-Si:H film with smooth surface morphology can be obtained by increasing the PH3/N2 gas flow rate for 10% in a high frequency (HF) mode. For high power, however, the surface morphology of the film will deteriorate when the Sill4 gas flow rate increases. Furthermore, optimized parameters of PECVD for growing the film with smooth surface were obtained to be Sill4:25 sccm (standard cubic centimeters per minute), At: 275 sccm, 10%PH3/N2:2 sccm, HF power: 15 W, pressure: 0.9 Torr and temperature: 350℃. In addition, for in thick fihn deposition on silicon substrate, a N20 and NH3 preprocessing method is proposed to suppress the formation of gas bubbles.