In order to decrease the unexploded submunition rate and reduce the harmfulness of u exploded submunition, a mechanical self-destruction and self-neutralization mechanism for submunition fuze is proposed in this paper...In order to decrease the unexploded submunition rate and reduce the harmfulness of u exploded submunition, a mechanical self-destruction and self-neutralization mechanism for submunition fuze is proposed in this paper. The definitions of the self-destruction and self-neutralization for submunition fuze are elaborated, and the action principle of the mechanical self-destruction and selfneutralization mechanism is also analyzed. A dynamic model is established with an analysis on centrifugal plate parts, and the feasibility of mechanism motion is also discussed. A virtual prototype of mechanism is formed, and the motion process simulation of the mechanism is performed through a dynamic analysis software ADAMS. The centrifugal experiment results validate that the mechanical self-destruction and self-neutralization mechanism can act reliably.展开更多
The damage effects of fluid-filled submunition payload impacted by the kinetic kill vehicle(KKV)are investigated by simulations and ground-based experiments.Numerical simulations showed that the damage level and numbe...The damage effects of fluid-filled submunition payload impacted by the kinetic kill vehicle(KKV)are investigated by simulations and ground-based experiments.Numerical simulations showed that the damage level and number of submunitions were significantly influenced by the diameter of the KKV compared with its length.Based on that,a high velocity penetrator formed by shaped charge explosion was used to simulate the direct hit experiment of a KKV impacting submunition payload.Experimental results demonstrated that the damage modes of submunitions mainly included the slight damage,perforation and total smash,showing a good agreement with the simulations.To understand the multiple damage modes of submunitions,the damage behavior of the submunitions in direct hit process were analyzed based on the AUTODYN-3D code.Numerical results presented that increased KKV diameter can increase the crater diameter and expand the damage volume,which will achieve a higher direct hit lethality.Further analysis indicated that there were other mechanical behaviors can enhance the damage to submunitions not lying in the KKV flight path,such as secondary debris kill,neighboring submunitions collision with each other,and high-speed fluid injection effect.展开更多
The shock responses of submunition drop on various ground-mediums are modeled and investigated by numerical simulation in this paper. Submunition impacts on concrete surface, gravel ground or sand with various drop ve...The shock responses of submunition drop on various ground-mediums are modeled and investigated by numerical simulation in this paper. Submunition impacts on concrete surface, gravel ground or sand with various drop velocities, different drop angles and attack angles are calculated in a finite element program. The loads and dynamic responses of submunition are analyzed, curves of various drop velocities, drop angles and attack angles related to peak overload are calculated and law of interaction time on different ground mediums is obtained.展开更多
A kinetic model of the rigid and flexible coupling system for terminally sensitive submunition is set up with Kane's method. The parachute is considered as a flexible body, the flexible displacement is expressed w...A kinetic model of the rigid and flexible coupling system for terminally sensitive submunition is set up with Kane's method. The parachute is considered as a flexible body, the flexible displacement is expressed with modal spread method, the position of the parachute is expressed with a hybrid coordinate method, and the kinematics of the terminally sensitive submunition is analyzed. Ten generalized coordinates relative to the attitude of the terminally sensitive submunition are chosen, and the correlative generalized active forces, the generalized inertial forces, the generalized internal forces are calculated in turn. On the base of the Kane's method, the ten degrees of freedom dynamic equations for the coupled terminally sensitive submunition are finally set up. This model can be used to expediently simulate and analyze accurately the exterior ballistic trajectory of terminally sensitive submunition, and provide the overall design of the terminally sensitive submunition with some helpful references.展开更多
Submunitions should exhibit optimum terminal performance at target end when released from certain pre-determined height. Selection of an optimum height of release of the submunitions depends on the terminal parameters...Submunitions should exhibit optimum terminal performance at target end when released from certain pre-determined height. Selection of an optimum height of release of the submunitions depends on the terminal parameters like forward throw, remaining velocity, impact angle and flight time. In this paper,the effects of initial firing conditions and height of release on terminal performance of submunitions discussed in detail. For different height of release, the relation between range and forward throw is also established & validated for a number of firing altitude and rocket configurations.展开更多
基金Supported by the Ministerial Level Advanced Research Foundation(51305040401)
文摘In order to decrease the unexploded submunition rate and reduce the harmfulness of u exploded submunition, a mechanical self-destruction and self-neutralization mechanism for submunition fuze is proposed in this paper. The definitions of the self-destruction and self-neutralization for submunition fuze are elaborated, and the action principle of the mechanical self-destruction and selfneutralization mechanism is also analyzed. A dynamic model is established with an analysis on centrifugal plate parts, and the feasibility of mechanism motion is also discussed. A virtual prototype of mechanism is formed, and the motion process simulation of the mechanism is performed through a dynamic analysis software ADAMS. The centrifugal experiment results validate that the mechanical self-destruction and self-neutralization mechanism can act reliably.
基金supported by the National Natural Science Foundation of China (No. 12002046)supported by the State Key Laboratory of Explosion Science and Technology of China
文摘The damage effects of fluid-filled submunition payload impacted by the kinetic kill vehicle(KKV)are investigated by simulations and ground-based experiments.Numerical simulations showed that the damage level and number of submunitions were significantly influenced by the diameter of the KKV compared with its length.Based on that,a high velocity penetrator formed by shaped charge explosion was used to simulate the direct hit experiment of a KKV impacting submunition payload.Experimental results demonstrated that the damage modes of submunitions mainly included the slight damage,perforation and total smash,showing a good agreement with the simulations.To understand the multiple damage modes of submunitions,the damage behavior of the submunitions in direct hit process were analyzed based on the AUTODYN-3D code.Numerical results presented that increased KKV diameter can increase the crater diameter and expand the damage volume,which will achieve a higher direct hit lethality.Further analysis indicated that there were other mechanical behaviors can enhance the damage to submunitions not lying in the KKV flight path,such as secondary debris kill,neighboring submunitions collision with each other,and high-speed fluid injection effect.
基金Supported by the Project of State Key Laboratory of Science and Technology(ZDKT10-3C&1102)the National Natural Science Foundation of China(11032002)National Basic Research Program of China(2010CB832706)
文摘The shock responses of submunition drop on various ground-mediums are modeled and investigated by numerical simulation in this paper. Submunition impacts on concrete surface, gravel ground or sand with various drop velocities, different drop angles and attack angles are calculated in a finite element program. The loads and dynamic responses of submunition are analyzed, curves of various drop velocities, drop angles and attack angles related to peak overload are calculated and law of interaction time on different ground mediums is obtained.
文摘A kinetic model of the rigid and flexible coupling system for terminally sensitive submunition is set up with Kane's method. The parachute is considered as a flexible body, the flexible displacement is expressed with modal spread method, the position of the parachute is expressed with a hybrid coordinate method, and the kinematics of the terminally sensitive submunition is analyzed. Ten generalized coordinates relative to the attitude of the terminally sensitive submunition are chosen, and the correlative generalized active forces, the generalized inertial forces, the generalized internal forces are calculated in turn. On the base of the Kane's method, the ten degrees of freedom dynamic equations for the coupled terminally sensitive submunition are finally set up. This model can be used to expediently simulate and analyze accurately the exterior ballistic trajectory of terminally sensitive submunition, and provide the overall design of the terminally sensitive submunition with some helpful references.
文摘Submunitions should exhibit optimum terminal performance at target end when released from certain pre-determined height. Selection of an optimum height of release of the submunitions depends on the terminal parameters like forward throw, remaining velocity, impact angle and flight time. In this paper,the effects of initial firing conditions and height of release on terminal performance of submunitions discussed in detail. For different height of release, the relation between range and forward throw is also established & validated for a number of firing altitude and rocket configurations.