Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition...Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition.However,there is a lack of studies of the yield of NV color centers at the atomic scale.In the molecular dynamics simulations described in this paper,NV color centers are pre-pared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing.The differences between the yields of NV color centers produced by implantation of carbon(C)and nitrogen(N)ions,respectively,are investigated.It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy.The effects of different pre-doping concentrations(400–1500 ppm)and implantation energies(1.0–3.0 keV)on the NV color center yield are analyzed,and it is shown that a pre-doping concentra-tion of 1000 ppm with 2 keV C-ion implantation can produce a 13%yield of NV color centers after 1600 K annealing for 7.4 ns.Finally,a brief comparison of the NV color center identification methods is presented,and it is found that the error rate of an analysis utiliz-ing the identify diamond structure coordination analysis method is reduced by about 7%compared with conventional identification+methods.展开更多
Various doses of nitrogen ions were implanted into the surface of pure titanium, Ti6Al7Nb and Ti6Al4V, by plasma immersion ion implantation. Torsional fretting wear tests involving flat specimens of no-treated and tre...Various doses of nitrogen ions were implanted into the surface of pure titanium, Ti6Al7Nb and Ti6Al4V, by plasma immersion ion implantation. Torsional fretting wear tests involving flat specimens of no-treated and treated titanium, as well as its alloys, against a ZrO2 ball contact were performed on a torsional fretting wear test rig using a simulated physiological medium of serum solution. The treated surfaces were characterized, and the effect of implantation dose on torsional fretting behavior was discussed in detail. The results showed that the torsional fretting running and damage behavior of titanium and its alloys were strongly dependent on the dose of the implanted nitrogen ions and the angular displacement amplitude. The torsional fretting running boundary moved to smaller angular displacement amplitude, and the central light damage zone decreased, as the ion dose increased. The wear mechanisms of titanium and its alloys were oxidative wear, abrasive wear and delamination, with abrasive wear as the most common mechanism of the ion implantation layers.展开更多
The biological effects during seed germination were investigated after the dry seeds of Stevia rebaudianum Bertoni were implanted with carbon ion beam of 75 keV and 10 14 ions/cm 2. The results showed that the g...The biological effects during seed germination were investigated after the dry seeds of Stevia rebaudianum Bertoni were implanted with carbon ion beam of 75 keV and 10 14 ions/cm 2. The results showed that the germination rate of carbon ion implanted seeds was slightly higher than that of the control, but the survival rate of the treated seedlings, on the contrary, was lower than that of the control (P<0.02), while the height of the treated seedlings was significantly higher than that of the control (P<0.01). On the 4th day after germination, the leaf cell wall in the treated group was thick, some high electron_dense substance deposited in the enlarged plasmodesma; Cell membrane creased with high electron_dense granules deposited on it. The plasma membrane protruded towards cell wall, and the granules shifted via plasmodesma or deposited onto cell wall. These phenomena may be related to the conveyance of implanted ions across cell wall, or be related to the accumulation of callose. In addition, the implantation of carbon ions could increase the lamellae of the chloroplast and cause high development of the chloroplast which sometimes contained two plastid centers in an individual chloroplast. Also, the highly developed cristae, abundant mitochondria and typical crystalloid structure in microbody could be found. All these results indicated that the anabolic and catabolic activities in the seedlings implanted with carbon ions before germination were obviously more active than those in the controls.展开更多
[Objective] This study was to investigate the effect of N+ ion beam implantation on the survival rate and mutation rate of biocontrol strain Bacillus subtilis. [Method] The factors influencing B. subtilis ion beam im...[Objective] This study was to investigate the effect of N+ ion beam implantation on the survival rate and mutation rate of biocontrol strain Bacillus subtilis. [Method] The factors influencing B. subtilis ion beam implantation, including culture time, dilution concentration, solvent, drying time of mycoderm were optimized. B. subtilis cells were implanted by using ion beam at dose of 2.0×10^14~4.0×10^14 ions/cm2 and the energy of 30 kev. Then the methods of culturing colonies confronting each other on plate and Oxford cup diffusion were used to screening strains. [Result] The optimal parameters were found as follows: culture in liquid for 20-24 h, dilution with sterile water to 106 cells/ml and drying time of 60 min for sample preparation; the optimal N+ ion beam implantation dose of 2.0×10^14~4.0×10^14 ions/cm2 at the energy of 30 kev, the survival rate of 8.43%-26.71% and the mutation rate of 3.50%-5.43%. [Conclusion] This study provided reference for ion beam implantation mutation of B. subtilis.展开更多
A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relat...A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.展开更多
Polycrystalline diamond thin films are deposited on an n-type Si substrates by hot filament chemical vapor deposition,and then are implanted with boron ions in a 200keV ion implanter.In order to achieve a better distr...Polycrystalline diamond thin films are deposited on an n-type Si substrates by hot filament chemical vapor deposition,and then are implanted with boron ions in a 200keV ion implanter.In order to achieve a better distribution of the implanted element,boron ions are implanted by two steps:implanting boron ions with the energy of 70keV first,and then with the energy of 100keV.The homogeneous distribution of the B ion is gained.The current-voltage characteristics of the samples are studied.It is found that the p-n heterojunction effect is achieved in these samples.展开更多
Synthetic silicides with good properties were prepared,as Y ions were implanted into silicon using metal vapor vacuum arc (MEVVA) ion implantor and annealed by Rapid Thermal Annealing (RTA).The structure of synthetic ...Synthetic silicides with good properties were prepared,as Y ions were implanted into silicon using metal vapor vacuum arc (MEVVA) ion implantor and annealed by Rapid Thermal Annealing (RTA).The structure of synthetic silicides has been investigated with the analysis of channeled low angle emergence and TEM.Three layers could be observed in the implanted region as the implanting ion flux is selected as 25μA/cm\+2.The thickness of the silicide layer is about 60—80nm.The defect density N \-d and sheet resistance R \-s decrease with the increase of the ion flux.After RTA annealing of the implanted sample,the N\-d and R\-s decreased obviously.R\-s decreased from 54Ω/□ to 14Ω/□.The minimum of resistivity is 84μΩ·cm.It is evident that electrical properties of the Y silicides can be improved by RTA.The formation of the silicides with YSi and YSi\-2 are confirmed by X\|ray diffraction (XRD) analysis.With the analysis of low angle emergence,important information exposed from the depth profiles of atoms and lattice distortion in an implanted region would be used to study the synthesis of silicides.展开更多
A1 and N were introduced into copper substrate using plasma immersion ion implantation (PIII) in order to enhance its hardness and oxidation resistance. The dosage of N ion is 5 × 1016 cm-2, and range of dosage...A1 and N were introduced into copper substrate using plasma immersion ion implantation (PIII) in order to enhance its hardness and oxidation resistance. The dosage of N ion is 5 × 1016 cm-2, and range of dosage of A1 ion is 5× 1016-2× 1017 cm-2. The oxidation tests indicate that the copper samples after undergoing PIII possess higher oxidation resistance. The degree of oxidation resistance is found to vary with implantation dosage of AI ion. The antibacterial tests also reveal that the plasma implanted copper specimens have excellent antibacterial resistance against Staphylococcus aureus, which are similar to pure copper.展开更多
The research on plasma immersion ion implantation has been conducted for a little over ten years. Much is needed to investigate including processing technlogy, plasma sheath dynamics, interaction of plasma and surface...The research on plasma immersion ion implantation has been conducted for a little over ten years. Much is needed to investigate including processing technlogy, plasma sheath dynamics, interaction of plasma and surface, etc. Of the processing methods elavated temperature technique is usually used in PIII to produce a thick modified layer by means of the thermal diffusion. Meanwhile plasma ion heating is more recently developed by Ronghua Wei et al[1]. Therefore the temeperature is a critical parameter in plasma ion processing. In this paper we present the theoretical model and analysize the effect of imlantation voltage, plasma density, ion mass,etc on the temperature rise.展开更多
The tribological behaviors of TiN coating and TiN+TiC+Ti(C, N)/diamond like carbon (DLC), TiN/DLC, TiC/DLC multilayers on Ti 6Al 4V alloy prepared by plasma based ion implantation (PBII) were compared. Under the test ...The tribological behaviors of TiN coating and TiN+TiC+Ti(C, N)/diamond like carbon (DLC), TiN/DLC, TiC/DLC multilayers on Ti 6Al 4V alloy prepared by plasma based ion implantation (PBII) were compared. Under the test conditions of counterbody AISI 52100, load 1 N and speed 0.05 m/s, the tribological properties of the alloy are improved by these films in the order of TiN, TiC/DLC, TiN/DLC and TiN+TiC+Ti(C,N)/DLC. Tribological behavior is affected by the conditions of surface modification and triboexperiments. The appearance of “peaks” in the wear dynamic resistance profiles may be due or correspond to the process of formation and breaking apart of transition films. The breakthrough of the DLC coated samples may start from partially wearing out, and end with joining piece dilamination. There are transition films on all counterbodies AISI 52100. When AISI 52100 counterbody is changed to Ti 6Al 4V, the wear of most modified samples is changed from only disc to both disc and ball abrasive dominated.展开更多
Bacillus megaterium BM302 bred by ion-beam implantation produces L-sorbose dehydrogenase accelerative protein (SAP) to accelerate the activity of L-sorbose dehydrogenase (SDH) of Gluconobacter oxydans in the 2-ket...Bacillus megaterium BM302 bred by ion-beam implantation produces L-sorbose dehydrogenase accelerative protein (SAP) to accelerate the activity of L-sorbose dehydrogenase (SDH) of Gluconobacter oxydans in the 2-keto-L-gulonic acid (2KLG) fermentation from L-sorbose by the mixed culture of B. megaterium BM302 and G. oxydans. The SAP purified by three chromatographic steps gave 35-fold purification with a yield of 13% and a specific activity of 5.21 units/mg protein. The molecular weight of the purified SAP was about 58 kDa. The SDH accelerative activity of SAP at pH 7 and 50℃ was the highest. Additionally, it retained 60% activity at a pH range of 6.5 ~ 10 and was stable at 20℃ ~ 60℃. After 0.32-unit SAP was added to the single cultured G. oxydans strains, the SDH activity was apparently accelerated and the 2KLG yield of GO29, GO112, GO and GI13 was enhanced 2.1, 3.3, 3.5 and 2.9 folds respectively over that of the strains without the addition of SAP.展开更多
As a new mutagenetic method, low-energy ion implantation has been used widely in many research areas in recent years. In order to obtain some industrial strains with high xylanase yield, the wild type strain Aspergill...As a new mutagenetic method, low-energy ion implantation has been used widely in many research areas in recent years. In order to obtain some industrial strains with high xylanase yield, the wild type strain Aspergillus niger A3 was mutated by means of nitrogen ions implantation (10 keV, 2.6× 10^14 ~ 1.56 × 10^15 ions/cm^2) and a mutant N212 was isolated subsequently. However, it was found that the initial screening means of the high-yielding xylanase strains such as transparent halos was unfit for first screening. Compared with that of the wild type strain, xylanase production of the mutant N212 was increased from 320 IU/ml to 610 IU/ml, and the optimum fermentation temperature was increased from 28 ℃ to 30 ℃.展开更多
In order to generate a mutant of Bacillus subtilis with enhanced surface activity through low energy nitrogen ion beam implantation, the effects of energy and dose of ions implanted were studied. The morphological cha...In order to generate a mutant of Bacillus subtilis with enhanced surface activity through low energy nitrogen ion beam implantation, the effects of energy and dose of ions implanted were studied. The morphological changes in the bacteria were observed by scanning electron microscope (SEM). The optimum condition of ions implantation, 20 keV of energy and 2.6 × 10^15N^+/cm^2 in dose, was determined. A mutant, B.s-E-8 was obtained, whose surface activity of 50-fold and 100-fold diluted cell-free Landy medium was as 5.6-fold and 17.4-fold as the wild strain. The microbial growth and biosurfactant production of both the mutant and the wild strain were compared. After purified by ultrafiltration and SOURCE 15PHE, the biosurfactant was determined to be a complex of surfactin family through analysis of electrospray ionization mass spectrum (ESI/MS) and there was an interesting finding that after the ion beam implantation the intensities of the components were different from the wild type strain.展开更多
Magnesium alloys have a wide range of applications in industry; however, their corrosion resistance, wear resistance, and hardness are rather poor, which limit their applications. Ti ion was implanted into the AZ31 ma...Magnesium alloys have a wide range of applications in industry; however, their corrosion resistance, wear resistance, and hardness are rather poor, which limit their applications. Ti ion was implanted into the AZ31 magnesium alloy surface by metal vapor vacuum arc (MEVVA) implanter. This metal arc ion source has a broad beam and high current capabilities. The implantation energy was fixed at 45 keV and the dose was at 9×10^17 cm^-2. Through ion implantation, Ti ion implantation layer with approximately 900 um in thickness was directly formed on the surface of AZ31 magnesium alloy, by which its surface property greatly improved. The chemical states of some typical elements of the ion implantation layer were analyzed by means of X-ray photoelectron spectroscopy (XPS), while the cross sectional morphology of the ion implantation layer and the phase structure were observed by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The property of corrosion resistance of the Ti ion implanted layer was studied by the CS300P electrochemistry corrosion workstation in 3.5% NaCl solution. The results showed that the property of corrosion resistance was enhanced remarkably, while the corrosion velocity was obviously slowed down.展开更多
With ion implantation (N+, energy 10 keV and dosage 1.56×1015 N+cm-2), a high xylanase-producing strain Aspergillus niger N212 was selected. Based on an orthogonal experiment, an optimal fermentation condition wa...With ion implantation (N+, energy 10 keV and dosage 1.56×1015 N+cm-2), a high xylanase-producing strain Aspergillus niger N212 was selected. Based on an orthogonal experiment, an optimal fermentation condition was designed for this high-yield strain. The suitable medium was composed of 8% corncob; 1.0% wheat bran; 0.1%TWEEN20; 0.5% (NH4)2SO4; 0.5%NaNO3; 0.5%FeSO4, 7.5 × 10-4; MnSO4·H2O, 2.5 × 10-4; ZnSO4, 2.0 × 10-4; CoCl2, 3.0 × 10-4. At present, under our experiment condition, xylanase activity of Aspergillus niger N212 reached a level of 600 IU/ml, almost increased by 100% in xylanase production and the time of yielding xylanase was largely reduced to 12 h at 28℃.展开更多
This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantatio...This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantation, the as-implanted ZnO films were annealed in argon ambient at different temperatures from 600 - 900 ℃. The effects of ion implantation and post-implantation annealing on the structural and optical properties of the ZnO films were investigated by x-ray diffraction (XRD), photoluminescence (PL). It was found that the intensities of (002) peak and near band edge (NBE) exitonic ultraviolet emission increased with increasing annealing temperature from 600- 900 ℃. The defect related deep level emission (DLE) firstly increased with increasing annealing temperature from 600 - 750 ℃, and then decreased quickly with increasing annealing temperature. The recovery of the intensities of NBE and DLE occurs at ~850℃ and ~750℃ respectively. The relative PL intensity ratio of NBE to DLE showed that the quality of ZnO films increased continuously with increasing annealing temperature from 600 - 900 ℃.展开更多
Plasma-immersion ion implantation (PIII) is a technique for implanting ions into conducting, semiconducting and insulating objects. In PIII, the object being treated is immersed in a plasma and pulsed to a large negat...Plasma-immersion ion implantation (PIII) is a technique for implanting ions into conducting, semiconducting and insulating objects. In PIII, the object being treated is immersed in a plasma and pulsed to a large negative voltage (=-1 to-100 kV). The resulting sheath expands into the ambient plasma, extracting ions and accelerating them to the target. PIII has advantages over beam-line implantation in that large surfaces can be rapidly implanted, irregularly-shaped objects can be implanted without target manipulation, and surfaces that are not line-of-sight accessible can be treated. A two-dimensional, self-consistent model of plasma dynamics appropriate for PIII is described. The model is a hybrid, with Boltzmann electrons and kinetic ions, where the ion Vlasov equation is solved using the particle-in-cell (PIC) method. Solutions of the model give the time dependence of the ion flux, energy and impact angle at the target surface, together with the evolution of the sheath.展开更多
To improve the total-dose radiation hardness,silicon-on-insulator (SOI) wafers fabricated by the separation-by-implanted-oxygen (SIMOX) method are modified by Si ion implantation into the buried oxide with a post ...To improve the total-dose radiation hardness,silicon-on-insulator (SOI) wafers fabricated by the separation-by-implanted-oxygen (SIMOX) method are modified by Si ion implantation into the buried oxide with a post anneal. The ID- VG characteristics can be tested with the pseudo-MOSFET method before and after radiation. The results show that a proper Si-ion-implantation method can enhance the total-dose radiation tolerance of the materials.展开更多
Low-energy ion implantation, as a new technology to produce mutation in plant breeding, has been widely applied in agriculture in China. But so far there is a little understanding of the underlying mechanisms responsi...Low-energy ion implantation, as a new technology to produce mutation in plant breeding, has been widely applied in agriculture in China. But so far there is a little understanding of the underlying mechanisms responsible for its biological effects at the cellular level. Here we report the biological effects of a nitrogen ion beams of 30 keV on the pollen grains of Pinus thunbergii Parl. In general, ion implantation inhibited pollen germination. The dose-response curve presented a particular saddle-like pattern. Ion implantation also changed the dimension of the elongated tubes and significantly induced tip swelling. Confocal microscopy indicated that the pollen tube tips in P. thunbergii contained an enriched network of microtubules. Ion implantation led to the disruption of microtubules especially in swollen tips. Treatment with colchicine demonstrated that tip swelling was caused by the disruption of microtubules in the tip, indicating a unique role for microtubules in maintaining the tip integrality of the pollen tube in conifer. Our results suggest that ion implantation induce the disruption of microtubule organization in pollen and pollen tubes and subsequently cause morphological abnormalities in the pollen tubes. This study may provide a clue for further investigation on the interaction between low-energy ion beams and pollen tube growth.展开更多
Plasma immersion ion implantation (PIII), unrestricted by sight-light process, is considered a proper method for inner surface strengthening. Two-dimensional simulation oj inner surface PIII process of cylindrical bo...Plasma immersion ion implantation (PIII), unrestricted by sight-light process, is considered a proper method for inner surface strengthening. Two-dimensional simulation oj inner surface PIII process of cylindrical bores were carried out in this paper using cold plasma fluid model, and influence of the bore's dimension on impact energy, retained dose and uniformity of inner surface were investigated.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52035009 and 51761135106)the State Key Laboratory of Precision Measuring Technology and Instruments(Pilt1705)+1 种基金the Henan Key Laboratory of Intelligent Manufacturing Equipment Integration for Superhard Materials(JDKJ2022-01)the“111”project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014).
文摘Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition.However,there is a lack of studies of the yield of NV color centers at the atomic scale.In the molecular dynamics simulations described in this paper,NV color centers are pre-pared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing.The differences between the yields of NV color centers produced by implantation of carbon(C)and nitrogen(N)ions,respectively,are investigated.It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy.The effects of different pre-doping concentrations(400–1500 ppm)and implantation energies(1.0–3.0 keV)on the NV color center yield are analyzed,and it is shown that a pre-doping concentra-tion of 1000 ppm with 2 keV C-ion implantation can produce a 13%yield of NV color centers after 1600 K annealing for 7.4 ns.Finally,a brief comparison of the NV color center identification methods is presented,and it is found that the error rate of an analysis utiliz-ing the identify diamond structure coordination analysis method is reduced by about 7%compared with conventional identification+methods.
基金Projects(U1530136,51375407)supported by the National Natural Science Foundation of China
文摘Various doses of nitrogen ions were implanted into the surface of pure titanium, Ti6Al7Nb and Ti6Al4V, by plasma immersion ion implantation. Torsional fretting wear tests involving flat specimens of no-treated and treated titanium, as well as its alloys, against a ZrO2 ball contact were performed on a torsional fretting wear test rig using a simulated physiological medium of serum solution. The treated surfaces were characterized, and the effect of implantation dose on torsional fretting behavior was discussed in detail. The results showed that the torsional fretting running and damage behavior of titanium and its alloys were strongly dependent on the dose of the implanted nitrogen ions and the angular displacement amplitude. The torsional fretting running boundary moved to smaller angular displacement amplitude, and the central light damage zone decreased, as the ion dose increased. The wear mechanisms of titanium and its alloys were oxidative wear, abrasive wear and delamination, with abrasive wear as the most common mechanism of the ion implantation layers.
文摘The biological effects during seed germination were investigated after the dry seeds of Stevia rebaudianum Bertoni were implanted with carbon ion beam of 75 keV and 10 14 ions/cm 2. The results showed that the germination rate of carbon ion implanted seeds was slightly higher than that of the control, but the survival rate of the treated seedlings, on the contrary, was lower than that of the control (P<0.02), while the height of the treated seedlings was significantly higher than that of the control (P<0.01). On the 4th day after germination, the leaf cell wall in the treated group was thick, some high electron_dense substance deposited in the enlarged plasmodesma; Cell membrane creased with high electron_dense granules deposited on it. The plasma membrane protruded towards cell wall, and the granules shifted via plasmodesma or deposited onto cell wall. These phenomena may be related to the conveyance of implanted ions across cell wall, or be related to the accumulation of callose. In addition, the implantation of carbon ions could increase the lamellae of the chloroplast and cause high development of the chloroplast which sometimes contained two plastid centers in an individual chloroplast. Also, the highly developed cristae, abundant mitochondria and typical crystalloid structure in microbody could be found. All these results indicated that the anabolic and catabolic activities in the seedlings implanted with carbon ions before germination were obviously more active than those in the controls.
基金Supported by the"Bud Plan"Project of Beijing Academy of Science and Technology(No.022)~~
文摘[Objective] This study was to investigate the effect of N+ ion beam implantation on the survival rate and mutation rate of biocontrol strain Bacillus subtilis. [Method] The factors influencing B. subtilis ion beam implantation, including culture time, dilution concentration, solvent, drying time of mycoderm were optimized. B. subtilis cells were implanted by using ion beam at dose of 2.0×10^14~4.0×10^14 ions/cm2 and the energy of 30 kev. Then the methods of culturing colonies confronting each other on plate and Oxford cup diffusion were used to screening strains. [Result] The optimal parameters were found as follows: culture in liquid for 20-24 h, dilution with sterile water to 106 cells/ml and drying time of 60 min for sample preparation; the optimal N+ ion beam implantation dose of 2.0×10^14~4.0×10^14 ions/cm2 at the energy of 30 kev, the survival rate of 8.43%-26.71% and the mutation rate of 3.50%-5.43%. [Conclusion] This study provided reference for ion beam implantation mutation of B. subtilis.
文摘A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.
文摘Polycrystalline diamond thin films are deposited on an n-type Si substrates by hot filament chemical vapor deposition,and then are implanted with boron ions in a 200keV ion implanter.In order to achieve a better distribution of the implanted element,boron ions are implanted by two steps:implanting boron ions with the energy of 70keV first,and then with the energy of 100keV.The homogeneous distribution of the B ion is gained.The current-voltage characteristics of the samples are studied.It is found that the p-n heterojunction effect is achieved in these samples.
基金Project Supported by National Natural Science Foundation of China ( Grant No.59671 0 51 ) and by National HighTechnology Resea
文摘Synthetic silicides with good properties were prepared,as Y ions were implanted into silicon using metal vapor vacuum arc (MEVVA) ion implantor and annealed by Rapid Thermal Annealing (RTA).The structure of synthetic silicides has been investigated with the analysis of channeled low angle emergence and TEM.Three layers could be observed in the implanted region as the implanting ion flux is selected as 25μA/cm\+2.The thickness of the silicide layer is about 60—80nm.The defect density N \-d and sheet resistance R \-s decrease with the increase of the ion flux.After RTA annealing of the implanted sample,the N\-d and R\-s decreased obviously.R\-s decreased from 54Ω/□ to 14Ω/□.The minimum of resistivity is 84μΩ·cm.It is evident that electrical properties of the Y silicides can be improved by RTA.The formation of the silicides with YSi and YSi\-2 are confirmed by X\|ray diffraction (XRD) analysis.With the analysis of low angle emergence,important information exposed from the depth profiles of atoms and lattice distortion in an implanted region would be used to study the synthesis of silicides.
基金Project(9231083) supported by Yunnan Aerospace Industry Corporation Contract Research,ChinaProject(9220061) supported by City University of Hong Kong Donation Research Grant,China
文摘A1 and N were introduced into copper substrate using plasma immersion ion implantation (PIII) in order to enhance its hardness and oxidation resistance. The dosage of N ion is 5 × 1016 cm-2, and range of dosage of A1 ion is 5× 1016-2× 1017 cm-2. The oxidation tests indicate that the copper samples after undergoing PIII possess higher oxidation resistance. The degree of oxidation resistance is found to vary with implantation dosage of AI ion. The antibacterial tests also reveal that the plasma implanted copper specimens have excellent antibacterial resistance against Staphylococcus aureus, which are similar to pure copper.
文摘The research on plasma immersion ion implantation has been conducted for a little over ten years. Much is needed to investigate including processing technlogy, plasma sheath dynamics, interaction of plasma and surface, etc. Of the processing methods elavated temperature technique is usually used in PIII to produce a thick modified layer by means of the thermal diffusion. Meanwhile plasma ion heating is more recently developed by Ronghua Wei et al[1]. Therefore the temeperature is a critical parameter in plasma ion processing. In this paper we present the theoretical model and analysize the effect of imlantation voltage, plasma density, ion mass,etc on the temperature rise.
文摘The tribological behaviors of TiN coating and TiN+TiC+Ti(C, N)/diamond like carbon (DLC), TiN/DLC, TiC/DLC multilayers on Ti 6Al 4V alloy prepared by plasma based ion implantation (PBII) were compared. Under the test conditions of counterbody AISI 52100, load 1 N and speed 0.05 m/s, the tribological properties of the alloy are improved by these films in the order of TiN, TiC/DLC, TiN/DLC and TiN+TiC+Ti(C,N)/DLC. Tribological behavior is affected by the conditions of surface modification and triboexperiments. The appearance of “peaks” in the wear dynamic resistance profiles may be due or correspond to the process of formation and breaking apart of transition films. The breakthrough of the DLC coated samples may start from partially wearing out, and end with joining piece dilamination. There are transition films on all counterbodies AISI 52100. When AISI 52100 counterbody is changed to Ti 6Al 4V, the wear of most modified samples is changed from only disc to both disc and ball abrasive dominated.
基金the General Program of National Science Foundation of China(No.10375066)
文摘Bacillus megaterium BM302 bred by ion-beam implantation produces L-sorbose dehydrogenase accelerative protein (SAP) to accelerate the activity of L-sorbose dehydrogenase (SDH) of Gluconobacter oxydans in the 2-keto-L-gulonic acid (2KLG) fermentation from L-sorbose by the mixed culture of B. megaterium BM302 and G. oxydans. The SAP purified by three chromatographic steps gave 35-fold purification with a yield of 13% and a specific activity of 5.21 units/mg protein. The molecular weight of the purified SAP was about 58 kDa. The SDH accelerative activity of SAP at pH 7 and 50℃ was the highest. Additionally, it retained 60% activity at a pH range of 6.5 ~ 10 and was stable at 20℃ ~ 60℃. After 0.32-unit SAP was added to the single cultured G. oxydans strains, the SDH activity was apparently accelerated and the 2KLG yield of GO29, GO112, GO and GI13 was enhanced 2.1, 3.3, 3.5 and 2.9 folds respectively over that of the strains without the addition of SAP.
基金the National Key Technologies R & D Program of China during the 10th Five-Year Plan(No.2001BA302B)
文摘As a new mutagenetic method, low-energy ion implantation has been used widely in many research areas in recent years. In order to obtain some industrial strains with high xylanase yield, the wild type strain Aspergillus niger A3 was mutated by means of nitrogen ions implantation (10 keV, 2.6× 10^14 ~ 1.56 × 10^15 ions/cm^2) and a mutant N212 was isolated subsequently. However, it was found that the initial screening means of the high-yielding xylanase strains such as transparent halos was unfit for first screening. Compared with that of the wild type strain, xylanase production of the mutant N212 was increased from 320 IU/ml to 610 IU/ml, and the optimum fermentation temperature was increased from 28 ℃ to 30 ℃.
基金supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (No.KSCX2-SW-324)
文摘In order to generate a mutant of Bacillus subtilis with enhanced surface activity through low energy nitrogen ion beam implantation, the effects of energy and dose of ions implanted were studied. The morphological changes in the bacteria were observed by scanning electron microscope (SEM). The optimum condition of ions implantation, 20 keV of energy and 2.6 × 10^15N^+/cm^2 in dose, was determined. A mutant, B.s-E-8 was obtained, whose surface activity of 50-fold and 100-fold diluted cell-free Landy medium was as 5.6-fold and 17.4-fold as the wild strain. The microbial growth and biosurfactant production of both the mutant and the wild strain were compared. After purified by ultrafiltration and SOURCE 15PHE, the biosurfactant was determined to be a complex of surfactin family through analysis of electrospray ionization mass spectrum (ESI/MS) and there was an interesting finding that after the ion beam implantation the intensities of the components were different from the wild type strain.
基金This work was financially supported by the Scientific Research Common Program of Beijing Municipal Commission of Education (No. KM200510017005).
文摘Magnesium alloys have a wide range of applications in industry; however, their corrosion resistance, wear resistance, and hardness are rather poor, which limit their applications. Ti ion was implanted into the AZ31 magnesium alloy surface by metal vapor vacuum arc (MEVVA) implanter. This metal arc ion source has a broad beam and high current capabilities. The implantation energy was fixed at 45 keV and the dose was at 9×10^17 cm^-2. Through ion implantation, Ti ion implantation layer with approximately 900 um in thickness was directly formed on the surface of AZ31 magnesium alloy, by which its surface property greatly improved. The chemical states of some typical elements of the ion implantation layer were analyzed by means of X-ray photoelectron spectroscopy (XPS), while the cross sectional morphology of the ion implantation layer and the phase structure were observed by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The property of corrosion resistance of the Ti ion implanted layer was studied by the CS300P electrochemistry corrosion workstation in 3.5% NaCl solution. The results showed that the property of corrosion resistance was enhanced remarkably, while the corrosion velocity was obviously slowed down.
文摘With ion implantation (N+, energy 10 keV and dosage 1.56×1015 N+cm-2), a high xylanase-producing strain Aspergillus niger N212 was selected. Based on an orthogonal experiment, an optimal fermentation condition was designed for this high-yield strain. The suitable medium was composed of 8% corncob; 1.0% wheat bran; 0.1%TWEEN20; 0.5% (NH4)2SO4; 0.5%NaNO3; 0.5%FeSO4, 7.5 × 10-4; MnSO4·H2O, 2.5 × 10-4; ZnSO4, 2.0 × 10-4; CoCl2, 3.0 × 10-4. At present, under our experiment condition, xylanase activity of Aspergillus niger N212 reached a level of 600 IU/ml, almost increased by 100% in xylanase production and the time of yielding xylanase was largely reduced to 12 h at 28℃.
文摘This paper reports that ion implantation to a dose of 1 ×10^17 ions/cm^2 was performed on c-axis-orientated ZnO thin films deposited on (0001) sapphire substrates by the sol-gel technique. After ion implantation, the as-implanted ZnO films were annealed in argon ambient at different temperatures from 600 - 900 ℃. The effects of ion implantation and post-implantation annealing on the structural and optical properties of the ZnO films were investigated by x-ray diffraction (XRD), photoluminescence (PL). It was found that the intensities of (002) peak and near band edge (NBE) exitonic ultraviolet emission increased with increasing annealing temperature from 600- 900 ℃. The defect related deep level emission (DLE) firstly increased with increasing annealing temperature from 600 - 750 ℃, and then decreased quickly with increasing annealing temperature. The recovery of the intensities of NBE and DLE occurs at ~850℃ and ~750℃ respectively. The relative PL intensity ratio of NBE to DLE showed that the quality of ZnO films increased continuously with increasing annealing temperature from 600 - 900 ℃.
文摘Plasma-immersion ion implantation (PIII) is a technique for implanting ions into conducting, semiconducting and insulating objects. In PIII, the object being treated is immersed in a plasma and pulsed to a large negative voltage (=-1 to-100 kV). The resulting sheath expands into the ambient plasma, extracting ions and accelerating them to the target. PIII has advantages over beam-line implantation in that large surfaces can be rapidly implanted, irregularly-shaped objects can be implanted without target manipulation, and surfaces that are not line-of-sight accessible can be treated. A two-dimensional, self-consistent model of plasma dynamics appropriate for PIII is described. The model is a hybrid, with Boltzmann electrons and kinetic ions, where the ion Vlasov equation is solved using the particle-in-cell (PIC) method. Solutions of the model give the time dependence of the ion flux, energy and impact angle at the target surface, together with the evolution of the sheath.
文摘To improve the total-dose radiation hardness,silicon-on-insulator (SOI) wafers fabricated by the separation-by-implanted-oxygen (SIMOX) method are modified by Si ion implantation into the buried oxide with a post anneal. The ID- VG characteristics can be tested with the pseudo-MOSFET method before and after radiation. The results show that a proper Si-ion-implantation method can enhance the total-dose radiation tolerance of the materials.
基金supported by National Key Project of China (No. 2001BA302B)
文摘Low-energy ion implantation, as a new technology to produce mutation in plant breeding, has been widely applied in agriculture in China. But so far there is a little understanding of the underlying mechanisms responsible for its biological effects at the cellular level. Here we report the biological effects of a nitrogen ion beams of 30 keV on the pollen grains of Pinus thunbergii Parl. In general, ion implantation inhibited pollen germination. The dose-response curve presented a particular saddle-like pattern. Ion implantation also changed the dimension of the elongated tubes and significantly induced tip swelling. Confocal microscopy indicated that the pollen tube tips in P. thunbergii contained an enriched network of microtubules. Ion implantation led to the disruption of microtubules especially in swollen tips. Treatment with colchicine demonstrated that tip swelling was caused by the disruption of microtubules in the tip, indicating a unique role for microtubules in maintaining the tip integrality of the pollen tube in conifer. Our results suggest that ion implantation induce the disruption of microtubule organization in pollen and pollen tubes and subsequently cause morphological abnormalities in the pollen tubes. This study may provide a clue for further investigation on the interaction between low-energy ion beams and pollen tube growth.
文摘Plasma immersion ion implantation (PIII), unrestricted by sight-light process, is considered a proper method for inner surface strengthening. Two-dimensional simulation oj inner surface PIII process of cylindrical bores were carried out in this paper using cold plasma fluid model, and influence of the bore's dimension on impact energy, retained dose and uniformity of inner surface were investigated.