In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material) were adopted to meet the abrasion resistance require...In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material) were adopted to meet the abrasion resistance requirement of hydraulic structures, and their abrasion resistances against the water flow with suspended load or bed load were studied systematically through tests. Natural basalt stones were adopted as the abrasive for simulation of the abrasion effect of the water flow with bed load, and test results indicate that the basalt stone is suitable for use in the abrasion resistance test of the flexible protective material. The wear process of the polyurea elastomer protective material is stable, and the wear loss is linear with the time of abrasion. If the wear thickness is regarded as the abrasion resistance evaluation factor, the abrasion resistance of the 351 pure polyurea is about twice those of pure polyurea with a high level of hardness and aliphatic polyurea, and over five times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with suspended load. It is also about 50 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load. Overall, the abrasion resistance of pure polyurea presented a decreasing trend with increasing hardness. Pure polyurea with a Shore hardness of D30 has the best abrasion resistance, which is 60 to 70 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load, and has been recommended, among the five kinds of pure polyurea materials with different hardness, in anti-abrasion protection of hydraulic structures.展开更多
1 Scope This standard specifies the definition, classification, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of abrasion resist...1 Scope This standard specifies the definition, classification, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of abrasion resistant refractory materials.展开更多
An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is the...An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is theoretically analyzed. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasives for brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic in the ductile mode using W3.5 grit and a high efficiency, low cost and smooth surface with a surface roughness of R_a 2.4?nm can be achieved.展开更多
Full factorial design of experiments was developed in order to investigate the effects of jet pressure, abrasive mixing rate, cutting feed, and plate thickness upon three response variables, surface finish of cutting ...Full factorial design of experiments was developed in order to investigate the effects of jet pressure, abrasive mixing rate, cutting feed, and plate thickness upon three response variables, surface finish of cutting wear zone, percentage proportion of striation free area, and maximum width of cut. The set of sixteen experiments was performed on each of the following two ductile materials: AISI 4340 (high strength low alloy steel, hardened to 49HRc) and Aluminum 2219. Analysis of Variance (ANOVA) was performed on experimental data in order to determine the significance of effects of different parameters on the performance measures. It was found that cutting feed and thickness were highly influential parameters, while abrasive mixing rate is influential upon surface roughness only. Strong interaction was found between jet pressure and workpiece material. Multi-criteria numerical optimization was performed in order to simultaneously maximize/minimize different combinations of performance measures.展开更多
The fabrication of miniature structures on components with high-integrity surface quality represents one of the cutting edge technologies in the 21st century.The materials used to construct such small structures are o...The fabrication of miniature structures on components with high-integrity surface quality represents one of the cutting edge technologies in the 21st century.The materials used to construct such small structures are often difficult-to-machine.Many other readily available technologies either cannot realise necessary precision or are costly.Abrasive waterjet(AWJ)is a favourable technology for the machining of difficult-to-machine materials.However,this technology is generally aimed at large stock removal.A reduction in the scale of this technology is an attractive avenue for meeting the pressing need of industry in the production of damage-free micro features.This paper reviews some of the work that has been undertaken at UNSW Sydney about the development of such an AWJ technology,focusing on the system design currently employed to generate a micro abrasive jet,the erosion mechanisms associated with processing some typical brittle materials of both single-and two-phased.Processing models based on the findings are also presented.The review concludes on the viability of the technology and the prevailing trend in its development.展开更多
The abrasive waterjet (AWJ) is now widely used in the advanced cutting processes of polymers,metals,glass,ceramics and composite materials like thin multiple-layered material (TMM).Various research and development eff...The abrasive waterjet (AWJ) is now widely used in the advanced cutting processes of polymers,metals,glass,ceramics and composite materials like thin multiple-layered material (TMM).Various research and development efforts have recently been made to understand the science of AWJ.However,the interaction mechanism between a workpiece and high-velocity abrasive particles still remains a complicated problem.In this work,the material removal mechanisms of AWJ such as micro penetration and micro dent were experimentally investigated.In addition,a new computer simulation model considering high strain rate effect was proposed to understand the micro impact behavior of high-velocity micro-sized abrasives in AWJ cutting.展开更多
The possibility of using V-Fe alloy slag as abrasive material was investigated. The chemical constitution and microstructure of the V-Fe alloy slag were examined. It is found that the slag contains about 90% Al2O3 exi...The possibility of using V-Fe alloy slag as abrasive material was investigated. The chemical constitution and microstructure of the V-Fe alloy slag were examined. It is found that the slag contains about 90% Al2O3 existing as corundum with high hardness (> 30 GPa) and high bulk density (> 3.6 g/cm(3)). The V-Fe alloy slag can be applied to abrasive material instead of brown alumina (or black alumina).展开更多
In present paper, the 3-body abrasion and impact fatigue resistance of a 12%Cr-2.65%C-1.4%Si high Cr cast iron are comprehensively evaluated. The results indicated that the lower the C content of the martensitic ma...In present paper, the 3-body abrasion and impact fatigue resistance of a 12%Cr-2.65%C-1.4%Si high Cr cast iron are comprehensively evaluated. The results indicated that the lower the C content of the martensitic matrix, the better the impact fatigue resistance of the iron. The retained austenite is always harmful to both 3-body abrasion and impact fatigue resistances. The low C content martensitic matrix free from retained austenite is suitable for making grinding balls.展开更多
Test methods for hot abrasion resistance of refractories in China and overseas were briefly introduced. A new test method for hot abrasion resistance was researched. The new method inherits test principle of cold abra...Test methods for hot abrasion resistance of refractories in China and overseas were briefly introduced. A new test method for hot abrasion resistance was researched. The new method inherits test principle of cold abrasion resistance in Chinese standard totally, adopts compressed air pre-heating and electricity heating sam- ples, and is featured with complete structure, good con- trollability, simple operation, and small size. The characteristics and operating procedure of HAT-14A tester were introduced. The hot abrasion resistance of various refractories at different temperatures was tested.展开更多
The technology of forming and machining lump nano-materials has beeninvestigated. Grinding, abrasive machining test has been conducted to Fe, Co, Ni and Al lumpnano-materials. Experiments have been done to measure gri...The technology of forming and machining lump nano-materials has beeninvestigated. Grinding, abrasive machining test has been conducted to Fe, Co, Ni and Al lumpnano-materials. Experiments have been done to measure grinding force, grinding thermal, machiningroughness and micro-hardness. Image analysis is carried out by metallographic and scanning tunnelmicroscopic microscope. Researches provide the basis data for forming and machining lumpnano-materials.展开更多
In dealing with abrasive waterjet machining(AWJM) simulation,most literatures apply finite element method(FEM) to build pure waterjet models or single abrasive particle erosion models.To overcome the mesh distorti...In dealing with abrasive waterjet machining(AWJM) simulation,most literatures apply finite element method(FEM) to build pure waterjet models or single abrasive particle erosion models.To overcome the mesh distortion caused by large deformation using FEM and to consider the effects of both water and abrasive,the smoothed particle hydrodynamics(SPH) coupled FEM modeling for AWJM simulation is presented,in which the abrasive waterjet is modeled by SPH particles and the target material is modeled by FEM.The two parts interact through contact algorithm.Utilizing this model,abrasive waterjet with high velocity penetrating the target materials is simulated and the mechanism of erosion is depicted.The relationships between the depth of penetration and jet parameters,including water pressure and traverse speed,etc,are analyzed based on the simulation.The simulation results agree well with the existed experimental data.The mixing multi-materials SPH particles,which contain abrasive and water,are adopted by means of the randomized algorithm and material model for the abrasive is presented.The study will not only provide a new powerful tool for the simulation of abrasive waterjet machining,but also be beneficial to understand its cutting mechanism and optimize the operating parameters.展开更多
A study is carried out which analyzes the machinability of polymer matrix composites under an abrasive waterjet (AWJ) and the associated erosive process or mechanism. It shows that AWJ cutting can produce good quality...A study is carried out which analyzes the machinability of polymer matrix composites under an abrasive waterjet (AWJ) and the associated erosive process or mechanism. It shows that AWJ cutting can produce good quality kerf at high production rate if the cutting parameters are properly selected. A scanning electron microscopy (SEM) analysis of the cut surfaces reveals that the erosive process for the matrix material (resin) involves shearing and ploughing as well as intergranular cracking, while shearing is a dominant process for cutting the fibres in the upper cutting region but the fibers are mostly pulled out in the lower region.展开更多
The abrasive wear characteristics of Al_2O_3/PA1010 composite coatings on thesurface of quenched and low-temperature temper steel 45 were tested on the template abrasive weartesting machine and the same uncoated steel...The abrasive wear characteristics of Al_2O_3/PA1010 composite coatings on thesurface of quenched and low-temperature temper steel 45 were tested on the template abrasive weartesting machine and the same uncoated steel 45 was used as a reference material. Experimentalresults showed that the abrasive wear resistance of Al_2O_3/PA1010 composite coatings has a goodlinear relationship with the volume fraction of Al_2O_3 particles in Al_2O_3/PA1010 compositecoatings, and the linear correlative coefficient is 0.979. Under the experimental conditions, thesize of Al_2O_3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance ofAl_2O_3/PA1010 composite coatings. By treating the surface of Al_2O_3 particles with a suitablebonding agent, the distribution of Al_2O_3 particles in matrix PA1010 is more homogeneous and thebonding state between Al_2O_3 particles and matrix PA1010 is better. Therefore, the Al_2O_3particles in Al_2O_3/PA1010 composite coatings make the Al_2O_3/PA1010 composite coatings havebetter abrasive wear resistance than PA1010 coatings. The wear resistance of Al_2O_3/PA1010composite coatings is about 45% compared with that of steel 45.展开更多
The magnetic force acting on workpiece to be machined plays a significantly important role in magnetic abrasive polishing process.But in a case of polishing nonferrous materials,the strength of magnetic force is very ...The magnetic force acting on workpiece to be machined plays a significantly important role in magnetic abrasive polishing process.But in a case of polishing nonferrous materials,the strength of magnetic force is very low and it leads lower polishing efficiency.The magnesium alloy that has superior mechanical properties for industrial application such as a lightweight and high specific strength is one of the most famous nonferrous materials.An improving strategy of the magnetic force for the AZ31 magnesium alloy installed with a permanent magnet was proposed and experimental verification was carried out.For the proposed strategy,the effect of process parameters on the surface roughness of the AZ31 magnesium alloy was evaluated by a design of experimental method.展开更多
The electrochemical behavior of silicon wafer in alkaline slurry with nano-sized CeO2 abrasive was investigated.The variations of corrosion potential(φcorr)and corrosion current density(Jcorr)of the P-type(100)silico...The electrochemical behavior of silicon wafer in alkaline slurry with nano-sized CeO2 abrasive was investigated.The variations of corrosion potential(φcorr)and corrosion current density(Jcorr)of the P-type(100)silicon wafer with the slurry pH value and the concentration of abrasive CeO2 were studied by polarization curve technologies.The dependence of the polishing rate on the pH and the concentration of CeO2 in slurries during chemical mechanical polishing(CMP)were also studied.It is discovered that there is a large change of φcorr and Jcorr when slurry pH is altered and the Jcorr reaches the maximum(1.306 μA/cm2)at pH 10.5 when the material removal rate(MRR)comes to the fastest value.The Jcorr increases gradually from 0.994 μA/cm2 with 1% CeO2 to 1.304 μA/cm2 with 3% CeO2 and reaches a plateau with the further increase of CeO2 concentration.There is a considerable MRR in the slurry with 3% CeO2 at pH 10.5.The coherence between Jcorr and MRR elucidates that the research on the electrochemical behavior of silicon wafers in the alkaline slurry could offer theoretic guidance on silicon polishing rate and ensure to adjust optimal components of slurry.展开更多
To optimize the existing slurry for abrasive-free polishing(AFP)of hard disk substrate,a water-soluble free radical initiator,2,2-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride(AIBI)is introduced to the H2O2-base...To optimize the existing slurry for abrasive-free polishing(AFP)of hard disk substrate,a water-soluble free radical initiator,2,2-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride(AIBI)is introduced to the H2O2-based slurry.The polishing results show that,the material removal rate(MRR)of hard disk substrate polished with H2O2-based slurry containing AIBI is obviously higher than that without AIBI.The acting mechanism of the improved MRR is investigated.Electron paramagnetic resonances tests show that,by comparison with H2O2 slurry,H2O2-AIBI slurry provides higher concentration of hydroxyl radicals.Auger electron spectrometer analyses further demonstrate that the oxidation ability of H2O2-AIBI slurry is much greater than H2O2 slurry.In addition,potentiodynamic polarization tests show that the corrosion dissolution rate of hard disk substrate in H2O2-AIBI slurry is increased.Therefore that stronger oxidation ability and a higher corrosion dissolution rate of H2O2-AIBI slurry lead to higher MRR can be concluded.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.51109143 and 51209144)the Natural Science Foundation of Jiangsu Province(Grant No.BK2011109)the Foundation of Nanjing Hydraulic Research Institute(Grant No.Y113004)
文摘In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material) were adopted to meet the abrasion resistance requirement of hydraulic structures, and their abrasion resistances against the water flow with suspended load or bed load were studied systematically through tests. Natural basalt stones were adopted as the abrasive for simulation of the abrasion effect of the water flow with bed load, and test results indicate that the basalt stone is suitable for use in the abrasion resistance test of the flexible protective material. The wear process of the polyurea elastomer protective material is stable, and the wear loss is linear with the time of abrasion. If the wear thickness is regarded as the abrasion resistance evaluation factor, the abrasion resistance of the 351 pure polyurea is about twice those of pure polyurea with a high level of hardness and aliphatic polyurea, and over five times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with suspended load. It is also about 50 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load. Overall, the abrasion resistance of pure polyurea presented a decreasing trend with increasing hardness. Pure polyurea with a Shore hardness of D30 has the best abrasion resistance, which is 60 to 70 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load, and has been recommended, among the five kinds of pure polyurea materials with different hardness, in anti-abrasion protection of hydraulic structures.
文摘1 Scope This standard specifies the definition, classification, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of abrasion resistant refractory materials.
文摘An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is theoretically analyzed. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasives for brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic in the ductile mode using W3.5 grit and a high efficiency, low cost and smooth surface with a surface roughness of R_a 2.4?nm can be achieved.
文摘Full factorial design of experiments was developed in order to investigate the effects of jet pressure, abrasive mixing rate, cutting feed, and plate thickness upon three response variables, surface finish of cutting wear zone, percentage proportion of striation free area, and maximum width of cut. The set of sixteen experiments was performed on each of the following two ductile materials: AISI 4340 (high strength low alloy steel, hardened to 49HRc) and Aluminum 2219. Analysis of Variance (ANOVA) was performed on experimental data in order to determine the significance of effects of different parameters on the performance measures. It was found that cutting feed and thickness were highly influential parameters, while abrasive mixing rate is influential upon surface roughness only. Strong interaction was found between jet pressure and workpiece material. Multi-criteria numerical optimization was performed in order to simultaneously maximize/minimize different combinations of performance measures.
文摘The fabrication of miniature structures on components with high-integrity surface quality represents one of the cutting edge technologies in the 21st century.The materials used to construct such small structures are often difficult-to-machine.Many other readily available technologies either cannot realise necessary precision or are costly.Abrasive waterjet(AWJ)is a favourable technology for the machining of difficult-to-machine materials.However,this technology is generally aimed at large stock removal.A reduction in the scale of this technology is an attractive avenue for meeting the pressing need of industry in the production of damage-free micro features.This paper reviews some of the work that has been undertaken at UNSW Sydney about the development of such an AWJ technology,focusing on the system design currently employed to generate a micro abrasive jet,the erosion mechanisms associated with processing some typical brittle materials of both single-and two-phased.Processing models based on the findings are also presented.The review concludes on the viability of the technology and the prevailing trend in its development.
文摘The abrasive waterjet (AWJ) is now widely used in the advanced cutting processes of polymers,metals,glass,ceramics and composite materials like thin multiple-layered material (TMM).Various research and development efforts have recently been made to understand the science of AWJ.However,the interaction mechanism between a workpiece and high-velocity abrasive particles still remains a complicated problem.In this work,the material removal mechanisms of AWJ such as micro penetration and micro dent were experimentally investigated.In addition,a new computer simulation model considering high strain rate effect was proposed to understand the micro impact behavior of high-velocity micro-sized abrasives in AWJ cutting.
文摘The possibility of using V-Fe alloy slag as abrasive material was investigated. The chemical constitution and microstructure of the V-Fe alloy slag were examined. It is found that the slag contains about 90% Al2O3 existing as corundum with high hardness (> 30 GPa) and high bulk density (> 3.6 g/cm(3)). The V-Fe alloy slag can be applied to abrasive material instead of brown alumina (or black alumina).
文摘In present paper, the 3-body abrasion and impact fatigue resistance of a 12%Cr-2.65%C-1.4%Si high Cr cast iron are comprehensively evaluated. The results indicated that the lower the C content of the martensitic matrix, the better the impact fatigue resistance of the iron. The retained austenite is always harmful to both 3-body abrasion and impact fatigue resistances. The low C content martensitic matrix free from retained austenite is suitable for making grinding balls.
文摘Test methods for hot abrasion resistance of refractories in China and overseas were briefly introduced. A new test method for hot abrasion resistance was researched. The new method inherits test principle of cold abrasion resistance in Chinese standard totally, adopts compressed air pre-heating and electricity heating sam- ples, and is featured with complete structure, good con- trollability, simple operation, and small size. The characteristics and operating procedure of HAT-14A tester were introduced. The hot abrasion resistance of various refractories at different temperatures was tested.
文摘The technology of forming and machining lump nano-materials has beeninvestigated. Grinding, abrasive machining test has been conducted to Fe, Co, Ni and Al lumpnano-materials. Experiments have been done to measure grinding force, grinding thermal, machiningroughness and micro-hardness. Image analysis is carried out by metallographic and scanning tunnelmicroscopic microscope. Researches provide the basis data for forming and machining lumpnano-materials.
基金supported by Shandong Provincial Natural Science Foundation of China (Grant No. Y2007A07)
文摘In dealing with abrasive waterjet machining(AWJM) simulation,most literatures apply finite element method(FEM) to build pure waterjet models or single abrasive particle erosion models.To overcome the mesh distortion caused by large deformation using FEM and to consider the effects of both water and abrasive,the smoothed particle hydrodynamics(SPH) coupled FEM modeling for AWJM simulation is presented,in which the abrasive waterjet is modeled by SPH particles and the target material is modeled by FEM.The two parts interact through contact algorithm.Utilizing this model,abrasive waterjet with high velocity penetrating the target materials is simulated and the mechanism of erosion is depicted.The relationships between the depth of penetration and jet parameters,including water pressure and traverse speed,etc,are analyzed based on the simulation.The simulation results agree well with the existed experimental data.The mixing multi-materials SPH particles,which contain abrasive and water,are adopted by means of the randomized algorithm and material model for the abrasive is presented.The study will not only provide a new powerful tool for the simulation of abrasive waterjet machining,but also be beneficial to understand its cutting mechanism and optimize the operating parameters.
文摘A study is carried out which analyzes the machinability of polymer matrix composites under an abrasive waterjet (AWJ) and the associated erosive process or mechanism. It shows that AWJ cutting can produce good quality kerf at high production rate if the cutting parameters are properly selected. A scanning electron microscopy (SEM) analysis of the cut surfaces reveals that the erosive process for the matrix material (resin) involves shearing and ploughing as well as intergranular cracking, while shearing is a dominant process for cutting the fibres in the upper cutting region but the fibers are mostly pulled out in the lower region.
文摘The abrasive wear characteristics of Al_2O_3/PA1010 composite coatings on thesurface of quenched and low-temperature temper steel 45 were tested on the template abrasive weartesting machine and the same uncoated steel 45 was used as a reference material. Experimentalresults showed that the abrasive wear resistance of Al_2O_3/PA1010 composite coatings has a goodlinear relationship with the volume fraction of Al_2O_3 particles in Al_2O_3/PA1010 compositecoatings, and the linear correlative coefficient is 0.979. Under the experimental conditions, thesize of Al_2O_3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance ofAl_2O_3/PA1010 composite coatings. By treating the surface of Al_2O_3 particles with a suitablebonding agent, the distribution of Al_2O_3 particles in matrix PA1010 is more homogeneous and thebonding state between Al_2O_3 particles and matrix PA1010 is better. Therefore, the Al_2O_3particles in Al_2O_3/PA1010 composite coatings make the Al_2O_3/PA1010 composite coatings havebetter abrasive wear resistance than PA1010 coatings. The wear resistance of Al_2O_3/PA1010composite coatings is about 45% compared with that of steel 45.
基金supporting by theMinistry of Education,Science Technology(MEST)and Korea Industrial Technology Foundation(KOTEF)through the Human Resource Training Project for Regional Innovation(Design and Process Optimizationof Reactor System for Pre-Polymer Production,20070130134117)supported byPukyong National University Research Fund in 2006 (Effect Evaluation and Optimization of Process Parameters on Magnetic Abrasive Polishing,PKS-2006-022).
文摘The magnetic force acting on workpiece to be machined plays a significantly important role in magnetic abrasive polishing process.But in a case of polishing nonferrous materials,the strength of magnetic force is very low and it leads lower polishing efficiency.The magnesium alloy that has superior mechanical properties for industrial application such as a lightweight and high specific strength is one of the most famous nonferrous materials.An improving strategy of the magnetic force for the AZ31 magnesium alloy installed with a permanent magnet was proposed and experimental verification was carried out.For the proposed strategy,the effect of process parameters on the surface roughness of the AZ31 magnesium alloy was evaluated by a design of experimental method.
基金Project(2005DFBA028)supported by the International Cooperation of Science and Technology Ministry of ChinaProject(LA07023)supported by the National Undergraduate Innovative Experiment Plan
文摘The electrochemical behavior of silicon wafer in alkaline slurry with nano-sized CeO2 abrasive was investigated.The variations of corrosion potential(φcorr)and corrosion current density(Jcorr)of the P-type(100)silicon wafer with the slurry pH value and the concentration of abrasive CeO2 were studied by polarization curve technologies.The dependence of the polishing rate on the pH and the concentration of CeO2 in slurries during chemical mechanical polishing(CMP)were also studied.It is discovered that there is a large change of φcorr and Jcorr when slurry pH is altered and the Jcorr reaches the maximum(1.306 μA/cm2)at pH 10.5 when the material removal rate(MRR)comes to the fastest value.The Jcorr increases gradually from 0.994 μA/cm2 with 1% CeO2 to 1.304 μA/cm2 with 3% CeO2 and reaches a plateau with the further increase of CeO2 concentration.There is a considerable MRR in the slurry with 3% CeO2 at pH 10.5.The coherence between Jcorr and MRR elucidates that the research on the electrochemical behavior of silicon wafers in the alkaline slurry could offer theoretic guidance on silicon polishing rate and ensure to adjust optimal components of slurry.
基金Project supported by the National Natural Science Foundation of China(51175317)the Doctoral Program of Higher Education of China(20123108110016)
文摘To optimize the existing slurry for abrasive-free polishing(AFP)of hard disk substrate,a water-soluble free radical initiator,2,2-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride(AIBI)is introduced to the H2O2-based slurry.The polishing results show that,the material removal rate(MRR)of hard disk substrate polished with H2O2-based slurry containing AIBI is obviously higher than that without AIBI.The acting mechanism of the improved MRR is investigated.Electron paramagnetic resonances tests show that,by comparison with H2O2 slurry,H2O2-AIBI slurry provides higher concentration of hydroxyl radicals.Auger electron spectrometer analyses further demonstrate that the oxidation ability of H2O2-AIBI slurry is much greater than H2O2 slurry.In addition,potentiodynamic polarization tests show that the corrosion dissolution rate of hard disk substrate in H2O2-AIBI slurry is increased.Therefore that stronger oxidation ability and a higher corrosion dissolution rate of H2O2-AIBI slurry lead to higher MRR can be concluded.