Earthquakes pose a significant threat to people’s property and personal safety.Improving the teaching of civil engineering and building structure anti-seismic design courses can enable students to do a good job in an...Earthquakes pose a significant threat to people’s property and personal safety.Improving the teaching of civil engineering and building structure anti-seismic design courses can enable students to do a good job in anti-seismic design in the future and effectively reduce the damage on buildings caused by earthquakes.In this paper,we analyzed the basic characteristics of a course in civil engineering major,which is Anti-Seismic Design of Building Structures,and the shortcomings of traditional teaching.It is proposed that the 3-degrees and 8-combinations teaching mode of anti-seismic design of building structures can effectively improve students’autonomy and enthusiasm in learning,helps to cultivate professional ethics among students,and improve their ability to apply what they have learned.展开更多
Anti-Seismic Design of Building Structures is an important course in civil engineering majors,and it is also a course that pays equal attention to theory and practice.Therefore,by establishing a case base for Anti-Sei...Anti-Seismic Design of Building Structures is an important course in civil engineering majors,and it is also a course that pays equal attention to theory and practice.Therefore,by establishing a case base for Anti-Seismic Design of Building Structures,the obscure theoretical knowledge can be taught to students in the form of examples,and the knowledge becomes intuitive.In this way,the students’understanding of anti-seismic design theory and the efficiency of teaching can be improved,and the students’interest in learning can be stimulated.展开更多
The design mechanisms and methods of the invention are intended to minimize problems related to the safety of structures in the event of natural phenomena such as earthquakes, tornadoes, and strong winds. It is achiev...The design mechanisms and methods of the invention are intended to minimize problems related to the safety of structures in the event of natural phenomena such as earthquakes, tornadoes, and strong winds. It is achieved by controlling the deformations of the structure. Damage and deformation are closely related concepts since the control of deformations also controls the damage. The design method of applying artificial compression to the ends of all longitudinal reinforced concrete walls and, at the same time, connecting the ends of the walls to the ground using ground anchors placed at the depths of the boreholes, transfers the inertial stresses of the structure in the ground, which reacts as an external force in the structure’s response to seismic displacements. The wall with the artificial compression acquires dynamic, larger active cross-section and high axial and torsional stiffness, preventing all failures caused by inelastic deformation. By connecting the ends of all walls to the ground, we control the eigenfrequency of the structure and the ground during each seismic loading cycle, preventing inelastic displacements. At the same time, we ensure the strong bearing capacity of the foundation soil and the structure. By designing the walls correctly and placing them in proper locations, we prevent the torsional flexural buckling that occurs in asymmetrical floor plans, and metal and tall structures. Compression of the wall sections at the ends and their anchoring to the ground mitigates the transfer of deformations to the connection nodes, strengthens the wall section in terms of base shear force and shear stress of the sections, and increases the strength of the cross-sections to the tensile at the ends of the walls by introducing counteractive forces. The use of tendons within the ducts prevents longitudinal shear in the overlay concrete, while anchoring the walls to the foundation not only dissipates inertial forces to the ground but also prevents rotation of the walls, thus maintaining the structural integrity of the beams. The prestressing at the bilateral ends of the walls restores the structure to its original position even inelastic displacements by closing the opening of the developing cracks.展开更多
High-rise intake towers in high-intensity seismic areas are prone to structural safety problems under vibration.Therefore,effective and low-cost anti-seismic engineering measures must be designed for protection.An int...High-rise intake towers in high-intensity seismic areas are prone to structural safety problems under vibration.Therefore,effective and low-cost anti-seismic engineering measures must be designed for protection.An intake tower in northwest China was considered the research object,and its natural vibration characteristics and dynamic response were first analyzed using the mode decomposition response spectrum method based on a three-dimensional finite element model.The non-dominated sorting genetic algorithm-II(NSGA-II)was adopted to optimize the anti-seismic scheme combination by comprehensively considering the dynamic tower response and variable project cost.Finally,the rationality of the original intake tower antiseismic design scheme was evaluated according to the obtained optimal solution set,and recommendations for improvement were proposed.The method adopted in this study may provide significant references for designing anti-seismic measures for high-rise structures such as intake towers located in high-intensity earthquake areas.展开更多
The wave-shaped space truss is used as the roof of the natatorium in Tianjin University,which ingeniously displays the function of the building.In this paper,the wave-shaped space truss is analyzed and designed,consid...The wave-shaped space truss is used as the roof of the natatorium in Tianjin University,which ingeniously displays the function of the building.In this paper,the wave-shaped space truss is analyzed and designed,considering the substructure made of reinforced concrete rigid frame and the space truss working together.Also,the anti-seismic characteristic of the wave-shaped space truss is studied based on the integral model.展开更多
文摘Earthquakes pose a significant threat to people’s property and personal safety.Improving the teaching of civil engineering and building structure anti-seismic design courses can enable students to do a good job in anti-seismic design in the future and effectively reduce the damage on buildings caused by earthquakes.In this paper,we analyzed the basic characteristics of a course in civil engineering major,which is Anti-Seismic Design of Building Structures,and the shortcomings of traditional teaching.It is proposed that the 3-degrees and 8-combinations teaching mode of anti-seismic design of building structures can effectively improve students’autonomy and enthusiasm in learning,helps to cultivate professional ethics among students,and improve their ability to apply what they have learned.
文摘Anti-Seismic Design of Building Structures is an important course in civil engineering majors,and it is also a course that pays equal attention to theory and practice.Therefore,by establishing a case base for Anti-Seismic Design of Building Structures,the obscure theoretical knowledge can be taught to students in the form of examples,and the knowledge becomes intuitive.In this way,the students’understanding of anti-seismic design theory and the efficiency of teaching can be improved,and the students’interest in learning can be stimulated.
文摘The design mechanisms and methods of the invention are intended to minimize problems related to the safety of structures in the event of natural phenomena such as earthquakes, tornadoes, and strong winds. It is achieved by controlling the deformations of the structure. Damage and deformation are closely related concepts since the control of deformations also controls the damage. The design method of applying artificial compression to the ends of all longitudinal reinforced concrete walls and, at the same time, connecting the ends of the walls to the ground using ground anchors placed at the depths of the boreholes, transfers the inertial stresses of the structure in the ground, which reacts as an external force in the structure’s response to seismic displacements. The wall with the artificial compression acquires dynamic, larger active cross-section and high axial and torsional stiffness, preventing all failures caused by inelastic deformation. By connecting the ends of all walls to the ground, we control the eigenfrequency of the structure and the ground during each seismic loading cycle, preventing inelastic displacements. At the same time, we ensure the strong bearing capacity of the foundation soil and the structure. By designing the walls correctly and placing them in proper locations, we prevent the torsional flexural buckling that occurs in asymmetrical floor plans, and metal and tall structures. Compression of the wall sections at the ends and their anchoring to the ground mitigates the transfer of deformations to the connection nodes, strengthens the wall section in terms of base shear force and shear stress of the sections, and increases the strength of the cross-sections to the tensile at the ends of the walls by introducing counteractive forces. The use of tendons within the ducts prevents longitudinal shear in the overlay concrete, while anchoring the walls to the foundation not only dissipates inertial forces to the ground but also prevents rotation of the walls, thus maintaining the structural integrity of the beams. The prestressing at the bilateral ends of the walls restores the structure to its original position even inelastic displacements by closing the opening of the developing cracks.
基金supported by the National Natural Science Foundation of the China/Yalong River Joint Fund Project (No.U1765205).
文摘High-rise intake towers in high-intensity seismic areas are prone to structural safety problems under vibration.Therefore,effective and low-cost anti-seismic engineering measures must be designed for protection.An intake tower in northwest China was considered the research object,and its natural vibration characteristics and dynamic response were first analyzed using the mode decomposition response spectrum method based on a three-dimensional finite element model.The non-dominated sorting genetic algorithm-II(NSGA-II)was adopted to optimize the anti-seismic scheme combination by comprehensively considering the dynamic tower response and variable project cost.Finally,the rationality of the original intake tower antiseismic design scheme was evaluated according to the obtained optimal solution set,and recommendations for improvement were proposed.The method adopted in this study may provide significant references for designing anti-seismic measures for high-rise structures such as intake towers located in high-intensity earthquake areas.
文摘The wave-shaped space truss is used as the roof of the natatorium in Tianjin University,which ingeniously displays the function of the building.In this paper,the wave-shaped space truss is analyzed and designed,considering the substructure made of reinforced concrete rigid frame and the space truss working together.Also,the anti-seismic characteristic of the wave-shaped space truss is studied based on the integral model.