Background:Andrographis paniculata has been widely reported as an herbal plant for malaria treatment.The increasing rate of resistance to recommended antimalarial drugs has justified the need for a continuous search f...Background:Andrographis paniculata has been widely reported as an herbal plant for malaria treatment.The increasing rate of resistance to recommended antimalarial drugs has justified the need for a continuous search for new and more potent drugs that target all stages of the Plasmodium falciparum life cycle from natural plant sources.This study aimed to determine the antiplasmodial effect of phytocompounds derived from A.paniculata on the stages of plasmodium falciparum.Methods:Phytocompounds from A.paniculata were identified by Gas Chromatography-Mass Spectrophotometry(GCMS)analysis.The phytocompounds were screened for their druggability using Lipinski’s rule of five and subjected to Absorption,Distribution,Metabolism,Excretion,Toxicity(ADMET)and druglikeness analysis.The phytocompounds were docked against some validated drug targets at different stages of Plasmodium falciparum(hepatic,asexual,sexual,and vector targets)using PyRx software to analyze the inhibitory potential and protein-ligand interaction.Thereafter,the stability and flexibility of the best complexes were assessed through molecular dynamics simulations at 50ns using WebGRO.Result:The 7a-Isopropenyl-4,5-dimethyloctahydroinden-4-yl exhibited a higher binding affinity and better stability throughout the simulation period with P.falciparum dihydrofolate reductase-thymidylate synthase and Plasmodium falciparum M1 alanyl aminopeptidase for asexual blood stage and gametocyte stage of Plasmodium falciparum,respectively than the existing drugs.Meanwhile,N-Ethyl-3-methoxy-4-methylphenethylamine was also found to have a higher binding affinity and more stability throughout the simulation period with P.falciparum purine nucleoside phosphorylase and Plasmodium falciparum gametocyte surface protein for Hepatic schizonts stage of Plasmodium falciparum and gametocyte transmission blocking stage,respectively,than the existing drugs.Conclusion:The 7a-Isopropenyl-4,5-dimethyloctahydroinden-4-yl and N-Ethyl-3-methoxy-4 methylphenethylamine from A.paniculata are predicted as an antimalarial drug candidate.Thus,it is recommended that in vitro and in vivo bioassays be conducted on these hit compounds to validate these predictions.展开更多
Antibody-drug conjugates(ADCs)are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells,thereby attrac...Antibody-drug conjugates(ADCs)are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells,thereby attracting considerable attention in precise oncology therapy.Cetuximab(Cet)is a typical antibody that offers the benefits of good targeting and safety for individuals with advanced and inoperable cutaneous squamous cell carcinoma(cSCC);however,its anti-tumor activity is limited to a single use.Cisplatin(CisPt)shows good curative effects;however,its adverse effects and non-tumor-targeting ability are major drawbacks.In this study,we designed and developed a new ADC based on a new cytotoxic platinum(IV)prodrug(C8Pt(IV))and Cet.The so-called antibody-platinum(IV)prodrugs conjugates,named Cet-C8Pt(IV),showed excellent tumor targeting in cSCC.Specifically,it accurately delivered C8Pt(IV)into tumor cells to exert the combined anti-tumor effect of Cet and CisPt.Herein,metabolomic analysis showed that Cet-C8Pt(IV)promoted cellular apoptosis and increased DNA damage in cSCC cells by affecting the vitamin B6 metabolic pathway in tumor cells,thereby further enhancing the tumor-killing ability and providing a new strategy for clinical cancer treatment using antibody-platinum(IV)prodrugs conjugates.展开更多
Objective:Chronic fatigue syndrome(CFS)is a prevalent symptom of post-coronavirus disease 2019(COVID-19)and is associated with unclear disease mechanisms.The herbal medicine Qingjin Yiqi granules(QJYQ)constitute a cli...Objective:Chronic fatigue syndrome(CFS)is a prevalent symptom of post-coronavirus disease 2019(COVID-19)and is associated with unclear disease mechanisms.The herbal medicine Qingjin Yiqi granules(QJYQ)constitute a clinically approved formula for treating post-COVID-19;however,its potential as a drug target for treating CFS remains largely unknown.This study aimed to identify novel causal factors for CFS and elucidate the potential targets and pharmacological mechanisms of action of QJYQ in treating CFS.Methods:This prospective cohort analysis included 4,212 adults aged≥65 years who were followed up for 7 years with 435 incident CFS cases.Causal modeling and multivariate logistic regression analysis were performed to identify the potential causal determinants of CFS.A proteome-wide,two-sample Mendelian randomization(MR)analysis was employed to explore the proteins associated with the identified causal factors of CFS,which may serve as potential drug targets.Furthermore,we performed a virtual screening analysis to assess the binding affinity between the bioactive compounds in QJYQ and CFS-associated proteins.Results:Among 4,212 participants(47.5%men)with a median age of 69 years(interquartile range:69–70 years)enrolled in 2004,435 developed CFS by 2011.Causal graph analysis with multivariate logistic regression identified frequent cough(odds ratio:1.74,95%confidence interval[CI]:1.15–2.63)and insomnia(odds ratio:2.59,95%CI:1.77–3.79)as novel causal factors of CFS.Proteome-wide MR analysis revealed that the upregulation of endothelial cell-selective adhesion molecule(ESAM)was causally linked to both chronic cough(odds ratio:1.019,95%CI:1.012–1.026,P=2.75 e^(−05))and insomnia(odds ratio:1.015,95%CI:1.008–1.022,P=4.40 e^(−08))in CFS.The major bioactive compounds of QJYQ,ginsenoside Rb2(docking score:−6.03)and RG4(docking score:−6.15),bound to ESAM with high affinity based on virtual screening.Conclusions:Our integrated analytical framework combining epidemiological,genetic,and in silico data provides a novel strategy for elucidating complex disease mechanisms,such as CFS,and informing models of action of traditional Chinese medicines,such as QJYQ.Further validation in animal models is warranted to confirm the potential pharmacological effects of QJYQ on ESAM and as a treatment for CFS.展开更多
Prostate cancer is a common male malignant tumor,and bone metastasis is one of the common complications in the late stage of prostate cancer.The mechanism of prostate cancer bone metastasis is a complex process involv...Prostate cancer is a common male malignant tumor,and bone metastasis is one of the common complications in the late stage of prostate cancer.The mechanism of prostate cancer bone metastasis is a complex process involving multiple factors and steps.In recent years,with in-depth research on the mechanism of prostate cancer bone metastasis and the development of new drugs,important progress has been made in the treatment of prostate cancer bone metastasis.Based on this,this article introduces the mechanism of prostate cancer bone metastasis and the research progress of several bone-targeted drugs to provide reference and inspiration for future research.展开更多
AIM: To investigate an association between N -acetyltransferase 2 (NAT2 )-haplotypes/diplotypes and adverse effects in Japanese pulmonary tuberculosis patients. METHODS: We studied 100 patients with pulmonary TB treat...AIM: To investigate an association between N -acetyltransferase 2 (NAT2 )-haplotypes/diplotypes and adverse effects in Japanese pulmonary tuberculosis patients. METHODS: We studied 100 patients with pulmonary TB treated with anti-TB drugs including INH. The frequencies and distributions of single nucleotide polymorphisms, haplotypes, and diplotypes of NAT2 were determined by the PCR-restriction fragment length polymorphism method, and the results were compared between TB patients with and without adverse effect, using multivariate logistic regression analysis.RESULTS: Statistical analysis revealed that the frequency of a variant haplotype, NAT2*6A , was signifi cantly increased in TB patients with hepatotoxicity, compared with those without hepatotoxicity [P = 0.001, odds ratio (OR) = 3.535]. By contrast, the frequency of a wild-type (major) haplotype, "NAT2*4", was signif icantly lower in TB patients with hepatotoxicity than those without hepatotoxicity (P < 0.001, OR = 0.265). There was no association between NAT2-haplotypes and skin rash or eosinophilia. CONCLUSION: The present study shows that NAT2 is one of the determinants of anti-TB drug-induced hepatotoxicity. Moreover, the haplotypes, NAT2*4 and NAT2*6A, are useful new biomarkers for predicting anti- TB drug-induced hepatotoxicity.展开更多
The control of Leishmania infection relies primarily on chemotherapy till date.Resistance to pentavalent antimonials,which have been the recommended drugs to treat cutaneous and visceral leishmaniasis,is now widesprea...The control of Leishmania infection relies primarily on chemotherapy till date.Resistance to pentavalent antimonials,which have been the recommended drugs to treat cutaneous and visceral leishmaniasis,is now widespread in Indian subcontinents.New drug formulations like amphotericin B,its lipid formulations,and miltefosine have shown great efGcacy to treat leishmaniasis but their high cost and therapeutic complications limit their usefulness.In addition, irregular and inappropriate uses of these second line drugs in endemic regions like state of Bihar, India threaten resistance development in the parasite.In context to the limited drug options and unavailability of either preventive or prophylactic candidates,there is a pressing need to develop true antileishmanial drugs to reduce the disease burden of this debilitating endemic disease.Notwithstanding significant progress of leishmanial research during last few decades, identification and characterization of novel drugs and drug targets are far from satisfactory.This review will initially describe current drug regimens and later will provide an overview on few important biochemical and enzymatic machineries that could be utilized as putative drug targets for generation of true antileishmanial drugs.展开更多
Objective:To study the effect of pyrrolidine dithiocarbamate(PDTC) on the anti-tuberculosis drug-induced liver injury and the molecular mechanism. Methods:Clean male SD rats were selected as experimental animals and r...Objective:To study the effect of pyrrolidine dithiocarbamate(PDTC) on the anti-tuberculosis drug-induced liver injury and the molecular mechanism. Methods:Clean male SD rats were selected as experimental animals and randomly divided into normal group,model group,PDTC group and AG490 group. Animal model of anti-tuberculosis drug-induced liver injury was established by intragastric administration isoniazid + rifampicin. PDTC group received intraperitoneal injection of PDTC,and AG490 group received intraperitoneal injection of AG490. Twenty-eight days after intervention,the rats were executed,and the liver injury indexes,inflammation indexes and oxidative stress indexes in serum as well as JAK2/STAT3 expression,liver injury indexes,inflammation indexes and oxidative stress indexes in liver tissue were determined. Results:p-JAK2,p-STAT3,TNF-α,IL-1β,IL-6,ROS,8-OHdG and MDA expression in liver tissue as well as TBIL,ALT,AST,γ-GT,TNF-α,IL-1β,IL-6,ROS,8-OHdG and MDA levels in serum of model group were significantly higher than those of normal group while p-JAK2,p-STAT3,TNF-α,IL-1β,IL-6,ROS,8-OHdG and MDA expression in liver tissu as well as TBIL,ALT,AST,γ-GT,TNF-α,IL-1β,IL-6,ROS,8-OHdG and MDA levels in serum of PDTC group and AG490 group were significantly lower than those of model group. Conclusions:PDTC can inhibit the inflammation and oxidative stress mediated by JAK2/STAT3 signaling pathway to alleviate the anti-tuberculosis drug-induced liver injury.展开更多
Pancreatic cancer is a malignant tumor with poor prognosis.The treatment of pancreatic cancer depends on the tumor stage and type,and includes local treatment(surgery,radiotherapy and ablation intervention)and systemi...Pancreatic cancer is a malignant tumor with poor prognosis.The treatment of pancreatic cancer depends on the tumor stage and type,and includes local treatment(surgery,radiotherapy and ablation intervention)and systemic therapy(chemotherapy,targeted therapy and immunotherapy).We read with great interest the review“Effective combinations of anti-cancer and targeted drugs for pancreatic cancer treatment”published on World J Gastroenterol and intended to share some of our perspectives in pancreatic cancer treatment.This review presents the therapeutic effects of the combination of gemcitabine and targeted drugs,which gives us a deeper insight into the combination treatments for pancreatic cancer.展开更多
Biological entities are involved in complicated and complex connections;hence,discovering biological information using network biology ideas is critical.In the past few years,network biology has emerged as an integrat...Biological entities are involved in complicated and complex connections;hence,discovering biological information using network biology ideas is critical.In the past few years,network biology has emerged as an integrative and systems-level approach for understanding and interpreting these complex interactions.Biological network analysis is one method for reducing enormous data sets to clinically useful knowledge for disease diagnosis,prognosis,and treatment.The network of biological entities can help us predict drug targets for several diseases.The drug targets identified through the systems biology approach help in targeting the essential biological pathways that contribute to the progression and development of the disease.The novel strategical approach of system biologyassisted pharmacology coupled with computer-aided drug discovery(CADD)can help drugs fight multifactorial diseases efficiently.In the present review,we have summarized the role and application of network biology for not only unfolding the mechanism of complex neurodevelopmental disorders but also identifying important drug targets for diseases like ADHD,Autism,Epilepsy,and Intellectual Disability.Systems biology has emerged as a promising approach to identifying drug targets and aiming for targeted drug discovery for the precise treatment of neurodevelopmental disorders.展开更多
Drug-target interactions prediction(DTIP)remains an important requirement in thefield of drug discovery and human medicine.The identification of interaction among the drug compound and target protein plays an essential ...Drug-target interactions prediction(DTIP)remains an important requirement in thefield of drug discovery and human medicine.The identification of interaction among the drug compound and target protein plays an essential pro-cess in the drug discovery process.It is a lengthier and complex process for pre-dicting the drug target interaction(DTI)utilizing experimental approaches.To resolve these issues,computational intelligence based DTIP techniques were developed to offer an efficient predictive model with low cost.The recently devel-oped deep learning(DL)models can be employed for the design of effective pre-dictive approaches for DTIP.With this motivation,this paper presents a new drug target interaction prediction using optimal recurrent neural network(DTIP-ORNN)technique.The goal of the DTIP-ORNN technique is to predict the DTIs in a semi-supervised way,i.e.,inclusion of both labelled and unlabelled instances.Initially,the DTIP-ORNN technique performs data preparation process and also includes class labelling process,where the target interactions from the database are used to determine thefinal label of the unlabelled instances.Besides,drug-to-drug(D-D)and target-to-target(T-T)interactions are used for the weight initia-tion of the RNN based bidirectional long short term memory(BiLSTM)model which is then utilized to the prediction of DTIs.Since hyperparameters signifi-cantly affect the prediction performance of the BiLSTM technique,the Adam optimizer is used which mainly helps to improve the DTI prediction outcomes.In order to ensure the enhanced predictive outcomes of the DTIP-ORNN techni-que,a series of simulations are implemented on four benchmark datasets.The comparative result analysis shows the promising performance of the DTIP-ORNN method on the recent approaches.展开更多
HIV/AIDS is one of the most serious public health challenges globally. Despite the great efforts that are being devoted to prevent,treat and to better understand the disease,it is one of the main causes of morbidity a...HIV/AIDS is one of the most serious public health challenges globally. Despite the great efforts that are being devoted to prevent,treat and to better understand the disease,it is one of the main causes of morbidity and mortality worldwide. Currently,there are 30 drugs or combinations of drugs approved by FDA. Because of the side-effects,price and drug resistance,it is essential to discover new targets,to develop new technology and to find new anti-HIV drugs. This review summarizes the major targets and assays currently used in anti-HIV drug screening.展开更多
Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations th...Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations through the development of a potent MM-targeting chemotherapy strategy,which capitalized on the high binding affinity of alendronate for hydroxyapatite in the bone matrix and the homologous targeting of myeloma cell membranes,termed T-PB@M.The results from our investigations highlight the considerable bone affinity of T-PB@M,both in vitro and in vivo.Additionally,this material demonstrated a capability for drug release triggered by low pH conditions.Moreover,T-PB@M induced the generation of reactive oxygen species and triggered cell apoptosis through the poly(ADP-ribose)polymerase 1(PARP1)-Caspase-3-B-cell lymphoma-2(Bcl-2)pathway in MM cells.Notably,T-PB@M preferentially targeted bone-involved sites,thereby circumventing systemic toxic side effects and leading to prolonged survival of MM orthotopic mice.Therefore,this designed target-MM nanocarrier presents a promising and potentially effective platform for the precise treatment of MM.展开更多
Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases.It has also been demonstrated to be related to cancer heterogeneity,which promotes the emergence of treatment-refractory ca...Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases.It has also been demonstrated to be related to cancer heterogeneity,which promotes the emergence of treatment-refractory cancer cell populations.Focusing on how cancer cells develop resistance during the encounter with targeted drugs and the immune system,we propose a mathematical model for studying the dynamics of drug resistance in a conjoint heterogeneous tumor-immune setting.We analyze the local geometric properties of the equilibria of the model.Numerical simulations show that the selectively targeted removal of sensitive cancer cells may cause the initially heterogeneous population to become a more resistant population.Moreover,the decline of immune recruitment is a stronger determinant of cancer escape from immune surveillance or targeted therapy than the decay in immune predation strength.Sensitivity analysis of model parameters provides insight into the roles of the immune system combined with targeted therapy in determining treatment outcomes.展开更多
Background:Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis.Although primary prevention drugs,including non-selectiveβ-blockers,have effectively reduced the incide...Background:Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis.Although primary prevention drugs,including non-selectiveβ-blockers,have effectively reduced the incidence of bleeding,their efficacy is limited due to side effects and related contraindications.With recent advances in precision medicine,precise drug treatment provides better treatment efficacy.Data sources:Literature search was conducted in PubMed,MEDLINE and Web of Science for relevant articles published up to May 2022.Information on clinical trials was obtained from https://clinicaltrials.gov/and http://www.chictr.org.cn/.Results:The in-depth understanding of the pathogenesis and advances of portal hypertension has enabled the discovery of multiple molecular targets for promising drugs.According to the site of action,these drugs could be classified into four classes:intrahepatic,extrahepatic,both intrahepatic and extrahepatic targets and others.All these classes of drugs offer advantages over traditional treatments in prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.Conclusions:This review classified and summarized the promising drugs,which prevent gastroesophageal variceal bleeding by targeting specific markers of pathogenesis of portal hypertension,demonstrating the significance of using the precision medicine strategy to discover and develop promising drugs for the primary prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.展开更多
Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinic...Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinical use up to now,biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment.Polyethylene glycol(PEG)-modification(or PEGylation)has been regarded as the gold standard for stabilising nDDS in complex biological environment.However,the accelerated blood clearance(ABC)of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications.Zwitterionic polymer,a novel family of antifouling materials,have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility.Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues.More impressively,zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution,pressure gradients,impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications.The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS,which could facilitate their better clinical translation.Herein,we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlyingmechanisms.Finally,prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.展开更多
Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival.The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone ...Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival.The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone to exert a therapeutic effect.To improve the treatment efficacy,we developed Pluronic P123(P123)-based polymeric micelles dually decorated with alendronate(ALN)and cancer-specific phage protein DMPGTVLP(DP-8)for targeted drug delivery to breast cancer bone metastases.Doxorubicin(DOX)was selected as the anticancer drug and was encapsulated into the hydrophobic core of the micelles with a high drug loading capacity(3.44%).The DOX-loaded polymeric micelles were spherical,123 nm in diameter on average,and exhibited a narrow size distribution.The in vitro experiments demonstrated that a pH decrease from 7.4 to 5.0 markedly accelerated DOX release.The micelles were well internalized by cultured breast cancer cells and the cell death rate of micelle-treated breast cancer cells was increased compared to that of free DOX-treated cells.Rapid binding of the micelles to hydroxyapatite(HA)microparticles indicated their high affinity for bone.P123-ALN/DP-8@DOX inhibited tumor growth and reduced bone resorption in a 3D cancer bone metastasis model.In vivo experiments using a breast cancer bone metastasis nude model demonstrated increased accumulation of the micelles in the tumor region and considerable antitumor activity with no organ-specific histological damage and minimal systemic toxicity.In conclusion,our study provided strong evidence that these pH-sensitive dual ligand-targeted polymeric micelles may be a successful treatment strategy for breast cancer bone metastasis.展开更多
Objective:To identify novel drug targets for treatment of Plasmodium falciparum.Methods: Local BT.ASTP were used to find the proteins non-homologous to human essential proteins as novel drug targets.Functional domains...Objective:To identify novel drug targets for treatment of Plasmodium falciparum.Methods: Local BT.ASTP were used to find the proteins non-homologous to human essential proteins as novel drug targets.Functional domains of novel drug targets were identified by InterPro and Pfam.3D structures of potential drug targets were predicated by the SWISS-MODEL workspace. Ligands and ligand-binding sites of the proteins were searched by Ef-seek.Results:Three essential proteins were identified that might be considered as potential drug targets.AAN37254.1 belonged to 1-deoxy-D-xylulose 5-phosphate reductoisomerase,CAD50499.1 belonged to chorismale synthase,CAD51220.1 belonged to FAD binging 3 family,but the function of CAD51220.1 was unknown.The 3D structures,ligands and ligand-binding sites of AAM37254.1 and CAD50499.1 were successfully predicated.Conclusions:Two of these potential drug targets are key enzymes in 2-C-methyl-d-erythritol 4-phosphate pathway and shikimate pathway, which are absent in humans,so these two essential proteins are good potential drug targets.The function and 3D structures of CAD50499.1 is still unknown,it still need further study.展开更多
An assessment of the efficacy targets of drugs that represent an opportunity for targeted therapy is fundamental to the development of post-genomic research strategies within the pharmaceutical industry. Identificatio...An assessment of the efficacy targets of drugs that represent an opportunity for targeted therapy is fundamental to the development of post-genomic research strategies within the pharmaceutical industry. Identification and validation of efficacy target is an important process in drug discovery and development. Extensive drug discovery efforts have yielded many approved and candidate drugs. Although sever drug databases provide the drug and their corresponding targets, there is an insufficient coverage of the clinical trial drugs over the past decades. Here, we conduct a comprehensive survey for current clinical trial drugs, therapeutic targets. The analysis contents include: 1) collect clinical trial drugs from different sources, 2) By analysis of the literature, we summarize the criteria for assign therapeutic targets for each drug based on its indication. The knowledge of these drugs and their targets is useful not only for drug discovery and development of targeted therapy, but also for facilitating the discovery of systems pharmacology.展开更多
To increase the chance of a successful outcome in clinic and in the development of innovative drugs,researchers aim to provide more compre hensive information about the disease and drugs to adapt treatment decisions a...To increase the chance of a successful outcome in clinic and in the development of innovative drugs,researchers aim to provide more compre hensive information about the disease and drugs to adapt treatment decisions according to an individual disease's mo-lecular characteristics.It is thus increasingly desirable to illuminate fund amental molecular pathways of the drug and its targets inside organisms in a non-invasive manner.Technologies developed in molecular imaging assist in visualizing,characterizing,and quanti-fying targets of interest at the molecular level within intact living organisms.This special issue of Joumal of Pharmaceutical Analysis is therefore dedicated to highlighting current progresses made in molecular imaging towards various drugs,important or promising drug targets,and their interactions,as well as to providing a forum for sharing new methods reported recently for the efficient phar-maceutical analysis.展开更多
Kinase inhibitors are a significant and continuously developing division of target therapeutics.The drug discovery and improvement efforts have examined numerous attempts to target the signaling pathway of kinases.The ...Kinase inhibitors are a significant and continuously developing division of target therapeutics.The drug discovery and improvement efforts have examined numerous attempts to target the signaling pathway of kinases.The Kinase inhibitors have been heralded as a game-changer in cancer treatment.For developing kinase inhibitors as a treatment for various non-malignant disorders like auto-immune diseases,is currently undergoing extensive research.It may be beneficial to investigate whether cell-specific kinase inhibitor administration enhances therapeutic efficacy and decreases adverse effects.The goal of the current review is to gain insight into the role of kinase inhibitors in facilitating effective target drug delivery for the treatment of various anti-inflammatory,auto-immune,and anticancer disorders.The aim of this review is also to shed light on drug discovery approaches for kinase inhibitors,their mode of action,and delivery approaches.The variation in the binding of kinases bestows different target approaches in drug design,which can be employed for designing the targeted molecules.Several target sites have been studied,exceeding the design of drugs for various diseases like cancer,Alzheimer’s,rheumatoid arthritis,etc.Diverse delivery approaches have also been studied for the targeted application of kinase inhibitors.展开更多
文摘Background:Andrographis paniculata has been widely reported as an herbal plant for malaria treatment.The increasing rate of resistance to recommended antimalarial drugs has justified the need for a continuous search for new and more potent drugs that target all stages of the Plasmodium falciparum life cycle from natural plant sources.This study aimed to determine the antiplasmodial effect of phytocompounds derived from A.paniculata on the stages of plasmodium falciparum.Methods:Phytocompounds from A.paniculata were identified by Gas Chromatography-Mass Spectrophotometry(GCMS)analysis.The phytocompounds were screened for their druggability using Lipinski’s rule of five and subjected to Absorption,Distribution,Metabolism,Excretion,Toxicity(ADMET)and druglikeness analysis.The phytocompounds were docked against some validated drug targets at different stages of Plasmodium falciparum(hepatic,asexual,sexual,and vector targets)using PyRx software to analyze the inhibitory potential and protein-ligand interaction.Thereafter,the stability and flexibility of the best complexes were assessed through molecular dynamics simulations at 50ns using WebGRO.Result:The 7a-Isopropenyl-4,5-dimethyloctahydroinden-4-yl exhibited a higher binding affinity and better stability throughout the simulation period with P.falciparum dihydrofolate reductase-thymidylate synthase and Plasmodium falciparum M1 alanyl aminopeptidase for asexual blood stage and gametocyte stage of Plasmodium falciparum,respectively than the existing drugs.Meanwhile,N-Ethyl-3-methoxy-4-methylphenethylamine was also found to have a higher binding affinity and more stability throughout the simulation period with P.falciparum purine nucleoside phosphorylase and Plasmodium falciparum gametocyte surface protein for Hepatic schizonts stage of Plasmodium falciparum and gametocyte transmission blocking stage,respectively,than the existing drugs.Conclusion:The 7a-Isopropenyl-4,5-dimethyloctahydroinden-4-yl and N-Ethyl-3-methoxy-4 methylphenethylamine from A.paniculata are predicted as an antimalarial drug candidate.Thus,it is recommended that in vitro and in vivo bioassays be conducted on these hit compounds to validate these predictions.
基金the National Natural Science Foundation of China(Grant No.:51803120).
文摘Antibody-drug conjugates(ADCs)are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells,thereby attracting considerable attention in precise oncology therapy.Cetuximab(Cet)is a typical antibody that offers the benefits of good targeting and safety for individuals with advanced and inoperable cutaneous squamous cell carcinoma(cSCC);however,its anti-tumor activity is limited to a single use.Cisplatin(CisPt)shows good curative effects;however,its adverse effects and non-tumor-targeting ability are major drawbacks.In this study,we designed and developed a new ADC based on a new cytotoxic platinum(IV)prodrug(C8Pt(IV))and Cet.The so-called antibody-platinum(IV)prodrugs conjugates,named Cet-C8Pt(IV),showed excellent tumor targeting in cSCC.Specifically,it accurately delivered C8Pt(IV)into tumor cells to exert the combined anti-tumor effect of Cet and CisPt.Herein,metabolomic analysis showed that Cet-C8Pt(IV)promoted cellular apoptosis and increased DNA damage in cSCC cells by affecting the vitamin B6 metabolic pathway in tumor cells,thereby further enhancing the tumor-killing ability and providing a new strategy for clinical cancer treatment using antibody-platinum(IV)prodrugs conjugates.
基金supported by an internal fund from Macao Polytechnic University(RP/FCSD-02/2022).
文摘Objective:Chronic fatigue syndrome(CFS)is a prevalent symptom of post-coronavirus disease 2019(COVID-19)and is associated with unclear disease mechanisms.The herbal medicine Qingjin Yiqi granules(QJYQ)constitute a clinically approved formula for treating post-COVID-19;however,its potential as a drug target for treating CFS remains largely unknown.This study aimed to identify novel causal factors for CFS and elucidate the potential targets and pharmacological mechanisms of action of QJYQ in treating CFS.Methods:This prospective cohort analysis included 4,212 adults aged≥65 years who were followed up for 7 years with 435 incident CFS cases.Causal modeling and multivariate logistic regression analysis were performed to identify the potential causal determinants of CFS.A proteome-wide,two-sample Mendelian randomization(MR)analysis was employed to explore the proteins associated with the identified causal factors of CFS,which may serve as potential drug targets.Furthermore,we performed a virtual screening analysis to assess the binding affinity between the bioactive compounds in QJYQ and CFS-associated proteins.Results:Among 4,212 participants(47.5%men)with a median age of 69 years(interquartile range:69–70 years)enrolled in 2004,435 developed CFS by 2011.Causal graph analysis with multivariate logistic regression identified frequent cough(odds ratio:1.74,95%confidence interval[CI]:1.15–2.63)and insomnia(odds ratio:2.59,95%CI:1.77–3.79)as novel causal factors of CFS.Proteome-wide MR analysis revealed that the upregulation of endothelial cell-selective adhesion molecule(ESAM)was causally linked to both chronic cough(odds ratio:1.019,95%CI:1.012–1.026,P=2.75 e^(−05))and insomnia(odds ratio:1.015,95%CI:1.008–1.022,P=4.40 e^(−08))in CFS.The major bioactive compounds of QJYQ,ginsenoside Rb2(docking score:−6.03)and RG4(docking score:−6.15),bound to ESAM with high affinity based on virtual screening.Conclusions:Our integrated analytical framework combining epidemiological,genetic,and in silico data provides a novel strategy for elucidating complex disease mechanisms,such as CFS,and informing models of action of traditional Chinese medicines,such as QJYQ.Further validation in animal models is warranted to confirm the potential pharmacological effects of QJYQ on ESAM and as a treatment for CFS.
基金Traditional Chinese Medicine and Integrated Traditional Chinese and Western Medicine Research Project of Tianjin Municipal Administration of Traditional Chinese Medicine(2021106)Beijing-Tianjin-Hebei Traditional Chinese Medicine Collaborative Development Specialty Alliance Construction Project(First Teaching Hospital of Tianjin University of Traditional Chinese Medicine,Qingxian County Traditional Chinese Medicine Hospital).
文摘Prostate cancer is a common male malignant tumor,and bone metastasis is one of the common complications in the late stage of prostate cancer.The mechanism of prostate cancer bone metastasis is a complex process involving multiple factors and steps.In recent years,with in-depth research on the mechanism of prostate cancer bone metastasis and the development of new drugs,important progress has been made in the treatment of prostate cancer bone metastasis.Based on this,this article introduces the mechanism of prostate cancer bone metastasis and the research progress of several bone-targeted drugs to provide reference and inspiration for future research.
基金by Grant-in-Aid for Scientif ic Research (Category B, No. 18390168) for K Tsukamoto by the Ministry of Education, Culture, Sports, Science and Technology of Japan
文摘AIM: To investigate an association between N -acetyltransferase 2 (NAT2 )-haplotypes/diplotypes and adverse effects in Japanese pulmonary tuberculosis patients. METHODS: We studied 100 patients with pulmonary TB treated with anti-TB drugs including INH. The frequencies and distributions of single nucleotide polymorphisms, haplotypes, and diplotypes of NAT2 were determined by the PCR-restriction fragment length polymorphism method, and the results were compared between TB patients with and without adverse effect, using multivariate logistic regression analysis.RESULTS: Statistical analysis revealed that the frequency of a variant haplotype, NAT2*6A , was signifi cantly increased in TB patients with hepatotoxicity, compared with those without hepatotoxicity [P = 0.001, odds ratio (OR) = 3.535]. By contrast, the frequency of a wild-type (major) haplotype, "NAT2*4", was signif icantly lower in TB patients with hepatotoxicity than those without hepatotoxicity (P < 0.001, OR = 0.265). There was no association between NAT2-haplotypes and skin rash or eosinophilia. CONCLUSION: The present study shows that NAT2 is one of the determinants of anti-TB drug-induced hepatotoxicity. Moreover, the haplotypes, NAT2*4 and NAT2*6A, are useful new biomarkers for predicting anti- TB drug-induced hepatotoxicity.
基金The financial supports received from Department of Biotechnology, New Delhi(BT/PR11177/MED/29/99/2008)
文摘The control of Leishmania infection relies primarily on chemotherapy till date.Resistance to pentavalent antimonials,which have been the recommended drugs to treat cutaneous and visceral leishmaniasis,is now widespread in Indian subcontinents.New drug formulations like amphotericin B,its lipid formulations,and miltefosine have shown great efGcacy to treat leishmaniasis but their high cost and therapeutic complications limit their usefulness.In addition, irregular and inappropriate uses of these second line drugs in endemic regions like state of Bihar, India threaten resistance development in the parasite.In context to the limited drug options and unavailability of either preventive or prophylactic candidates,there is a pressing need to develop true antileishmanial drugs to reduce the disease burden of this debilitating endemic disease.Notwithstanding significant progress of leishmanial research during last few decades, identification and characterization of novel drugs and drug targets are far from satisfactory.This review will initially describe current drug regimens and later will provide an overview on few important biochemical and enzymatic machineries that could be utilized as putative drug targets for generation of true antileishmanial drugs.
基金supported by Surface Project of Shandong Provincial Natural Science Foundation(No.ZR2014HM081)
文摘Objective:To study the effect of pyrrolidine dithiocarbamate(PDTC) on the anti-tuberculosis drug-induced liver injury and the molecular mechanism. Methods:Clean male SD rats were selected as experimental animals and randomly divided into normal group,model group,PDTC group and AG490 group. Animal model of anti-tuberculosis drug-induced liver injury was established by intragastric administration isoniazid + rifampicin. PDTC group received intraperitoneal injection of PDTC,and AG490 group received intraperitoneal injection of AG490. Twenty-eight days after intervention,the rats were executed,and the liver injury indexes,inflammation indexes and oxidative stress indexes in serum as well as JAK2/STAT3 expression,liver injury indexes,inflammation indexes and oxidative stress indexes in liver tissue were determined. Results:p-JAK2,p-STAT3,TNF-α,IL-1β,IL-6,ROS,8-OHdG and MDA expression in liver tissue as well as TBIL,ALT,AST,γ-GT,TNF-α,IL-1β,IL-6,ROS,8-OHdG and MDA levels in serum of model group were significantly higher than those of normal group while p-JAK2,p-STAT3,TNF-α,IL-1β,IL-6,ROS,8-OHdG and MDA expression in liver tissu as well as TBIL,ALT,AST,γ-GT,TNF-α,IL-1β,IL-6,ROS,8-OHdG and MDA levels in serum of PDTC group and AG490 group were significantly lower than those of model group. Conclusions:PDTC can inhibit the inflammation and oxidative stress mediated by JAK2/STAT3 signaling pathway to alleviate the anti-tuberculosis drug-induced liver injury.
文摘Pancreatic cancer is a malignant tumor with poor prognosis.The treatment of pancreatic cancer depends on the tumor stage and type,and includes local treatment(surgery,radiotherapy and ablation intervention)and systemic therapy(chemotherapy,targeted therapy and immunotherapy).We read with great interest the review“Effective combinations of anti-cancer and targeted drugs for pancreatic cancer treatment”published on World J Gastroenterol and intended to share some of our perspectives in pancreatic cancer treatment.This review presents the therapeutic effects of the combination of gemcitabine and targeted drugs,which gives us a deeper insight into the combination treatments for pancreatic cancer.
文摘Biological entities are involved in complicated and complex connections;hence,discovering biological information using network biology ideas is critical.In the past few years,network biology has emerged as an integrative and systems-level approach for understanding and interpreting these complex interactions.Biological network analysis is one method for reducing enormous data sets to clinically useful knowledge for disease diagnosis,prognosis,and treatment.The network of biological entities can help us predict drug targets for several diseases.The drug targets identified through the systems biology approach help in targeting the essential biological pathways that contribute to the progression and development of the disease.The novel strategical approach of system biologyassisted pharmacology coupled with computer-aided drug discovery(CADD)can help drugs fight multifactorial diseases efficiently.In the present review,we have summarized the role and application of network biology for not only unfolding the mechanism of complex neurodevelopmental disorders but also identifying important drug targets for diseases like ADHD,Autism,Epilepsy,and Intellectual Disability.Systems biology has emerged as a promising approach to identifying drug targets and aiming for targeted drug discovery for the precise treatment of neurodevelopmental disorders.
文摘Drug-target interactions prediction(DTIP)remains an important requirement in thefield of drug discovery and human medicine.The identification of interaction among the drug compound and target protein plays an essential pro-cess in the drug discovery process.It is a lengthier and complex process for pre-dicting the drug target interaction(DTI)utilizing experimental approaches.To resolve these issues,computational intelligence based DTIP techniques were developed to offer an efficient predictive model with low cost.The recently devel-oped deep learning(DL)models can be employed for the design of effective pre-dictive approaches for DTIP.With this motivation,this paper presents a new drug target interaction prediction using optimal recurrent neural network(DTIP-ORNN)technique.The goal of the DTIP-ORNN technique is to predict the DTIs in a semi-supervised way,i.e.,inclusion of both labelled and unlabelled instances.Initially,the DTIP-ORNN technique performs data preparation process and also includes class labelling process,where the target interactions from the database are used to determine thefinal label of the unlabelled instances.Besides,drug-to-drug(D-D)and target-to-target(T-T)interactions are used for the weight initia-tion of the RNN based bidirectional long short term memory(BiLSTM)model which is then utilized to the prediction of DTIs.Since hyperparameters signifi-cantly affect the prediction performance of the BiLSTM technique,the Adam optimizer is used which mainly helps to improve the DTI prediction outcomes.In order to ensure the enhanced predictive outcomes of the DTIP-ORNN techni-que,a series of simulations are implemented on four benchmark datasets.The comparative result analysis shows the promising performance of the DTIP-ORNN method on the recent approaches.
文摘HIV/AIDS is one of the most serious public health challenges globally. Despite the great efforts that are being devoted to prevent,treat and to better understand the disease,it is one of the main causes of morbidity and mortality worldwide. Currently,there are 30 drugs or combinations of drugs approved by FDA. Because of the side-effects,price and drug resistance,it is essential to discover new targets,to develop new technology and to find new anti-HIV drugs. This review summarizes the major targets and assays currently used in anti-HIV drug screening.
基金supported by the National Natural Science Foundation of China(52073145 and 82004081)the Jiangsu Talent Professor Program,Jiangsu Innovation Project of Graduate Student(KYCX23-2192)+1 种基金the National Natural Science Foundation of Nanjing University of Chinese Medicine(NZY82004081)the Special Grants of China Postdoctoral Science Foundation(2021T140792).
文摘Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations through the development of a potent MM-targeting chemotherapy strategy,which capitalized on the high binding affinity of alendronate for hydroxyapatite in the bone matrix and the homologous targeting of myeloma cell membranes,termed T-PB@M.The results from our investigations highlight the considerable bone affinity of T-PB@M,both in vitro and in vivo.Additionally,this material demonstrated a capability for drug release triggered by low pH conditions.Moreover,T-PB@M induced the generation of reactive oxygen species and triggered cell apoptosis through the poly(ADP-ribose)polymerase 1(PARP1)-Caspase-3-B-cell lymphoma-2(Bcl-2)pathway in MM cells.Notably,T-PB@M preferentially targeted bone-involved sites,thereby circumventing systemic toxic side effects and leading to prolonged survival of MM orthotopic mice.Therefore,this designed target-MM nanocarrier presents a promising and potentially effective platform for the precise treatment of MM.
基金supported by the National Natural Science Foundation of China(11871238,11931019,12371486)。
文摘Drug resistance is one of the most intractable issues in targeted therapy for cancer diseases.It has also been demonstrated to be related to cancer heterogeneity,which promotes the emergence of treatment-refractory cancer cell populations.Focusing on how cancer cells develop resistance during the encounter with targeted drugs and the immune system,we propose a mathematical model for studying the dynamics of drug resistance in a conjoint heterogeneous tumor-immune setting.We analyze the local geometric properties of the equilibria of the model.Numerical simulations show that the selectively targeted removal of sensitive cancer cells may cause the initially heterogeneous population to become a more resistant population.Moreover,the decline of immune recruitment is a stronger determinant of cancer escape from immune surveillance or targeted therapy than the decay in immune predation strength.Sensitivity analysis of model parameters provides insight into the roles of the immune system combined with targeted therapy in determining treatment outcomes.
基金This work was supported by grants from the National Natural Science Foundation of China(81902484)China Postdoctoral Science Foundation(2020M670864)+2 种基金Youth Support Project of Jilin Association for Science and Technology(202028)Jilin Provincial Health Special Project(2020SCZT039)Jilin Health and Healthy Youth Science and Technology Training Plan(2020Q017).
文摘Background:Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis.Although primary prevention drugs,including non-selectiveβ-blockers,have effectively reduced the incidence of bleeding,their efficacy is limited due to side effects and related contraindications.With recent advances in precision medicine,precise drug treatment provides better treatment efficacy.Data sources:Literature search was conducted in PubMed,MEDLINE and Web of Science for relevant articles published up to May 2022.Information on clinical trials was obtained from https://clinicaltrials.gov/and http://www.chictr.org.cn/.Results:The in-depth understanding of the pathogenesis and advances of portal hypertension has enabled the discovery of multiple molecular targets for promising drugs.According to the site of action,these drugs could be classified into four classes:intrahepatic,extrahepatic,both intrahepatic and extrahepatic targets and others.All these classes of drugs offer advantages over traditional treatments in prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.Conclusions:This review classified and summarized the promising drugs,which prevent gastroesophageal variceal bleeding by targeting specific markers of pathogenesis of portal hypertension,demonstrating the significance of using the precision medicine strategy to discover and develop promising drugs for the primary prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.
基金financially supported by the National Natural Science Foundation of China(grant no.8217070298)Guangdong Basic and Applied Basic Research Foundation(grant no.2020A1515110770,2021A1515220011,2022A1515010335).
文摘Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinical use up to now,biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment.Polyethylene glycol(PEG)-modification(or PEGylation)has been regarded as the gold standard for stabilising nDDS in complex biological environment.However,the accelerated blood clearance(ABC)of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications.Zwitterionic polymer,a novel family of antifouling materials,have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility.Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues.More impressively,zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution,pressure gradients,impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications.The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS,which could facilitate their better clinical translation.Herein,we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlyingmechanisms.Finally,prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.
基金supported by the National Natural Science Foundation of China(#81872220 and#81703437)Xinjiang Uygur Autonomous Region Science and Technology Support Project(#2020E0290)+4 种基金Basic Public Welfare Research Project of Zhejiang Province(#LGF18H160034,LGC21B050011 and#LGF20H300012),Science and Technology Bureau of Jiaxing(2020AY10021)Key Research and Development and Transformation project of Qinghai Province(2021-SF-C20)Dutch Cancer Foundation(KWF project#10666)a Zhejiang Provincial Foreign Expert Program Grant,Zhejiang Provincial Key Natural Science Foundation of China(#Z20H160031)and Jiaxing Key Laboratory of Oncological Photodynamic Therapy and Targeted Drug Research,and“Innovative Jiaxing·Excellent Talent Support Program”-Top Talents in Technological Innovation.
文摘Bone metastasis secondary to breast cancer negatively impacts patient quality of life and survival.The treatment of bone metastases is challenging since many anticancer drugs are not effectively delivered to the bone to exert a therapeutic effect.To improve the treatment efficacy,we developed Pluronic P123(P123)-based polymeric micelles dually decorated with alendronate(ALN)and cancer-specific phage protein DMPGTVLP(DP-8)for targeted drug delivery to breast cancer bone metastases.Doxorubicin(DOX)was selected as the anticancer drug and was encapsulated into the hydrophobic core of the micelles with a high drug loading capacity(3.44%).The DOX-loaded polymeric micelles were spherical,123 nm in diameter on average,and exhibited a narrow size distribution.The in vitro experiments demonstrated that a pH decrease from 7.4 to 5.0 markedly accelerated DOX release.The micelles were well internalized by cultured breast cancer cells and the cell death rate of micelle-treated breast cancer cells was increased compared to that of free DOX-treated cells.Rapid binding of the micelles to hydroxyapatite(HA)microparticles indicated their high affinity for bone.P123-ALN/DP-8@DOX inhibited tumor growth and reduced bone resorption in a 3D cancer bone metastasis model.In vivo experiments using a breast cancer bone metastasis nude model demonstrated increased accumulation of the micelles in the tumor region and considerable antitumor activity with no organ-specific histological damage and minimal systemic toxicity.In conclusion,our study provided strong evidence that these pH-sensitive dual ligand-targeted polymeric micelles may be a successful treatment strategy for breast cancer bone metastasis.
基金supported by Science and Technology Innovation Fund of Guangdong Medical College(No.STIF 201107)
文摘Objective:To identify novel drug targets for treatment of Plasmodium falciparum.Methods: Local BT.ASTP were used to find the proteins non-homologous to human essential proteins as novel drug targets.Functional domains of novel drug targets were identified by InterPro and Pfam.3D structures of potential drug targets were predicated by the SWISS-MODEL workspace. Ligands and ligand-binding sites of the proteins were searched by Ef-seek.Results:Three essential proteins were identified that might be considered as potential drug targets.AAN37254.1 belonged to 1-deoxy-D-xylulose 5-phosphate reductoisomerase,CAD50499.1 belonged to chorismale synthase,CAD51220.1 belonged to FAD binging 3 family,but the function of CAD51220.1 was unknown.The 3D structures,ligands and ligand-binding sites of AAM37254.1 and CAD50499.1 were successfully predicated.Conclusions:Two of these potential drug targets are key enzymes in 2-C-methyl-d-erythritol 4-phosphate pathway and shikimate pathway, which are absent in humans,so these two essential proteins are good potential drug targets.The function and 3D structures of CAD50499.1 is still unknown,it still need further study.
文摘An assessment of the efficacy targets of drugs that represent an opportunity for targeted therapy is fundamental to the development of post-genomic research strategies within the pharmaceutical industry. Identification and validation of efficacy target is an important process in drug discovery and development. Extensive drug discovery efforts have yielded many approved and candidate drugs. Although sever drug databases provide the drug and their corresponding targets, there is an insufficient coverage of the clinical trial drugs over the past decades. Here, we conduct a comprehensive survey for current clinical trial drugs, therapeutic targets. The analysis contents include: 1) collect clinical trial drugs from different sources, 2) By analysis of the literature, we summarize the criteria for assign therapeutic targets for each drug based on its indication. The knowledge of these drugs and their targets is useful not only for drug discovery and development of targeted therapy, but also for facilitating the discovery of systems pharmacology.
文摘To increase the chance of a successful outcome in clinic and in the development of innovative drugs,researchers aim to provide more compre hensive information about the disease and drugs to adapt treatment decisions according to an individual disease's mo-lecular characteristics.It is thus increasingly desirable to illuminate fund amental molecular pathways of the drug and its targets inside organisms in a non-invasive manner.Technologies developed in molecular imaging assist in visualizing,characterizing,and quanti-fying targets of interest at the molecular level within intact living organisms.This special issue of Joumal of Pharmaceutical Analysis is therefore dedicated to highlighting current progresses made in molecular imaging towards various drugs,important or promising drug targets,and their interactions,as well as to providing a forum for sharing new methods reported recently for the efficient phar-maceutical analysis.
文摘Kinase inhibitors are a significant and continuously developing division of target therapeutics.The drug discovery and improvement efforts have examined numerous attempts to target the signaling pathway of kinases.The Kinase inhibitors have been heralded as a game-changer in cancer treatment.For developing kinase inhibitors as a treatment for various non-malignant disorders like auto-immune diseases,is currently undergoing extensive research.It may be beneficial to investigate whether cell-specific kinase inhibitor administration enhances therapeutic efficacy and decreases adverse effects.The goal of the current review is to gain insight into the role of kinase inhibitors in facilitating effective target drug delivery for the treatment of various anti-inflammatory,auto-immune,and anticancer disorders.The aim of this review is also to shed light on drug discovery approaches for kinase inhibitors,their mode of action,and delivery approaches.The variation in the binding of kinases bestows different target approaches in drug design,which can be employed for designing the targeted molecules.Several target sites have been studied,exceeding the design of drugs for various diseases like cancer,Alzheimer’s,rheumatoid arthritis,etc.Diverse delivery approaches have also been studied for the targeted application of kinase inhibitors.