The change of electrical performances of silicon-germanium (SiGe)heterojunction bipolar transistor (HBT) and Si bipolar junction transistor (BJT) was studied as afunction of reactor fast neutron radiation fluence. Alt...The change of electrical performances of silicon-germanium (SiGe)heterojunction bipolar transistor (HBT) and Si bipolar junction transistor (BJT) was studied as afunction of reactor fast neutron radiation fluence. Alter neutron irradiation, the collector currentI_c and the current gain beta decrease, and the base current I_b increases generally for SiGe HBT.The higher the neutron irradiation fluence is, the larger I_b increases. For conventional Si BJT,I_c and I_b increase as well as beta decreases much larger than SiGe HBT at the same fluence. It isshown that SiGe HBT has a larger anti-radiation threshold and better anti-radiation performance thanSi BJT. The mechanism of performance changes induced by irradiation was preliminarily discussed.展开更多
A temperature measurement device can produce data deviations and can even be damaged in a high-dose radiation environment.To reduce the radiation damage to such a device and improve the temperature measurement accurac...A temperature measurement device can produce data deviations and can even be damaged in a high-dose radiation environment.To reduce the radiation damage to such a device and improve the temperature measurement accuracy in a radiation environment,a temperature sensor based on optical-fiber sensing technology is proposed.This sensor has a cascade structure composed of a single-mode fiber(SMF),a dispersion-compensation fiber(DCF),a nocore fiber(NCF),and another SMF(SDNS).The DCF and NCF are coated with a polydimethylsiloxane(PDMS)film,which is a heat-sensitive material with high thermal optical and thermal expansion coefficients.In experiments,PDMS was found to produce an irradiation crosslinking effect after irradiation,which improved the temperature sensitivity of the SDNS sensor.The experimental results showed that within a range of 30–100℃,the maximum temperature sensitivity after irradiation was 62.86 pm/℃,and the maximum transmission sensitivity after irradiation was 3.353×10^(-2)dB/℃,which were 1.22 times and 2.267 times the values before irradiation,respectively.In addition,repeated temperature experiments verified that the SDNS sensor coated with the PDMS film had excellent temperature repeatability.Furthermore,it was found that with an increase in the irradiation intensity,the irradiation crosslinking degree of PDMS increased,and the temperature sensitivity of the sensor was improved.The proposed sensor could potentially be applied to temperature measurement in a nuclear-radiation environment.展开更多
The DC characteristics of SiGe HBT irradiated at different electron dose havebeen studied in a comparison with those of Si B JT. Generally, I_b and I_b - I_(b0) increase, I_c,I_c -I_(c0) and its +/- transition V_(be) ...The DC characteristics of SiGe HBT irradiated at different electron dose havebeen studied in a comparison with those of Si B JT. Generally, I_b and I_b - I_(b0) increase, I_c,I_c -I_(c0) and its +/- transition V_(be) as well as DC current gain ft decreases with increasingdose; increase of I_b -I_(b0) with increasing dose for Si BIT is much larger than that for SiGe HBT;beta increases with V_(be) or I_b, but decreases at I_b < 0.25 mA with I_b, and congregates athigher dose; and a damage factor d(beta) is much less at the same dose for SiGe HBT than for Si BJT.SiGe HBT has much better anti-radiation performance than Si BJT. Some anomalous phenomena forincrease of I_c, I_c -I_(c0), I_b -I_(b0) and beta at low dose have been found. Some electron trapshave been measured. The mechanism of changes of characteristics is discussed.展开更多
The change of electrical performances of 1 MeV electron irradiated silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) and Si bipolar junction transistor (BJT) was studied. After electron irradiation, bot...The change of electrical performances of 1 MeV electron irradiated silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) and Si bipolar junction transistor (BJT) was studied. After electron irradiation, both the collector current IC and the base current IB changed a little, and the current gain β decreased a little for SiGe HBT. The higher the electron irradiation fluence was, the lower the IC decreased. For conventional Si BJT, IC and IB increased as well as /? decreased much larger than SiGe HBT under the same fluence. The contribution of IB was more important to the degradation of β for both SiGe HBT and Si BJT. It was shown that SiGe HBT had a larger anti-radiation threshold and better anti-radiation performance than Si BJT. The mechanism of electrical performance changes induced by irradiation was preliminarily discussed.展开更多
Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work comb...Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work combines the simulation calculations with the electrical measurements of SWCNT field-effect transistors(FETs),which limits further understanding on the mechanisms of radiation effects.Here,SWCNT film-based FETs were fabricated to explore the total ionizing dose(TID)and displacement damage effect on the electrical performance under low-energy proton irradiation with different fluences up to 1×1015 p/cm2.Large negative shift of the threshold voltage and obvious decrease of the on-state current verified the TID effect caused in the oxide layer.The stability of the subthreshold swing and the off-state current reveals that the displacement damage caused in the CNT layer is not serious,which proves that the CNT film is radiation-hardened.Specially,according to the simulation,we found the displacement damage caused by protons is different in the source/drain contact area and channel area,leading to varying degrees of change for the contact resistance and sheet resistance.Having analyzed the simulation results and electrical measurements,we explained the low-energy proton irradiation mechanism of the CNT FETs,which is essential for the construction of radiation-hardened CNT film-based ICs for aircrafts.展开更多
A technology called solar energy is a very promising technique, and is considered as the cleanest and the most abundant renewable resource that is naturally available every day. In this paper, a MATLAB environment has...A technology called solar energy is a very promising technique, and is considered as the cleanest and the most abundant renewable resource that is naturally available every day. In this paper, a MATLAB environment has been developed to calculate real-time power incidence on a PV system. It takes into account the time, location, PV tilt, and azimuth angles, and weather conditions to estimate incident power. In this paper, one case study is considered at New York State location. It has been applied to a newly installed 8 kW residential system located in Inwood. The solar panels are made up of silicon HIT (Heterojunction with Intrinsic Thin Layer) cells by Panasonic and solar cell rated at 19%. The result shows that the system is performing at its rated efficiency. The calculations involve the determination of direct, diffused and reflected radiation on the panels taking into account the time of the day, location, PV area, and orientations and weather conditions. The cloudiness index may be estimated based on the weather data and included in the calculations. After performing the irradiance calculations, the output power is estimated based on the rated efficiency at its temperature and compared with the generated output power. The real-time assessment of a PV system performance, during the operational time monitors the health of the PV system. The data obtained by this calculator may accompany production data provided to the consumer by the utility company.展开更多
The integrity and reliability of fuel rods under both normal and accidental operating conditions are of great importance for nuclear reactors.In this study,considering various irradiation behaviors,a fuel rod performa...The integrity and reliability of fuel rods under both normal and accidental operating conditions are of great importance for nuclear reactors.In this study,considering various irradiation behaviors,a fuel rod performance analysis code,named KMC-Fueltra,was developed to evaluate the thermal–mechanical performance of oxide fuel rods under both normal and transient conditions in the LMFR.The accuracy and reliability of the KMC-Fueltra were validated by analytical solutions,as well as the results obtained from codes and experiments.The results indicated that KMC-Fueltra can predict the performance of oxide fuel rods under both normal and transient conditions in the LMFR.展开更多
Irradiation can accurately manipulate defects and adjust pinning landscapes within REBa_(2)Cu_(3)O_(7-δ) (REBCO, RE: rare earths) coated conductors (CCs). This study reports a productive method to dramatically boost ...Irradiation can accurately manipulate defects and adjust pinning landscapes within REBa_(2)Cu_(3)O_(7-δ) (REBCO, RE: rare earths) coated conductors (CCs). This study reports a productive method to dramatically boost the in-field critical current density (J_(c) ) for GdBCO CCs using cooperative irradiation with Ti ions and protons. Remarkably, the in-field J_(c) of commercial CCs can be almost doubled at a wide range of temperatures and magnetic fields. Defects of various sizes induced by cooperative irradiation are more uniform distribution through the entire GdBCO film to improve the vortex pinning characteristics, thereby enhancing the in-field performance of the GdBCO CC. This method highlights how combining different particle irradiation types can tailor defect size and distribution, optimizing pinning landscapes for commercial REBCO CCs.展开更多
文摘The change of electrical performances of silicon-germanium (SiGe)heterojunction bipolar transistor (HBT) and Si bipolar junction transistor (BJT) was studied as afunction of reactor fast neutron radiation fluence. Alter neutron irradiation, the collector currentI_c and the current gain beta decrease, and the base current I_b increases generally for SiGe HBT.The higher the neutron irradiation fluence is, the larger I_b increases. For conventional Si BJT,I_c and I_b increase as well as beta decreases much larger than SiGe HBT at the same fluence. It isshown that SiGe HBT has a larger anti-radiation threshold and better anti-radiation performance thanSi BJT. The mechanism of performance changes induced by irradiation was preliminarily discussed.
基金the National Natural Science Foundation of China(Nos.62075057 and 11975091)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(No.21IRTSTHN011).
文摘A temperature measurement device can produce data deviations and can even be damaged in a high-dose radiation environment.To reduce the radiation damage to such a device and improve the temperature measurement accuracy in a radiation environment,a temperature sensor based on optical-fiber sensing technology is proposed.This sensor has a cascade structure composed of a single-mode fiber(SMF),a dispersion-compensation fiber(DCF),a nocore fiber(NCF),and another SMF(SDNS).The DCF and NCF are coated with a polydimethylsiloxane(PDMS)film,which is a heat-sensitive material with high thermal optical and thermal expansion coefficients.In experiments,PDMS was found to produce an irradiation crosslinking effect after irradiation,which improved the temperature sensitivity of the SDNS sensor.The experimental results showed that within a range of 30–100℃,the maximum temperature sensitivity after irradiation was 62.86 pm/℃,and the maximum transmission sensitivity after irradiation was 3.353×10^(-2)dB/℃,which were 1.22 times and 2.267 times the values before irradiation,respectively.In addition,repeated temperature experiments verified that the SDNS sensor coated with the PDMS film had excellent temperature repeatability.Furthermore,it was found that with an increase in the irradiation intensity,the irradiation crosslinking degree of PDMS increased,and the temperature sensitivity of the sensor was improved.The proposed sensor could potentially be applied to temperature measurement in a nuclear-radiation environment.
文摘The DC characteristics of SiGe HBT irradiated at different electron dose havebeen studied in a comparison with those of Si B JT. Generally, I_b and I_b - I_(b0) increase, I_c,I_c -I_(c0) and its +/- transition V_(be) as well as DC current gain ft decreases with increasingdose; increase of I_b -I_(b0) with increasing dose for Si BIT is much larger than that for SiGe HBT;beta increases with V_(be) or I_b, but decreases at I_b < 0.25 mA with I_b, and congregates athigher dose; and a damage factor d(beta) is much less at the same dose for SiGe HBT than for Si BJT.SiGe HBT has much better anti-radiation performance than Si BJT. Some anomalous phenomena forincrease of I_c, I_c -I_(c0), I_b -I_(b0) and beta at low dose have been found. Some electron trapshave been measured. The mechanism of changes of characteristics is discussed.
基金This project is financially supported by the National Natural Science Foundation of China(No.10075029 and 69836020)National“863”Advanced Research Project of China(No.2002AA3Z1230).
文摘The change of electrical performances of 1 MeV electron irradiated silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) and Si bipolar junction transistor (BJT) was studied. After electron irradiation, both the collector current IC and the base current IB changed a little, and the current gain β decreased a little for SiGe HBT. The higher the electron irradiation fluence was, the lower the IC decreased. For conventional Si BJT, IC and IB increased as well as /? decreased much larger than SiGe HBT under the same fluence. The contribution of IB was more important to the degradation of β for both SiGe HBT and Si BJT. It was shown that SiGe HBT had a larger anti-radiation threshold and better anti-radiation performance than Si BJT. The mechanism of electrical performance changes induced by irradiation was preliminarily discussed.
基金This work was financially supported by the National Natural Science Foundation of China(No.61704189)the Common Information System Equipment Pre-Research Special Technology Project(31513020404-2)Youth Innovation Promotion Association of Chinese Academy of Sciences and the Opening Project of Key Laboratory of Microelectronic Devices&Integrated Technology,and the Key Research Program of Frontier Sciences,CAS(Grant ZDBS-LY-JSC015)。
文摘Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work combines the simulation calculations with the electrical measurements of SWCNT field-effect transistors(FETs),which limits further understanding on the mechanisms of radiation effects.Here,SWCNT film-based FETs were fabricated to explore the total ionizing dose(TID)and displacement damage effect on the electrical performance under low-energy proton irradiation with different fluences up to 1×1015 p/cm2.Large negative shift of the threshold voltage and obvious decrease of the on-state current verified the TID effect caused in the oxide layer.The stability of the subthreshold swing and the off-state current reveals that the displacement damage caused in the CNT layer is not serious,which proves that the CNT film is radiation-hardened.Specially,according to the simulation,we found the displacement damage caused by protons is different in the source/drain contact area and channel area,leading to varying degrees of change for the contact resistance and sheet resistance.Having analyzed the simulation results and electrical measurements,we explained the low-energy proton irradiation mechanism of the CNT FETs,which is essential for the construction of radiation-hardened CNT film-based ICs for aircrafts.
文摘A technology called solar energy is a very promising technique, and is considered as the cleanest and the most abundant renewable resource that is naturally available every day. In this paper, a MATLAB environment has been developed to calculate real-time power incidence on a PV system. It takes into account the time, location, PV tilt, and azimuth angles, and weather conditions to estimate incident power. In this paper, one case study is considered at New York State location. It has been applied to a newly installed 8 kW residential system located in Inwood. The solar panels are made up of silicon HIT (Heterojunction with Intrinsic Thin Layer) cells by Panasonic and solar cell rated at 19%. The result shows that the system is performing at its rated efficiency. The calculations involve the determination of direct, diffused and reflected radiation on the panels taking into account the time of the day, location, PV area, and orientations and weather conditions. The cloudiness index may be estimated based on the weather data and included in the calculations. After performing the irradiance calculations, the output power is estimated based on the rated efficiency at its temperature and compared with the generated output power. The real-time assessment of a PV system performance, during the operational time monitors the health of the PV system. The data obtained by this calculator may accompany production data provided to the consumer by the utility company.
文摘The integrity and reliability of fuel rods under both normal and accidental operating conditions are of great importance for nuclear reactors.In this study,considering various irradiation behaviors,a fuel rod performance analysis code,named KMC-Fueltra,was developed to evaluate the thermal–mechanical performance of oxide fuel rods under both normal and transient conditions in the LMFR.The accuracy and reliability of the KMC-Fueltra were validated by analytical solutions,as well as the results obtained from codes and experiments.The results indicated that KMC-Fueltra can predict the performance of oxide fuel rods under both normal and transient conditions in the LMFR.
基金National Key R&D Program of China(No.2022YFE03150203)National Natural Science Foundation of China(Grant Nos.U2032217 and 52072366)+1 种基金Dalian National Laboratory for Clean Energy(DNL),Chinese Academy of Sciences(CAS),the DNL Cooperation Fund,CAS(DNL202021)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y202041).
文摘Irradiation can accurately manipulate defects and adjust pinning landscapes within REBa_(2)Cu_(3)O_(7-δ) (REBCO, RE: rare earths) coated conductors (CCs). This study reports a productive method to dramatically boost the in-field critical current density (J_(c) ) for GdBCO CCs using cooperative irradiation with Ti ions and protons. Remarkably, the in-field J_(c) of commercial CCs can be almost doubled at a wide range of temperatures and magnetic fields. Defects of various sizes induced by cooperative irradiation are more uniform distribution through the entire GdBCO film to improve the vortex pinning characteristics, thereby enhancing the in-field performance of the GdBCO CC. This method highlights how combining different particle irradiation types can tailor defect size and distribution, optimizing pinning landscapes for commercial REBCO CCs.
基金Supported by the National Natural Science Foundation of China(NSFC)(62174166,11991063,U2241219)Shanghai Municipal Science and Technology Major Project(2019SHZDZX01,22JC1402902)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB43010200)。