Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack...Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack the required level of security to prevent sophisticated attacks.This problem can result in the system being vulnerable to attacks,which can lead to the loss of sensitive data and potential system failure.Therefore,this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification(LTH-CNN).Here,the Correlation Coefficient based Mayfly Optimization(CC-MA)algorithm is used to extract the input characteristics for the IDS from the input data.Then,the optimized features are utilized by the LTH-CNN,which returns the attacked and non-attacked data.After that,the attacked data is stored in the log file and non-attacked data is mapped to the cyber security and data security phases.To prevent the system from cyber-attack,the Source and Destination IP address is converted into a complex binary format named 1’s Complement Reverse Shift Right(CRSR),where,in the data security phase the sensed data is converted into an encrypted format using Senders Public key Exclusive OR Receivers Public Key-Elliptic Curve Cryptography(PXORP-ECC)Algorithm to improve the data security.TheNetwork Security Laboratory-Knowledge Discovery inDatabases(NSLKDD)dataset and real-time sensor are used to train and evaluate the proposed LTH-CNN.The suggested model is evaluated based on accuracy,sensitivity,and specificity,which outperformed the existing IDS methods,according to the results of the experiments.展开更多
Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three ...Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three types of crushed rock samples. Three methods of confidence interval in describing permeability coefficients are presented: the secure interval, the calculated interval and the systemic interval. The lower bound of the secure interval can be applied to water-inrush and the upper bound can solve the problem of connectivity. For the calculated interval, as the axial pressure increases, the length of confidence interval is shortened and the upper and lower bounds are reduced. For the systemic interval, the length of its confidence interval, as well as the upper and lower bounds, clearly vary under low axial pressure but are fairly similar under high axial pressure. These three methods provide useful information and references for analyzing the permeability coefficient of over-broken rock.展开更多
The advancements made in Internet of Things(IoT)is projected to alter the functioning of healthcare industry in addition to increased penetration of different applications.However,data security and private are challen...The advancements made in Internet of Things(IoT)is projected to alter the functioning of healthcare industry in addition to increased penetration of different applications.However,data security and private are challenging tasks to accomplish in IoT and necessary measures to be taken to ensure secure operation.With this background,the current paper proposes a novel lightweight cryptography method for enhance the security in IoT.The proposed encryption algorithm is a blend of Cross Correlation Coefficient(CCC)and Black Widow Optimization(BWO)algorithm.In the presented encryption technique,CCC operation is utilized to optimize the encryption process of cryptography method.The projected encryption algorithm works in line with encryption and decryption processes.Optimal key selection is performed with the help of Artificial Intelligence(AI)tool named BWO algorithm.With the combination of AI technique and CCC operation,optimal security operation is improved in IoT.Using different sets of images collected from databases,the projected technique was validated in MATLAB on the basis of few performance metrics such as encryption time,decryption time,Peak Signal to Noise Ratio(PSNR),CC,Error,encryption time and decryption time.The results were compared with existing methods such as Elliptical Curve cryptography(ECC)and Rivest-Shamir-Adleman(RSA)and the supremacy of the projected method is established.展开更多
The traffic condition of Taizhou Yangtze River Bridge is obtained to a certain extent, according to the traffic investigation nearby Taizhou Bridge. The statistical characteristics of the traffic conditions are acquir...The traffic condition of Taizhou Yangtze River Bridge is obtained to a certain extent, according to the traffic investigation nearby Taizhou Bridge. The statistical characteristics of the traffic conditions are acquired by statistical analysis. Simulation of the extreme vehicle loads and the sensitive analysis of load parameters are carried out based on these data complemented, which would guide the determination of the frictional coefficient between the main cables and the saddle.展开更多
The rise of the digital economy and the comfort of accessing by way of user mobile devices expedite human endeavors in financial transactions over the Virtual Private Network(VPN)backbone.This prominent application of...The rise of the digital economy and the comfort of accessing by way of user mobile devices expedite human endeavors in financial transactions over the Virtual Private Network(VPN)backbone.This prominent application of VPN evades the hurdles involved in physical money exchange.The VPN acts as a gateway for the authorized user in accessing the banking server to provide mutual authentication between the user and the server.The security in the cloud authentication server remains vulnerable to the results of threat in JP Morgan Data breach in 2014,Capital One Data Breach in 2019,and manymore cloud server attacks over and over again.These attacks necessitate the demand for a strong framework for authentication to secure from any class of threat.This research paper,propose a framework with a base of EllipticalCurve Cryptography(ECC)to performsecure financial transactions throughVirtual PrivateNetwork(VPN)by implementing strongMulti-Factor Authentication(MFA)using authentication credentials and biometric identity.The research results prove that the proposed model is to be an ideal scheme for real-time implementation.The security analysis reports that the proposed model exhibits high level of security with a minimal response time of 12 s on an average of 1000 users.展开更多
Determining security/stability boundaries is a common and critical means of preventing cascading failures induced by voltage-related issues,which represents one of the major challenges in bulk power systems.However,tr...Determining security/stability boundaries is a common and critical means of preventing cascading failures induced by voltage-related issues,which represents one of the major challenges in bulk power systems.However,traditional approaches suffer from conservative issues and heavy computational burdens.To address these challenges,the concept of an autonomous-synergic voltage security region(AS-VSR)and the corresponding dynamic constraint coefficient pruning(DCCP)computation method,which fully consider the volt/var characteristics of bulk power systems,are proposed in this letter.Both linearized and nonlinearized robust optimization problems are introduced to obtain accurate results.The computational accuracy,time cost,and advantages of autonomous-synergic control are observed in the simulation results.展开更多
文摘Intrusion Detection System(IDS)is a network security mechanism that analyses all users’and applications’traffic and detectsmalicious activities in real-time.The existing IDSmethods suffer fromlower accuracy and lack the required level of security to prevent sophisticated attacks.This problem can result in the system being vulnerable to attacks,which can lead to the loss of sensitive data and potential system failure.Therefore,this paper proposes an Intrusion Detection System using Logistic Tanh-based Convolutional Neural Network Classification(LTH-CNN).Here,the Correlation Coefficient based Mayfly Optimization(CC-MA)algorithm is used to extract the input characteristics for the IDS from the input data.Then,the optimized features are utilized by the LTH-CNN,which returns the attacked and non-attacked data.After that,the attacked data is stored in the log file and non-attacked data is mapped to the cyber security and data security phases.To prevent the system from cyber-attack,the Source and Destination IP address is converted into a complex binary format named 1’s Complement Reverse Shift Right(CRSR),where,in the data security phase the sensed data is converted into an encrypted format using Senders Public key Exclusive OR Receivers Public Key-Elliptic Curve Cryptography(PXORP-ECC)Algorithm to improve the data security.TheNetwork Security Laboratory-Knowledge Discovery inDatabases(NSLKDD)dataset and real-time sensor are used to train and evaluate the proposed LTH-CNN.The suggested model is evaluated based on accuracy,sensitivity,and specificity,which outperformed the existing IDS methods,according to the results of the experiments.
基金Financial support for this work, provided by the National Natural Science Foundation of China (Nos. 50774083 and 41074040)the Program for New Century Excellent Talents in University (No. NCET-07-0803)the National Key Basic Research Program (No. 2009CB219605)
文摘Based on the steady-state seepage method, we used the Mechanical Testing and Simulation 815.02 System and a self-designed seepage instrument for over-broken stone to measure seepage properties of water flows in three types of crushed rock samples. Three methods of confidence interval in describing permeability coefficients are presented: the secure interval, the calculated interval and the systemic interval. The lower bound of the secure interval can be applied to water-inrush and the upper bound can solve the problem of connectivity. For the calculated interval, as the axial pressure increases, the length of confidence interval is shortened and the upper and lower bounds are reduced. For the systemic interval, the length of its confidence interval, as well as the upper and lower bounds, clearly vary under low axial pressure but are fairly similar under high axial pressure. These three methods provide useful information and references for analyzing the permeability coefficient of over-broken rock.
基金This work was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under Grant No.(D-387-135-1443).
文摘The advancements made in Internet of Things(IoT)is projected to alter the functioning of healthcare industry in addition to increased penetration of different applications.However,data security and private are challenging tasks to accomplish in IoT and necessary measures to be taken to ensure secure operation.With this background,the current paper proposes a novel lightweight cryptography method for enhance the security in IoT.The proposed encryption algorithm is a blend of Cross Correlation Coefficient(CCC)and Black Widow Optimization(BWO)algorithm.In the presented encryption technique,CCC operation is utilized to optimize the encryption process of cryptography method.The projected encryption algorithm works in line with encryption and decryption processes.Optimal key selection is performed with the help of Artificial Intelligence(AI)tool named BWO algorithm.With the combination of AI technique and CCC operation,optimal security operation is improved in IoT.Using different sets of images collected from databases,the projected technique was validated in MATLAB on the basis of few performance metrics such as encryption time,decryption time,Peak Signal to Noise Ratio(PSNR),CC,Error,encryption time and decryption time.The results were compared with existing methods such as Elliptical Curve cryptography(ECC)and Rivest-Shamir-Adleman(RSA)and the supremacy of the projected method is established.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02)Key Pro-grams for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-180)
文摘The traffic condition of Taizhou Yangtze River Bridge is obtained to a certain extent, according to the traffic investigation nearby Taizhou Bridge. The statistical characteristics of the traffic conditions are acquired by statistical analysis. Simulation of the extreme vehicle loads and the sensitive analysis of load parameters are carried out based on these data complemented, which would guide the determination of the frictional coefficient between the main cables and the saddle.
文摘The rise of the digital economy and the comfort of accessing by way of user mobile devices expedite human endeavors in financial transactions over the Virtual Private Network(VPN)backbone.This prominent application of VPN evades the hurdles involved in physical money exchange.The VPN acts as a gateway for the authorized user in accessing the banking server to provide mutual authentication between the user and the server.The security in the cloud authentication server remains vulnerable to the results of threat in JP Morgan Data breach in 2014,Capital One Data Breach in 2019,and manymore cloud server attacks over and over again.These attacks necessitate the demand for a strong framework for authentication to secure from any class of threat.This research paper,propose a framework with a base of EllipticalCurve Cryptography(ECC)to performsecure financial transactions throughVirtual PrivateNetwork(VPN)by implementing strongMulti-Factor Authentication(MFA)using authentication credentials and biometric identity.The research results prove that the proposed model is to be an ideal scheme for real-time implementation.The security analysis reports that the proposed model exhibits high level of security with a minimal response time of 12 s on an average of 1000 users.
基金supported in part by the National Natural Science Foundation of China (No.52007017)Fundamental Research Funds for the Central Universities (No.2020CDJQY-A027)。
文摘Determining security/stability boundaries is a common and critical means of preventing cascading failures induced by voltage-related issues,which represents one of the major challenges in bulk power systems.However,traditional approaches suffer from conservative issues and heavy computational burdens.To address these challenges,the concept of an autonomous-synergic voltage security region(AS-VSR)and the corresponding dynamic constraint coefficient pruning(DCCP)computation method,which fully consider the volt/var characteristics of bulk power systems,are proposed in this letter.Both linearized and nonlinearized robust optimization problems are introduced to obtain accurate results.The computational accuracy,time cost,and advantages of autonomous-synergic control are observed in the simulation results.